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Abstract Since ancient times, humans have continued to face various types of natural disasters. Among these 

disasters, the earthquakes are arguably the most terrifying since humans cannot fully grasp the timing and scale 

of their occurrence. Furthermore, the huge losses in life, property, safety, economy, society, culture and politics 

etc. are usually suffered around the earthquake-affected areas when a strong earthquake occurs. Especially, there 

are quite frequent earthquakes occurred in Taiwan locating in the Circum-Pacific seismic belt that is the largest 

and most active seismic zone around the world, thus leading the intersection and collision of the Eurasian and 

the Philippine Sea Plates, as well as the subduction of the plates. Therefore, Taiwan’s government has invested a 

lot of resources for predicting the occurrence of earthquakes because the effects of preventive works beforehand 

can far outweigh those of remedial measures afterwards. However, it is difficult and impossible to accurately 

predict the scale, depth, location and timing of earthquakes in terms of current technologies available to 

mankind. A two-stage procedure is proposed to predict the scales of earthquakes by using the Self-Organizing 

Map (SOM) and Support Vector Regression (SVR) based on the historical earthquakes in this study. The 

effectiveness and efficiency of the proposed procedure are illustrated by a case study based on the earthquakes 

occurred from 1995/1/1/ to 2024/12/14 in Taiwan. The experimental results show that the proposed procedure of 

this study can yield adequate prediction performance through evaluating by the MAPE (Mean Absolute 

Percentage Error), MSE (Mean Squared Error) and R2. 
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1. Introduction 

Earthquake is a natural disaster that humans cannot avoid since ancient times. Whenever a strong earthquake 

occurs, countries around the earthquake-affected areas often suffer huge losses in life, property, safety, 

economy, society, culture and politics. For example, the 2004 Sumatra-Andaman earthquake caused the South 

Asian tsunami. The earthquake triggered a huge tsunami with a height of 15 meters to about 30 meters. Coupled 

with the Christmas holiday, at least 300,000 people were killed and missing. The Miyagi earthquake, also 

named Great East Japan Earthquake, in March 2011, including the accompanying huge tsunami and large-scale 

disasters caused by aftershocks, flooded areas several kilometers away from the coast. Many coastal cities and 

facilities were destroyed, and the economic losses are even more incalculable. The huge tsunami caused by the 

earthquake eventually led to the accident at the Fukushima Daiichi Nuclear Power Plant. In addition, many 

countries have imposed “import restrictions” on Japan’s Fukushima foods for several years, causing Japan’s 

export trade setbacks and losses that cannot be ignored. Taiwan locates in the Circum-Pacific seismic belt, the 

largest and most active seismic zone in the world. Due to the intersection and collision of the Eurasian and the 

Philippine Sea Plates, as well as the subduction of the plates, Taiwan’s strata are subjected to the crustal stress, 

causing the strata to deform and fracture, thus leading to quite frequent earthquakes. Therefore, Taiwan’s 

government has been allocating a large amount of funds for earthquake-related researches and earthquake 
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recovery works. At the same time, the government also clearly understands that the preventive works 

beforehand will far outweigh the effects of remedial measures afterwards. However, the mechanisms that trigger 

earthquakes and their influencing factors are extremely complex, making it impossible for humans to accurately 

predict the scale, depth, location and timing of earthquakes. Therefore, the prediction of earthquake-related 

information has always been a research topic of great interest and enthusiasm around the world. For example, 

[1] propose an approach for efficiently predicting the number of the wounded in a very short time, i.e. an “S-

shape” curve for the numbers of the sick and wounded by utilizing a continuous interval grey discrete Verhulst 

model that is based on the kernels and measures (CGDVM-KM). The authors apply an interval whitening 

method to convert the continuous interval sequence into the kernel, as well as to measure the sequences with 

equal information quantity. In other words, the continuous interval sequence is first converted into the kernel 

and measure sequences with equal information quantity through the interval whitening method. The kernel and 

measure sequences are then combined with the classical grey discrete Verhulst model to present the grey 

discrete Verhulst models for the kernel and measure sequences, respectively. Based on these procedures, they 

develop the CGDVM-KM model to overcome the systematic errors caused by the discrete form equation for 

parameter estimation, as well as continuous form equation for simulation and prediction in classical grey 

