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Abstract: As an important chemical raw material, the production process of styrene is complicated and needs 

precise control. In order to deal with the problem that the parameters may fluctuate or get out of control due to 

interference in production, this study focuses on the transmission of process parameter fluctuations during 

styrene production. Considering the characteristics of parameter fluctuation and transmission under the 

disturbance of slow period in the chemical process, the multi-equipment units and multi-class parameters in the 

whole process of styrene production were studied. Firstly, Aspen Dynamics is used for dynamic simulation to 

obtain dynamic data sets under normal and different disturbance conditions. Then, the transfer entropy analysis 

and graph theory are used to explore the transfer mechanism of the wave, and the transfer path and potential 

source of the wave are identified. Based on the analysis results of transfer entropy, the LSTM model was built to 

accurately predict the fluctuation trend of key parameters, and the PID control of the fluctuation source was 

carried out accurately, thus the parameter fluctuation phenomenon in the whole styrene production process was 

suppressed. This study not only provides a new theoretical perspective for the parameter fluctuation analysis and 

control of styrene production process, but also provides a reference for the safety production management of 

other production processes in the chemical industry. 
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1. Introduction 

Styrene is an important chemical raw material and main product, used in the production of synthetic resin, 

synthetic rubber, ion exchange resin, medicine and dyes and other fields. Chemical processes involve complex 

physical and chemical reactions, which are difficult to be accurately described by mathematical models. The 

production process is continuous and uninterrupted, and any problems in any unit will affect the production 

performance such as product quality; Products are not counted by piece; The composition of raw materials, the 

state of production equipment, production process parameters and product quality can not be sensed in real time 

or fully, and it is difficult to ensure the long-term stable optimization of the entire production process, which has 

brought challenges to the further development of the chemical industry. There are many key indicators in the 

chemical production process, which often have a strong nonlinear relationship with other process parameters, 

and the interrelated information structure brings great challenges to production management. Therefore, it is 

necessary to analyze the fluctuation transmission of process parameters in the process of styrene production and 

its influence degree, and to predict and control the trend of its fluctuation transmission. This is of great 

significance to ensure the stable and safe operation of chemical production in its process. 

At present, the data-driven method based on causal analysis is the most widely used in the research of chemical 

parameter fluctuation transmission analysis. This method is widely favored by scholars at home and abroad 
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because it involves less mechanism and process knowledge, has low limitation and is easy to implement. Fortela 

et al. [1] used Granger causality analysis under generalized variance decomposition to study the transitivity of 

oscillations of process variables in chemical plants caused by perturbations and faults. However, Granger 

causality analysis requires that the analysis factors are two independent variables, and does not consider the 

influence of interference factors or nonlinear embeddedness of time series. It is only applicable to linear 

systems, and the analysis results of nonlinear coupled systems are not reliable. Compared with Granger causality 

analysis, transfer entropy, as an information theory-based method, can measure the intensity of causality and is 

more accurate in dealing with the causality inference of high-dimensional nonlinear time series. Therefore, 

transfer entropy has a significant advantage in the study of causal analysis of time series with nonlinear 

characteristics. Lindner et al. [2] took the mining field as an example to compare the application of Granger 

causality and transfer entropy in fault diagnosis of industrial processes, and found that transfer entropy is better 

in accuracy and precision and can accurately identify the root cause, while Granger causality produces a large 

number of false associations. In addition, Yang et al. [3] also tried to use directed transfer function and partially 

directed coherent isofrequency domain methods to find causality, but these methods also have similar 

shortcomings to Granger causality analysis. 

In 2000, Schreiber [4] combined the relevant theories of Information Theory (IT) and graph theory to propose 

the Transfer Entropy (TE) algorithm, which is used to describe the value of information transmission between 

variables. This method is based on IT related theory and is suitable for monitoring and analyzing the nonlinear 

characteristics of signals. And it can detect the directional and dynamic information transfer between variables, 

so as to effectively measure the intensity of causal transmission and determine the direction of causal 

transmission. As an information theory method, transfer entropy can effectively reveal the nonlinear coupling 

and dynamic interaction between different process parameters in the system, and can be directly applied to 

complex nonlinear systems. Therefore, in recent years, it has been widely used in various complex industrial 

fields. Abreu et al.[5] used the K2 algorithm of the Bayesian network and transitive entropy to identify the 

causality between industrial alarm variables. They mainly used transitive entropy to accurately measure the 

causality between first-order or multi-order autocorrelation variables to identify the causality between variables. 

Wen[6] proposed a symbolic conditional transfer entropy method based on control charts. This method 

symbolized the sigma limit of the exponential weighted moving average graph, and then calculated the 

conditional transfer entropy of the symbolized process data, so as to reveal the causal relationship between the 

time series of the symbolized process and draw it on the causal graph. By visualizing the propagation path of the 

disturbance studied, the root cause of process interference is analyzed, and the feasibility of the method is 

verified in the Tennessee Eastman process. 

As industry enters the era of intelligence, accurate prediction of timing information in chemical process has 

become an important method to avoid risks in chemical industry. At present, the time series forecasting methods 

of chemical processes are mainly based on statistics, data and data and mechanism [7]. Chemical time series 

forecasting methods based on statistics have been widely used in chemical production, mainly including 

autoregressive model [8], moving average model, and autoregressive integral moving average model [9]. 

However, these methods are generally suitable for working with linear or stationary time series data. With the 

improvement of mechanization and automation of chemical production process, the pipeline of chemical 

production is constantly extended, which makes it impractical to establish a model for prediction by statistical 

method. For complex non-linear chemical processes, more advanced machine learning or deep learning methods 

are needed. Data-based chemical time series forecasting refers to the use of historical data to model and forecast 

the chemical process time series data. Zhu et al.[10] proposed a method that combined process simulation with 

deep learning model to determine the optimal operating conditions of cryogenic devices, and the process 

simulation software HYSYS collected data to test and verify the network model. Furkan[11] et al. combined 

artificial neural network with Aspen simulation to develop a simple and easy to implement prediction model. 

Through the simulation model, parameters such as gasifier diameter, length, gasifier temperature, air/fuel ratio 

and fuel type were analyzed, and data sets for ANN training were created. Prediction of composition and 

calorific value of syngas in circulating fluidized bed gasifier. 

However, in the field of time series prediction, traditional neural networks are often difficult to deal with 

nonlinear, high-noise and high-noise data, and their performance is often unsatisfactory due to local 
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optimization, especially in the face of complex dynamic changes, nonlinear relationships and long-term 

dependencies. With its powerful time-dependent modeling capabilities, nonlinear processing capabilities, 

robustness and multi-variable data processing capabilities, LSTM can effectively capture complex dynamic 

characteristics in chemical processes and provide more accurate and reliable prediction results, thereby helping 

to optimize production processes, improve efficiency and reduce risks. Bai et al. [12] proposed a prediction 

model of key alarm variables of chemical processes based on dynamic internal principal component analysis 

(DiPCA) and LSTM. DiPCA was used to extract the most predictive principal components of process variables 

from high-dimensional data, and LSTM was used to learn the relationship between key alarm variables and 

predict the key alarm variables. Han et al. [13] proposed an LSTM combined with Monte Carlo algorithm 

model, which is well applied to the production prediction and energy structure optimization of ethylene plants in 

process industry. 

Since the emergence and application of PID controller in the 1940s, PID control has been widely used in various 

industries. Nowadays, PID control is still the primary choice for process control [14]. Especially in the chemical 

industry, PID control runs through the entire production process. Mateo et al. [15] proposed a hybrid control 

framework based on the concepts of sliding mode control and internal model, combined the nonlinear PID 

controller with the sliding surface dynamic sliding mode control method, and applied it to the two nonlinear 

chemical processes of variable height mixing tank and continuous stirring tank reactor, so as to track the 

reference trajectory and suppress the interference. Bhookya et al. [16] proposed a PID level controller based on 

modified gray Wolf optimization algorithm and parameter set, and applied it to the monitoring platform of 

Internet of Things devices to realize real-time monitoring and control of liquid level in process industry. 

Taking ethylbenzene dehydrogenation to styrene as an example, dynamic simulation technology is used to 

accurately reflect the changes of various parameters in styrene production under disturbed conditions. Based on 

dynamic simulation data set, a wave transfer model of process parameters in styrene production was constructed 

by using transfer entropy method and graph theory. Based on this, the coupling relationship between different 

process parameters and the mechanism of wave transfer were explored, the potential wave source was 

determined and the path of parameter fluctuation in styrene production system was revealed. According to the 

analysis results of the wave transfer model, LSTM is used to predict the trend of wave transfer of key 

parameters, and PID controller is used to put forward the corresponding control strategy. 

The rest of this article is organized as follows. Section 2 introduces methods for transferring entropy and LSTM. 

In section 3, Aspen Dynamics was used to construct a simulation model of the whole process of ethylbenzene 

dehydrogenation to produce styrene. Taking the temperature of dehydrogenation tank as an example, the 

transfer entropy method was used to explore the mechanism and path of parameter fluctuation in the whole 

process of styrene production. In section 4, based on transfer entropy analysis, LSTM model is used to predict 

the parameter fluctuation trend and PID control is carried out. Finally, Section 5 gives a conclusion. 

 

2. Basic Theory 

Transfer entropy 

Transfer Entropy (TE), measured and described by information entropy, is a statistic used to quantify the flow of 

information, and is particularly suitable for describing how information in a system is transferred from one part 

(or time series) to another. TE is widely used in time series analysis, complex system modeling, neuroscience, 

economics and other fields. According to Schreiber's definition, its calculation formula is as follows: 
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respectively. The computation of the difference consists of two parts, the subtrahend represents the amount of 

information transfer to predict the future state of Y when historical data of the source sequence X and the target 
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sequence Y exist simultaneously. The minuend represents the amount of information transferred about the future 

state of Y when only the historical data of Y is known. The difference between the two represents the value of 

the net information transfer from sequence X to Y.  