Verhulst model. Therefore, the prediction accuracy thus can be improved. In addition, several examples are used 

to verify the rationality and validity of their model. According to the comparison with other forecasting models 

indicates that their proposed model can provide higher prediction accuracy, yield the better simulation effect 

while forecasting the wounded in massive earthquake disasters. [2] integrate an alarm-based model and binary 

classification to explore the precursory behavior of geoelectric signals before large earthquakes. They remove a 

time parameter used for coarse-graining of earthquake occurrences, as well as extend the single-station method 

into a joint-stations approach to improve the original methodology. The optimal frequency bands of earthquake-

related geoelectric signals featuring the highest signal-to-noise ratio can be determined by analyzing the filtered 

geoelectric data with different frequency bands. Furthermore, the relationship between geoelectric signals and 

seismicity is proven according to the significance tests. Therefore, the machine learning methods are suggested 

to extract the underlying relationship, that could be used as a tool for quantifying probabilistic forecasts of 

impending earthquakes and getting closer prediction of the operational earthquakes. [3] create a hybrid decision-

making framework for deciding amongst potential loss mitigation actions (or taking no action) by combining a 

multiple criteria decision-making approach and the cost-benefit analysis. Three hypothetical case studies by 

using Patras (Greece), that is a high seismicity location, are taken as an example to demonstrate their proposed 

framework. According to the simulation results, their proposed approach is flexible enough for dealing with new 

problems, end-users and stakeholders. Furthermore, it also shows that reasonable mitigation actions are viable 

and financially beneficial during periods of increased seismic hazard for reducing the potential consequences of 

earthquakes. The framework is very sensitive to the inputs that involving end users to help constrain these inputs 

when making calculations is a crucial work. [4] predict the labquake by deep learning (DL) methods, forecast 

fault zone shear stress through introducing an autoregressive (AR) forecasting DL model, as well as expand the 

range of lab fault zones for the purpose of laboratory earthquake prediction and fault zone stress forecasting. In 

the AR methods, previous measurements are utilized to forecast stress in the future by predicting iteratively. In 

addition, their DL methods can perform better than the existing ML approaches, and also can predict by using 

limited training. Besides, the forecasts beyond a single seismic cycle for aperiodic failure are also investigated 

in their study. The experimental results show that there are significant improvements for predicting the 

labquake, and demonstration can be made for the followings: (1) DL models based on Long-Short Term 

Memory and Convolution Neural Networks can predict labquakes in these conditions including pre-seismic 

creep, aperiodic events and alternating slow/fast events, as well as (2) the acoustic energy is a fingerprint of 

fault zone stress since the fidelity can predict the fault zone stress well. Both the time to start of failure (TTsF) 

and time to the end of Failure (TTeF) for labquakes can be predicted. Notably, the TTeF can be successfully 

predicted in all seismic cycles, but the TTsF prediction can vary along with the amount of preseismic fault 

creep. They apply a forecasting modelling framework with three sequences including the LSTM, Temporal 

Convolution Network and Transformer Network. The AR can predict only a target variable at a specific time, 

that is distinct from the existing prediction models. Furthermore, the forecasts beyond a single seismic cycle are 

limited, but are encouraging. Their proposed ML/DL models can outperform the state-of-the-art and 
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autoregressive model and improve the performance of forecasting earthquakes by using the current methods. [5] 

replace the instantaneous triggering by a mean time-to-failure depending on the absolute stress value to develop 

a modified Coulomb Failure (CF) model to forecast the time-dependent earthquakes. Notably, absolute 

Coulomb stress is required and instantaneous triggering if stress exceeds a threshold is assumed in the 

traditional CF model. Therefore, the CF model is suited to predict background earthquake rates and time-

dependent stress effects. They show that their modified model can lead to identical results as the rate-and-state 