Since the processing object of entropy transfer is time series data, there is often a time delay between two time 

series data, that is, there is a certain lag in information transmission. The original formula fixed the time interval 

at 1, which is often contrary to the actual situation, so Bauer has improved the original formula: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2( ) ( ) ( ) 2 ( )

|

( , , ) ( ,g )

| , |

l (o | |( , ) log )
l k l k l l

t h t t t h t t t

h

h t t

Y X t t t t t

t

h

h

T

py

T Y Y X T Y Y

p y x y y x p y y p y y

+ +

+ + + +−

= −

= 
 (2) 

The calculation of the difference consists of two parts, and the subtract represents the amount of information 

transfer to predict the future state of Y when the historical data of the source sequence X and the target sequence 

Y are present at the same time. The reduction represents the amount of information transmitted to the future 

state of Y by knowing only the historical data of Y. The difference between the two values represents the 

transfer value of the net information of the sequence X to Y. Where, h is the prediction time domain of 

transferring entropy, that is, the information of 𝑋𝑡 sequence needs to be propagated to 𝑌𝑡sequence after several 

units of time. The increase of H parameter makes the transfer entropy more suitable for practical application 

scenarios. 

By simplification, the above formula can be rewritten as: 
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Transitive entropy is an asymmetric measure with directivity, which can effectively represent the causal 

relationship between variables. 𝑇𝑋→𝑌 represents the transfer entropy between variable X and variable Y, and its 

calculation formula is as follows: 

𝑇𝑋→𝑌 = 𝑇𝑌|𝑋 − 𝑇𝑋|𝑌       (4) 

The causal relationship between the two is determined by the value of 𝑇𝑋→𝑌, and the larger of these values are 

defined as the causal intensity coefficient: if 𝑇𝑋→𝑌 > 0, it means that the current information is transferred from 

variable X to variable Y, i.e., X is the cause and Y is the effect, and the causal intensity coefficient is the value 

of 𝑇𝑌|𝑋 ; if 𝑇𝑋→𝑌 < 0, it means that the information is transferred from variable Y to variable X, i.e., Y is the 

cause and X is the effect, and the causal intensity coefficient is the value of 𝑇𝑋|𝑌 ; if 𝑇𝑋→𝑌 = 0 or the value is 

below the significance level threshold, it means that there is no obvious causal relationship between the 

variables. 

Long short-term memory neural network 

Long short-term memory neural network (LSTM) model is an improvement of recurrent neural network (RNN), 

which can process and predict sequence data effectively, especially for long-term dependence problems. During 

the training process, RNN will have the problem of gradient disappearance or gradient explosion, and it cannot 

handle a very long input sequence, that is, RNN has short-term memory problems. LSTM model can solve this 

problem. LSTM adds a memory unit that can be used to store long-term state in the hidden layer node of RNN 

to remember long-term dependent information in the sequence. In order to avoid information memory 

confusion, it also adds a gating unit to control the information remembered by the memory unit, effectively 

alleviating the problem of gradient disappearance. 

The core of LSTM is its gate control mechanism, which is composed of three basic structures: forgetting gate, 

input gate and output gate, so as to control information flow. The forgetting gate is used to determine the degree 

of information retention through the input of the current moment and the output of the previous moment. The 

input gate is used to receive the updated information of the current moment and synchronously update the 

memory unit by remembering the new information, while the output gate transmits the processed information of 

the current moment to the next moment. 

(1) Forget gate 

It calculates the hidden layer state of the previous moment and the current input through the sigmoid function, 

and outputs a value between [0,1] to determine the degree of retention of the previous memory unit. The output 
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result is 0, indicating that it is completely forgotten (not retained), and the output result is 1, indicating that it is 

all retained. The mathematical expression is: 

𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)      (5) 

Where 𝑓𝑡 is the output of the forgetting gate, σ is the sigmoid activation function, 𝑊𝑓 is the weight matrix, ℎ𝑡−1 

is the hidden state of the previous time, 𝑥𝑡 is the input of the current time t, and 𝑏𝑓 is the bias term. 

(2) Input gate 

The function of the input gate is to accept the updated information of the current moment, which is used to 

remember the new information, and update the memory unit synchronously to determine how much of the input 

information of the current moment should be written into the memory unit. The mathematical expression is: 

𝑖𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)      (6) 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)      (7) 

Where 𝑖𝑡  is the output of the input gate, 𝑊𝑖  and 𝑏𝑖  are the weight matrix and bias term of the input gate 

respectively, 𝐶̃𝑡 is the state of the candidate memory unit, tanh is the tanh activation function, 𝑊𝐶  and 𝑏𝐶  are the 

weight matrix and bias term of the state of the candidate unit respectively. 

(3) Memory unit update 

The memory unit state (Ct) of the LSTM is very important, it carries the long-term memory of the network. The 

forget gate controls the extent to which the memory unit state of the previous moment is discarded, and the input 

gate controls the extent to which new information is added. The mathematical expression is: 

𝐶𝑡 = 𝑓𝑡 ⋅ 𝐶𝑡−1 + 𝑖𝑡 ⋅ 𝐶̃𝑡       (8) 

Where 𝐶𝑡 is the memory unit state of the current moment, 𝐶𝑡−1 is the memory unit state of the previous moment, 

𝑓𝑡 and 𝑖𝑡 are the output of the forgetting gate and the input gate respectively, and 𝐶̃𝑡 is the candidate memory of 

the current moment. 

(4) Output gate 

The output gate determines what information is extracted from the memory unit state and outputs the hidden 

state as the current moment. The mathematical expression is: 

𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)      (9) 

ℎ𝑡 = 𝑜𝑡 ⋅ 𝑡𝑎𝑛ℎ(𝐶𝑡)       (10) 

Where 𝑜𝑡 is the output of the output gate, ℎ𝑡 is the hidden state of the current moment, 𝑡𝑎𝑛ℎ(𝐶𝑡) is the result of 

the state of the memory unit processed by the tanh function, 𝑊𝑜 and 𝑏𝑜 are the weight matrix and bias term of 

the output gate respectively. 

 

3. Coupling Analysis and Transmission Path Identification of Slow-Varying Parameter Fluctuations 

Dynamic simulation of styrene production process 

The dynamic simulation of Aspen Dynamics is based on the steady-state model. Exporting the constructed 

steady-state model to Aspen Dynamics in Aspen Plus requires transferring the steady-state model parameters, 

process structure, and material/energy balance to the dynamic environment. Dynamic simulation usually 

requires a control system to manage the dynamic response in the process, configuring a controller for the key 

variables in the system (such as pressure, temperature, level, etc.), usually choosing a PID controller. Therefore, 

a dynamic simulation control system for styrene production was constructed in this paper, as shown in Figure 1. 

The controller detects the controlled variable and adjusts the controlled variable so that the actual value of the 

controlled variable is close to the initial value. The simulation was run in dynamic mode, and the dynamic 

response of the system was observed. By comparing the changes of various important parameters in the steady-

state and dynamic simulation, it was confirmed that the parameters in the dynamic model (such as time constant, 

response speed, controller Settings, etc.) were set reasonably without abnormal behavior, and the time changes 

and dynamic response could be simulated normally. 
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Figure 1: Dynamic simulation flow of ethylbenzene dehydrogenation to produce styrene 

 

Dynamic simulation can simulate disturbance and analyze fault by setting disturbance source and fault mode. 

On the basis of the dynamic simulation model, parameter disturbance can be further introduced to simulate the 

changes of input or output flow, pressure and temperature, observe the changes of variables over time and the 

dynamic response of the system, and calculate the dynamic changes of various equipment and material flow in 

real time, and the corresponding fluctuation data of each parameter can be output. 

Gradual periodic fluctuations 

There are many types of slow fluctuation, among which periodic slow fluctuation is the representative. In the 

process of production, the periodic and repeated fluctuations of parameters are often related to the occurrence of 

oscillatory faults. The main cause of oscillatory faults is closely related to the feedback mechanism of the 

control loop. Due to the existence of the control loop, faults will propagate among multiple control loops, 

resulting in fluctuations in production quality and output. When the external disturbance propagates to the 

current loop through the coupling between the control loops, the controller will make corresponding 

adjustments, so that the disturbance can be eliminated in time, as shown in Figure 2. However, due to the 

unreasonable setting of controller parameters or the presence of viscosity, hysteresis, dead zone and saturation 

of the control valve, it will lead to the periodic oscillation of abnormal peak value in the loop. Fluctuations 

generated in the current loop can be further propagated to other loops, resulting in process-wide fluctuations. 

 

 
Figure 2: Location of oscillatory faults in the control loop 

 

Due to the special molecular structure of styrene, polymerization is easy to occur. Vaporous styrene monomers 

tend to polymerize to form stalactite-like polymers, which can block components such as pipes, tanks and 

valves, affecting the stable and safe operation of production equipment. In the production process, the influence 

of temperature on styrene is very large, once the temperature meets the conditions will produce polymerization 

reaction, and the reaction temperature will affect the polymerization reaction speed, as the temperature 
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continues to increase, the polymerization rate of styrene will continue to increase. Especially in the 

dehydrogenation solution, if the temperature of the operation process is too high, it will cause a thermal 

reaction, and these polymers will directly block the outlet pipe of the separator, and the greater the concentration 

of styrene, the more likely the polymerization reaction will occur. Therefore, this section mainly studies the 

temperature fluctuation of dehydrogenation separation tank, in order to better control the temperature of styrene 

production process. 

The styrene production dynamic simulation model built above was used to introduce continuous external 

oscillation disturbance to the process variable dehydrogenation separator temperature in its normal production 

process, and 14,400 fault data points of each variable were collected. The collected data segment was mainly 

taken from the fluctuation part of the process data, and the fluctuation rate was calculated separately and 

normalized. The fluctuation of part of the sampled data is shown in Figure 3. 