(RS) model, as well as can reproduce the Omori-Utsu relation for aftershock decays and stress-shadowing 

effects by specifically choosing an exponential dependence on stress and a stationary initial seismicity rate. [6] 

forecast the probability of a strong aftershock of Greek seismicity from 1995 to 2022 by using the NESTORE 

machine learning approach. The NESTORE classifies aftershocks into two types, named Type A and Type B, 

based on their magnitude difference between the mainshock and the strongest aftershock. There is smaller 

difference between the mainshock and strongest aftershock in Type A clusters. In their algorithm, region-

dependent training is required as input as well as the forecasting performance is evaluated on an independent 

test set. According to the best test result obtained by 6 hours after the mainshock, the 92% of clusters 

corresponding to 100% of Type A clusters and more than 90% of Type B clusters can be correctly forecasted. 

The experimental results show that the algorithm can be applied in this Greek area, and their approach is 

particularly attractive for seismic risk mitigation since the required forecasting time is short. [7] forecast the 

frequency and magnitude for earthquakes above Mw 4.0 in Northeastern Algeria through parametric and non-

parametric time series forecasting approaches. In their study, the Autoregressive Integrated Moving Average 

(ARIMA) model is used in the parametric approach, as well as the Singular Spectrum Analysis (SSA) approach 

utilized in the non-parametric method. The annual number of earthquakes and maximum magnitude events 

occurred in Northeastern Algeria from 1910 to 2019 that including 287 main events larger than Mw 4.0 are used 

to train and test the ARIMA and SSA models. Notably, the SSA method takes as the function of forecasting 

algorithm, and the obtained results are also compared to those acquired by the ARIMA model. The 

implementation results indicate that the SSA forecasting model can perform better than the ARIMA model 

based on the evaluation criterion through root mean square error (RMSE). A statistical N-test in terms of the 

total number of events is also applied to analyze the consistency between the observation and forecast. 

According to their findings, the annual maximum magnitude in Northeastern Algeria between 2020 and 2030 

will range from Mw 4.8 to Mw 5.1, and there are four and six occurred events that have a magnitude of at least 

Mw 4.0 annually. [8] utilize a deep-learning model based on neural networks to develop the Recurrent 

Earthquake foreCAST (RECAST) system. The greater volume and diversity of earthquake observations access 

can be made to overcome the theoretical and computational limitations in the traditional approaches. Their 

proposed approach is benchmarked with a temporal Epidemic Type Aftershock Sequence model. The RECAST 

can accurately model earthquake-like point processes directly from cataloged data according to the tests on 

synthetic data. Next, the fit and forecast accuracy compared to the benchmark can be improved while testing on 

earthquake catalogs in Southern California if the training set is sufficiently long (>10(4) events). Furthermore, 

the forecasting performance need not be sacrificed while adding flexibility and scalability for earthquake 

forecasting by the basic components in RECAST. [9] design an earthquake forecasting framework, tested it in 

seismogenic regions in southwestern China, to forecast earthquakes in real time. The features recorded using the 

electromagnetic (EM) and geo-acoustic (GA) sensors of the multi-component seismic monitoring system 

acoustic electromagnetic to AI (AETA) in each station take as the input data. By giving the data of the current 

week, the forecasting framework intends to forecast the location and magnitude of the earthquake that might 

occur during the next week. In addition, a principal component analysis is utilized to reduce the dimension from 

massive EM and GA data, and the random-forest-based classification is then applied. The authors gather the 

available data from 2016 to 2020 to train the proposed algorithm, that is evaluated later based on the real-time 

data in 2021. According to the experimental results, the testing accuracy, precision, recall and F1-score can 

reach 70%, 63.63%, 93.33% and 75.66%, respectively. Besides, the mean absolute error regarding the predicted 

distance is 381 km, as well as the mean absolute error of magnitude is 0.49. [10] propose a hybrid SARIMA-