 

  
(a) Reactor temperature (FT) (b) Hydrogen separation tank temperature (GT) 

  
(c) Reactor pressure (FP) (d) Distillation column condenser pressure (JP) 

  
(e) Distillation column condenser level (JTL) (f) Distillation column tank level (JSL) 

Figure 3: Schematic diagram of periodic slow-change fluctuation of part of the sampled data 
 

It can be seen from Figure 3 that under the continuous external oscillation disturbance, all parameters in the 

production system produce obvious periodic responses. The fluctuation of reactor temperature (a) is small at 0h-

15h, the whole rises first and then falls, and reaches the peak at 9h; Slight fluctuation from 15h to 30h; 30h-45h 
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fluctuates greatly, the whole first drops and then rises, 39h reaches the trough, 45h is stable; 59h later, it 

fluctuated slightly again and entered a new cycle. The reactor pressure (c) and its temperature fluctuate in the 

opposite direction, but the period and amplitude are basically the same. The temperature of the hydrogen 

separation tank (b) almost did not plateau, fluctuated downward after 5h, reached the trough after 38h and then 

rose, and entered a new cycle after 69h. Condenser pressure (d) slight fluctuation in the early stage; 10h-30h 

fluctuates slightly, the whole first drops and then rises, and reaches the trough around 18h; Slight fluctuation 

from 30h to 40h; 40h-65h fluctuates greatly, the whole first rises and then falls, reaching the peak around 48h; 

After 65h, it fluctuated slightly again and entered a new cycle. The fluctuation state of the condenser level (e) 

and the column tank level (f) in the rectification tower is basically the same, which is basically stable in the 

early stage, starts to fluctuate upward at about 40h, reaches the peak at about 50h, and then falls back to 

maintain a stable level, and then fluctuates again to enter a new cycle. But the fluctuation of the tank level lasts 

longer. 

Comprehensive analysis shows that under the influence of the disturbance, the parameters have obvious 

sustained periodic fluctuations, and the fluctuation amplitude is large and the fluctuation period is long. The 

monitoring temperature and pressure parameter fluctuation transmission response is faster; However, the 

fluctuation transmission response of the monitored liquid level parameters has a certain lag, and the lag time is 

relatively long. This may be because the level change is affected by a variety of factors, such as the flow speed 

of the liquid, the resistance of the pipeline, etc., resulting in the level change is slower than other parameters. 

Although there may be some differences in the fluctuation of each parameter in the initial stage, these 

fluctuation periods gradually converge with the passage of time, and the fluctuation period and amplitude also 

show a trend of gradual increase. This indicates that the internal dynamic equilibrium state of the system is 

constantly changing in the face of continuous disturbance, and more frequent and large adjustments are needed 

to maintain the stable operation of the system. 

The fluctuation direction of pressure and temperature in the reactor showed a completely opposite trend, which 

indicated that the sensitivity of ethylbenzene dehydrogenation to pressure and temperature changes was 

different. The dehydrogenation of ethylbenzene is a reversible endothermic reaction with increasing volume, so 

it is beneficial to reduce the reaction pressure or increase the temperature. When the reaction temperature is 

lowered and the pressure is increased, the reaction will have an adverse effect, resulting in a decrease in the 

conversion of ethylbenzene, a decrease in the selectivity of styrene, an increase in energy consumption and a 

heavier equipment burden. However, the period and amplitude of the two are basically the same, which further 

verifies the existence of dynamic equilibrium in the system. The condenser pressure and liquid level of the 

distillation column show obvious fluctuation consistency. When the pressure changes, it will directly affect the 

flow speed and liquid level of the condensate. The change of liquid level can in turn affect the pressure 

distribution of the condenser. 

 

4. Prediction and Control of Fluctuation Transfer of Key Parameters of Styrene Production 

Ethylbenzene dehydrogenation is an important part of styrene production, which is mainly carried out under 

high temperature conditions, and the reactants will quickly cool to form condensate at the outlet. In the 

dehydrogenation reaction, there are often cases of abnormal equipment operation leading to production 

interruption, which seriously affects the production efficiency of styrene, and the production process is 

continuous, so it will cause a series of chain reactions. Therefore, it is necessary to predict and control the key 

parameters of ethylbenzene dehydrogenation reactor in order to reduce the fluctuation of chemical parameters 

and improve the stability and reliability of chemical process. 

Construct the prediction and control model of parameter fluctuation transfer 

In chemical process control, the dynamic dependence between variables can be effectively captured through TE 

analysis of the causal relationship between system parameters, especially the influence from process input to 

output. These causal relationships provide a good input for data-driven predictive control models, and LSTM 

can make predictions in such complex, non-linear, and time-varying systems. LSTM model can accurately 

predict the future fluctuation trend through the historical data of the learning process, and provide the basis for 

the subsequent control decision. PID control is a traditional control method commonly used in chemical process 

control, which reduces the error between the system output and the set value by adjusting the input of the 
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system. In actual production, based on transfer entropy analysis and LSTM prediction, real-time control 

parameter adjustment and optimization of PID controller response can reduce fluctuations and improve 

production stability. 

In the study of chemical parameter fluctuation, the model based on TE, LSTM and PID controller can better 

predict and control the dynamic change of the system. Therefore, this paper proposes a chemical parameter 

fluctuation predictive control strategy based on TE, LSTM and PID controllers. The design steps are as follows: 

Step 1: Transfer entropy analysis. 