XGBoost methodology to predict earthquake magnitude for addressing the challenges given by earthquakes 

probabilistic nature. Their proposed approach consists of two steps. The first step is an exploration procedure 

that uses exploratory data analysis, that includes descriptive statistics and data visualization. Then, a method 
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focusing on forecasting future earthquakes forms the second step. They use an earthquake dataset during 1965 to 

2023 to acquire insights and lessons for more effective earthquake prediction methods. In addition, the 

implementation results of SARIMA-XGBoost model are compared to those obtained by the traditional methods 

including ARIMA and SARIMA models. Based on evaluating by the mean absolute error (MAE), mean squared 

error (MSE) and root mean squared error (RMSE), their developed hybrid SARIMA-XGBoost model can 

provide superior prediction performance. Therefore, the prediction accuracy can be significantly improved 

through yielding the notably low values of MAE, MSE and RMSE. Furthermore, the hybrid model can reduce 

the forecasting errors more effectively by integrating SARIMA’s time series (TS) analysis with XGBoost’s 

machine learning (ML). [11] apply the fully convolutional networks (FCN) to forecast future earthquakes by 

using the spatial map of the logarithm of past estimated released earthquake energies as neural networks’ inputs. 

The earthquakes data of California is implemented to their developed model, that is also compared with the 

elaborate version of the epidemic type aftershock sequence (ETAS) model. Based on the long-term earthquake 

forecast simulation, whose performance is evaluated by the Molchan diagram, the FCN model is close to the 

ETAS model while forecasting earthquakes with a magnitude that is greater than or equal to 3.0, equal to 4.0, 

and equal to 5.0. Furthermore, it is 2000-4000 times faster than calibrating the ETAS model and generating its 

probabilistic forecasts through training and implementing the FCN model. Extensive knowledge of statistical 

seismology or the analysis of earthquake catalogue completeness is not required. The forecasting model’s 

performance in some time-magnitude forecasting windows can be enhanced by serving the earthquake catalogue 

with a magnitude greater than or equal to 0 as FCN input. At the same time, the neural network structure and 

feature engineering make the FCN model in their study straightforward. [12] proposes a model for forecasting 

the potential seismogenic earthquake or earthquake fault zones by using the complete earthquake catalog data 

and spatio-temporal analysis. The author utilizes the complete shallow earthquake catalog between 1963-1999 

and 1963-2006 to constructs and compares three types’ models based on evaluating their reliability via the delta 

AIC. The experimental results show that the Model-3, that is constructed based on the product of the normalized 

model of the combined smooth seismicity model of a relatively small to moderate complete earthquake catalog 

data with a relatively uniform background model and weighted by the normalized seismic moment rate derived 

from the surface strain rate, yields the highest reliability. Therefore, a more extended observation period and 

using a complete, albeit relatively small-to-moderate, earthquake catalog is suggested for constructing a more 

reliable and accurate model. In addition, it is considered successful by implementing the Probabilistic Seismic 

Hazard Function (PSHF) window using the b-value of a 5-year window length with a 1-year sliding window 

prior to a significant seismic event. The importance of the temporal “b-value” in conjunction with the reliable 

seismicity rate and spatial probabilistic earthquake forecasting models in earthquake forecasting is also proven. 

The large changes in the PSHF prior to giant and large earthquakes and the finding of a correlation between 

decreased b-value time window length and earthquake magnitude are also shown in his study. 