(1) Data collection and preprocessing: Collect all kinds of real-time data in the chemical process, and 

preprocess the data to ensure the accuracy of model training. (2) Calculation of transfer entropy: Select 

important process parameters and calculate the transfer entropy between them. (3) Identify key variables: 

Identify key factors that affect other variables and analyze their causal relationships. Through transfer entropy 

analysis, key variables that may cause fluctuations can be discovered in advance, and target variables can be 

provided for subsequent prediction models and control systems. 

Step 2: LSTM model training and prediction. 

(1) Selection of input variables: Based on the analysis results of transfer entropy, parameters that have a 

significant impact on reactor temperature and pressure (target variables) are selected as input variables, which 

helps to improve the prediction accuracy and reduce the computational complexity. The time series data is 

divided into training sets and validation sets, and the time window is defined to determine the length of the input 

data. 

(2) LSTM model construction: LSTM prediction network of reactor temperature and pressure was constructed 

based on historical data. Using historical data for key variables based on transfer entropy analysis as input, 

select the number of layers and units of the LSTM. The LSTM layer captures the timing features in the input 

data to train the model to predict the process output, and the output layer predicts the process state in the future 

time. In order to train the network efficiently, the backpropagation algorithm with Adam optimizer is adopted in 

this paper. MAE and RMSE were used to evaluate the deviation between the model prediction and the actual 

value under different experimental schemes, and the weight and structure were optimized by error feedback. 

 

Table 1: Main parameters of LSTM prediction model 

parameters 
Number of neurons 

in the input layer 

Number of neurons 

in the output layer 

Maximum 

iterations 

Initial 

learning rate 

Discard layer 

probability 

value 4 or 3 1 100 0.005 0.2 

 

(3) Training LSTM model: The training set is used to train the LSTM model. During the training process, the 

hyperparameters of the LSTM model are adjusted to improve the performance of the model. With the progress 

of training iteration, MAE and RMSE gradually become stable, which marks the gradual improvement of model 

performance and stability. Finally, validation sets are used to check the model's ability to generalize, making 

predictions for reactor temperature and pressure (target variables), respectively. 

Step 3: PID controller design based on TE and LSTM. 

(1) Determine the control objective: the main control objective of this paper is system stability. According to 

the LSTM model, the future process changes are predicted, and the relationship between the control variables 

obtained by the transfer entropy analysis is set. (2) Select a control strategy: determine the control strategy of the 

PID controller, including the action mode and weight of the proportion, integral and differential parts to meet 

the control objectives. (3) Experimental verification: Finally, the designed PID controller is implemented into 

the actual system, and the performance of the PID controller meets the requirements through experiments. 

Wave transmission analysis and path identification 

The periodic fluctuations of parameters have been preliminarily discussed above. However, the transfer path, 

internal mechanism and transfer trend of parameter fluctuations still need to be further analyzed by using 

transfer entropy theory and graph theory. After data denoising and normalization processing, process data is 

used to calculate the transfer entropy of the fluctuation transfer relationship between variables. The calculation 

results of the transfer entropy among process variables are shown in Table 2. 
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Table 2: Transfer entropy values between key process variables 

variable 1 2 3 4 5 6 

1 × 0.10 0.18 0.16 0.11 0.07 

2 0.18 × 0.14 0.13 0.06 0.08 

3 0.18 0.10 × 0.12 0.05 0.08 

4 0.17 0.11 0.16 × 0.07 0.10 

5 0.17 0.08 0.08 0.09 × 0.07 

6 0.12 0.08 0.12 0.12 0.06 × 

 

As shown in Table 1, the transfer entropy between various process parameters is compared to determine the 

direction of fluctuation transmission, and significance level test is conducted to determine the threshold and 

screen the causality. According to the causality data after selection, a weighted directed network diagram 

reflecting the interaction between process variables is constructed, as shown in Figure 4. Based on the causality 

network of parameter fluctuations, the transmission path and source of parameter fluctuations are identified, and 

the link most susceptible to disturbance is found out. The output 𝐷𝑜𝑢𝑡(𝑣𝑖) of each node 𝑣𝑖 in the network is 

calculated by the formula: 

𝐷𝑜𝑢𝑡(𝑣𝑖) = ∑ 𝑇𝑥𝑗|𝑥𝑘𝑥𝑘
       (11) 

The larger the output 𝐷𝑜𝑢𝑡(𝑣𝑖) of a node, the greater the influence of the historical status of the node on the 

current status of other nodes, indicating that the dynamic change of the node is the cause of the dynamic change 

of other nodes, and the state variable of the node is the location of the fluctuation source. Further, after the 

location of the wave source is determined, starting from the state variable where the wave source is located, the 

branch road with the largest causal intensity coefficient is retained, which is the main propagation path of the 

wave mode. The output 𝐷𝑜𝑢𝑡  of each node in the figure is calculated, as shown in Table 3. 