Based on the above literature review, there are numerical traditional methods or models for dealing with the 

problems of forecasting earthquakes, e.g. the Verhulst model, multiple criteria decision-making, autoregressive 

(AR) forecasting, Coulomb Failure (CF) model, and Autoregressive Integrated Moving Average (ARIMA) 

model etc. With the rapid development of AI in recent years, the artificial neural networks and bionic algorithms 

have been extensively used in the field of earthquake prediction and provide adequate results. Therefore, this 

study develops a two-stage procedure to predict the scales of earthquakes in the future based on the historical 

earthquake data by using the self-organizing map (SOM) and support vector regression (SVR) algorithm. The 

earthquake data collected from 1995/1/1/ to 2024/12/14 in Taiwan are used to demonstrate the effectiveness and 

efficiency of the proposed procedure. The rest of this paper is organized as follows. Section 2 briefly introduces 

the methodologies, including the SOM and SVR algorithms, that are used to develop the prediction procedure in 

this study. The proposed two-stage earthquake prediction procedure is then presented in Section 3. Our proposed 

procedure is validated by a case study on predicting the scales of earthquakes occurred in Taiwan between 

1995/1/1 and 2024/12/14 in Section 4 where the prediction performance is evaluated through MAPE (Mean 

Absolute Percentage Error), MSE (Mean Squared Error) and R2. Finally, Section 5 concludes this study and 

gives a direction for the future research. 
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2. Methodologies 

Self-Organizing Map 

A neural network (NN) inspired by the structure and function of biological neural networks in animal brains is a 

model in the domain of machine learning. There are several connected units or nodes, called artificial neurons, 

to model the neurons of the brain in a neural network. In addition, these neurons are connected by edges that 

simulate the synapses in the brain. The neurons are arranged into several layers depending on their connecting 

relationship. The typical neural network consists of three layers, including the input, hidden and output layers. 

For each neuron, the signals coming from all connected neurons in the previous layer are summed through 

weighting the signal by the weight corresponding to the connected edge and fed into this neuron. Each neuron 

then sends a signal to all connected neurons in the next layer after processing the received signal of this neuron. 

Notably, the signal is a real number, as well as the output of each neuron is calculated by a non-linear function, 

called the activation function, of the sum of a neuron’s inputs. Furthermore, the weights that can adjust during 

the learning process in the connected edges determine the strength of the signal at each connection. The neural 

networks can be broadly divided into two categories: supervised learning and unsupervised learning. In the 

supervised learning, a paradigm where the input objects and their corresponding desired output values are used 

to train a model. The training data are applied to build a function that can map new input data to an expected 

output value. The optimal neural model is determined by allowing the algorithm of neural network to correctly 

determine the output values for these unseen cases. Therefore, the learning algorithm is required to be able for 

generalizing from the training data to the unseen situations through a reasonable method. The quality of an 

algorithm is measured by the statistical measure, called generalization error. On the other hand, the 

unsupervised neural networks train on unlabeled data without explicit input-output pairs. The unsupervised 

learning is not under the guidance of features. Instead, the unsupervised neural network is provided with 

unlabeled data sets containing only the input data and left to discover the patterns existed in the data to build a 

new model from these data. The self-organizing map (SOM) developed by [13] is a well-known unsupervised 

machine learning technique that is used to produce a low-dimensional, typically two-dimensional, representation 

for a higher-dimensional data set while preserving the topological structure existed within the original data as 

shown in Figure 1. The learning goal of the self-organizing map is to create different parts of the neural network 

that can respond similarly to certain input patterns. The motivation of SOM is partly coming from how visual, 

auditory or other sensory information is handled in separate parts of the cerebral cortex in the human brain. In 

general, the weights of the neurons are initialized randomly or based on sampling from the subspace spanned by 

the two largest principal component eigenvectors. The competitive learning is utilized while training the SOM. 

The Euclidean distance to all weight vectors is computed when a training example is fed to the network, and the 

neuron whose weight vector is most similar to the training example is considered as a winner, i.e. the best 

matching unit (BMU). The weights of the BMU and neurons close to the BMU in the SOM grid are then 

adjusted towards the input vector of the training example. In addition, the magnitude of the change will decrease 

along with learning time, as well as with the grid-distance from the BMU. The learning algorithm of SOM is as 

follow: 

Step 1: Initialize the node weight vectors in a map randomly. 

Step 2: For 𝑡 = 0,1,2, 𝑚 

Step 2-1: Randomly pick an input vector 𝑉𝑖(𝑡). 