 

Table 3: Calculation results of output 𝐷𝑜𝑢𝑡t of key parameters 

Key parameter Value of 𝐷𝑜𝑢𝑡  

①FT 0 

②GT 0.46 

③FP 0 

④JP 0.33 

⑤JTL 0.17 

⑥JSL 0.36 

 

 
Figure 4: Parameter causality network diagram of periodic slow-change fluctuation 
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As can be seen from Table 2, the output of process variable GT is the largest, so GT is the location of the 

fluctuation source, which corresponds to the temperature of the hydrogen separation tank in the actual 

production process, and is consistent with the actual cause of fluctuation, that is, GT is subject to external 

oscillation interference. The effectiveness of the proposed method in locating the source of slow-changing 

periodic fluctuations in chemical processes is verified. At the same time, the output of FT and FP is 0, indicating 

that the influence of the fluctuation of the reactor temperature and pressure on the downstream is smaller than 

that of the downstream parameter fluctuation on the reactor temperature and pressure. The hydrogen separation 

tank is the downstream equipment of the reactor, which also proves that the periodic fluctuations generated by 

GT are mostly from external oscillation interference. The accuracy of the proposed method in locating the cycle 

fluctuation source of chemical process was verified again. 

On this basis, further research was carried out to predict and control the temperature and pressure of 

ethylbenzene dehydrogenation reactor under the disturbance scenario. 

Parameter optimization and result analysis of LSTM prediction model 

Based on the above case, the temperature and pressure of ethylbenzene dehydrogenation reactor under the 

disturbance scenario were predicted. The time series data of each variable are 14400 pieces respectively. The 

first 10,000 pieces of data are divided into training sets and the last 4400 pieces are divided into test sets. 

According to the transfer entropy analysis results in Section 4.2, it can be obtained that: 

Model A (temperature prediction): The main key parameters that affect the fluctuation of reactor temperature 

(FT) are four variables: temperature of dehydro separation tank (GT), pressure of distillation column (JP), liquid 

level of distillation column condenser (JTL) and liquid level of distillation column reactor (JSL). Therefore, GT, 

JP, JTL and JSL are selected as input variables, and FT is output variable. 

Model B (pressure prediction): The main key parameters affecting the fluctuation of reactor pressure (FP) are 

three variables: dehydrogenation separator tank temperature (GT), distillation column pressure (JP) and 

distillation column tank level (JSL). Therefore, GT, JP and JSL are selected as input variables, and FP is output 

variable. 

Model parameter optimization 

In the process of constructing and training LSTM prediction model, the setting of hyperparameters is a very 

important step. In order to optimize the performance of the model, the orthogonal experimental method is used 

to find the optimal combination of hyperparameters. The effects of the number of hidden layer nodes, activation 

function and batch size on the prediction results are discussed. Different levels of three factors are considered, 

namely, the number of hidden layer nodes (50,100,150), activation function (relu, tanh), and batch size 

(50,100,150). Table 4 lists the details of the orthogonal experiment. 

 

Table 4: Orthogonal test scheme 

Group 

Optimization parameter 

Group 

Optimization parameter 

Number of hidden  

layer nodes 

Activation  

function 
Lot size 

Number of 

hidden layer 

nodes 

Activation 

function 

Lot 

size 

1# 50 tanh 50 10# 50 relu 50 

2# 50 tanh 100 11# 50 relu 100 

3# 50 tanh 150 12# 50 relu 150 

4# 100 tanh 50 13# 100 relu 50 

5# 100 tanh 100 14# 100 relu 100 

6# 100 tanh 150 15# 100 relu 150 

7# 150 tanh 50 16# 150 relu 50 

8# 150 tanh 100 17# 150 relu 100 

9# 150 tanh 150 18# 150 relu 150 

 

(1) Prediction and evaluation of Model A (temperature of ethylbenzene dehydrogenation reactor) 

The prediction performance of model A of each orthogonal test scheme is shown in Figure 6. As can be seen 

from Figure 5, there are certain differences in network prediction performance under different experimental 
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schemes. The results show that the MAE and RMSE of scheme 13# are both the minimum values, which are 

2.72% and 4.61%, respectively. Therefore, 100 hidden layer node number, relu activation function and 50 batch 

size were selected as LSTM network parameters for reactor temperature prediction. 

 

  
(a) MAE for each test scheme (b) RMSE for each test scheme 

Figure 5: Performance evaluation of Model A orthogonal test scheme 

 

(2) Model B prediction evaluation (temperature of ethylbenzene dehydrogenation reactor) 

The prediction performance of model B of each orthogonal test scheme is shown in Figure 6. It can be seen that 

the Settings of different network parameters have different prediction effects on reactor pressure. MAE and 

RMSE of scheme 11# are both the minimum values, which are 0.43% and 0.65% respectively. Therefore, 50 

hidden layer nodes, relu activation function and 100 batch size were selected as LSTM network parameters for 

reactor pressure prediction. 

 

  
(a) MAE for each test scheme (b) RMSE for each test scheme 

Figure 6: Performance evaluation of Model B orthogonal test scheme 

 

Through the performance evaluation of model A and model B, it is proved that the LSTM model constructed in 

this paper can effectively predict the temperature and pressure of ethylbenzene dehydrogenation reactor based 

on transfer entropy analysis. However, under the same orthogonal experiment scheme, the prediction effect of 

model A and model B is different, and the prediction effect of model B is better than that of model A, indicating 

that the difference of sample data input to the model will affect the prediction performance of the LSTM model. 

Analysis of prediction results 

According to the parameter optimization results, the LSTM prediction model (Model A) with the number of 

hidden layer nodes being 100, the activation function being relu and the batch size being 50 was used to predict 

the reactor temperature. The LSTM prediction model (Model B) with the number of hidden layer nodes 50, 

activation function relu and batch size 100 was used to predict the reactor pressure. The prediction results are 

shown in Figure 7 and Figure 8 respectively. 

 



Tian X                                                      Journal of Scientific and Engineering Research, 2025, 12(3):134-149 

Journal of Scientific and Engineering Research 

146 

 
Figure 7: Predicted results of reactor temperature (LSTM Model A) 

 

 
Figure 8: Predicted results of reactor pressure (LSTM Model B) 

 

As shown in Figure 7 and Figure 8, the constructed LSTM model has a good prediction effect on the 

temperature and pressure of the reactor. It can predict the change trend of each index data well, and respond to 

its fluctuations to achieve accurate prediction. In summary, the LSTM model can better show the relationship 

between data changes and accurately predict the reactor temperature and pressure, thus providing a reliable data 

source for the proposal of control strategies. 

Design and simulation of PID temperature controller for hydrogen separation tank 

Based on the previous research, this paper has obtained the dynamic characteristics of the wave transfer of 

system parameters through the transfer entropy method, and has effectively predicted the key parameters by 

constructing the LSTM prediction model. The fluctuation of parameters is predicted in advance based on LSTM 

model, so that the PID controller can adjust the control parameters more accurately. The feedforward control 

and feedback control are combined to improve the robustness and stability of the system. 

The design of PID controller needs to determine the control target first. In this section, the slow periodic 

fluctuation of styrene production process is taken as an example, and the fluctuation of key parameters in this 

scenario is regulated. According to the above analysis results of transfer entropy, the main fluctuation source in 

this scenario is identified as the temperature of the hydrogen separation tank. Therefore, we choose to add a PID 

temperature controller for the hydrogen separation tank to control the temperature stability of the hydrogen 

separation tank and improve the stability of the whole system. According to the dynamic model of Aspen 

Dynamics above, the target value of PID temperature controller of hydrogen separation tank is set to 70℃. 

Secondly, the control strategy of PID controller is determined. The PID parameters are initially adjusted by the 

critical stability method, and the parameters required in the PID adjustment process are calculated. The PID 

parameters calculated in this paper are proportional gain 𝐾𝑝=1, integral gain 𝑇𝑖=0.05 and differential gain 𝑇𝑑=5. 

Finally, the designed PID controller is applied to the styrene production system constructed in this paper, and 

the performance of the PID temperature controller is verified by simulation. The simulation results are shown in 
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Figure 9. Sets the value of each parameter at normal run time to the reference target value. For example, the 

temperature of the reactor is 560℃, the temperature of the hydrogen separation tank is 70.5℃, the pressure of 

the reactor is 1.013bar, the top pressure of the distillation tower is 1.013bar, the liquid level of the distillation 

tower condenser is 3.6m, and the liquid level of the distillation tower reactor is 6m. 

 

  
(a) Reactor temperature (FT) (b) Hydrogen separation tank temperature (GT) 

  
(c) Reactor pressure (FP) (d) Distillation column condenser pressure (JP) 

  
(e) Distillation column condenser level (JTL) (f) Distillation column tank level (JSL) 

Figure 9: Response curves of key parameters after PID controller 

 

As can be seen from Figure 9, the PID control algorithm designed in this paper can effectively ensure the 

control accuracy of the control system when the temperature control system has external slow-varying 

disturbance. By introducing PID temperature controller, the temperature fluctuation of hydrogen separation tank 

is controlled effectively. Its fluctuation range gradually decreases, and finally accurately approaches the preset 

target value. At the same time, PID control of the temperature of the hydrogen separation tank also indirectly 

realizes the control of the periodic fluctuations of other key parameters, and these key parameters gradually tend 

to the target value with PID control. This further verifies the accuracy and effectiveness of the transfer entropy 
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method used in this paper to analyze the transfer mechanism of fluctuations between parameters and identify the 

source of fluctuations. 

 

5. Conclusions 

In this paper, a wave transfer model of chemical process parameters was constructed based on transfer entropy 

and graph theory, and a dynamic simulation model was used to simulate the slow-change cycle disturbance 

scenario of styrene production process, and data sets were collected and pre-processed. Secondly, the wave 

transfer between the key parameters under this disturbance is studied, and the transfer entropy between the 

parameters is calculated to build a network model. Based on this, the potential wave source and the wave 

transfer path between the key parameters are identified and the causal analysis is carried out. Finally, based on 

the results of transfer entropy analysis, the parameter prediction and control strategy of using LSTM model and 

PID controller in styrene production process was further discussed. First, the LSTM prediction model is 

constructed to accurately predict the future fluctuation trend of key parameters. Then, combined with the 

causality of prediction results and transfer entropy analysis, a PID temperature controller is introduced and 

designed to effectively control the temperature of the hydrogen separation tank, which is the source of 

fluctuation, and indirectly affect other key parameters through the wave transfer mechanism, so that the whole 

system gradually becomes stable from the slow periodic fluctuation state. 
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