Step 2-2: Find the node that most closes to the input vector in the map as the best matching unit (BMU), 

denoted by s. 

Step 2-3: For each node j, update its vector by pulling closer to the input vector: 

 𝑉𝑗(𝑡 + 1) = 𝑉𝑗(𝑡) + 𝑁𝐹(𝑠, 𝑗, 𝑡) ∙ 𝐿𝑅𝑆(𝑡) ∙ (𝑉𝑖(𝑡) − 𝑉𝑗(𝑡)) (1) 

Here, 

t is the current iteration; 

m is the iteration limit; 

𝑉𝑖(𝑡) is the vector of the input data; 

s is the index of the best matching unit (BMU) in the map; 

𝑉𝑗(𝑡) is the current weight vector of node j; 

𝑁𝐹(𝑠, 𝑗, 𝑡) is the neighborhood function; 
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𝐿𝑅𝑆(𝑡) is the learning rate schedule. 

 

The SOM has been broadly applied in various fields, e.g. [14-16]. 

 

 
Figure 1: Self-organizing map 

 

Support Vector Regression 

The support vector machine (SVM) invented by [17] is a tool widely used to resolve classification problems in 

the field of machine learning. Based on the same principles as SVM, [18] proposed the support vector regression 

(SVR) to focus on predicting continuous outputs rather than classifying data points. Unlike the typical 

regression models, the SVR transforms the input features into spaces in a higher dimension for locating the ideal 

hyperplane to accurately represent the data. Through this method, the SVR can effectively manage both linear 

and non-linear relationships that renders it a powerful tool in various fields. Furthermore, the SVR can attain 

high accuracy and robustness since even though when dealing with complex datasets since the distinctive 

features of support vector machine are utilized. 

Suppose there are N pairs of inputs Xk = (xk1, xk2, . . . , xkn) ∈ 𝐑n and output 𝑦𝑘 ∈ 𝐑. A regression model is built 

to represent the functional relationship between 𝑋𝑘 and 𝑦𝑘 . For separating more easily, the original n-

dimensional inputs Xk = (xk1, xk2, . . . , xkn)  are first transformed into 𝜑𝑖(𝑋𝑘)  in a higher-order dimensional 

space. The linear 

regression model thus can be described as: 

 

yk
′ = f(Xk, W) = ∑ wiφi(Xk) + w0 =m

i WTΦ(Xk) + w0, k = 1,2, … N (2) 

where yk
′ , W, Φ(Xk) and w0 are the predicted output, weight vector, feature vector and bias, respectively.  

[19] introduced an ε-insensitive loss function to evaluate the predicted error as: 

𝐿𝜀(𝑦𝑘 , 𝑦𝑘
′ ) = {

0 if |𝑦𝑘 − 𝑦𝑘
′ | ≤ 𝜀

|𝑦𝑘 − 𝑦𝑘
′ | − 𝜀 otherwise

 (3) 

to illustrate that there is no loss arisen when the predicted output locates within an acceptable distance from the 

actual (target) output. This can be re-stated as follows: 

𝑦𝑘 − 𝑊𝑇𝛷(𝑋𝑘) − 𝑤0 − 𝜀 ≤ 𝜉𝑘, k=1,2,…,N                                       (4) 

𝑊𝑇𝛷(𝑋𝑘) + 𝑤0 − 𝑦𝑘 − 𝜀 ≤ 𝜉𝑘
′ , k=1,2,…,N                                       (5) 

𝜉𝑘 ≥ 0, 𝑘 = 1,2, … , 𝑁                                                                           (6) 

𝜉𝑘
′ ≥ 0, 𝑘 = 1,2, … , 𝑁                                                                           (7) 

In other words, ξk denotes the error term if the actual output yk is larger than the predicted value yk
′  and the error 

is represented by ξk
′  when the actual output yk  is less than the predicted value yk

′ . Therefore, a problem by 

minimizing the empirical risk can be formulated as follows: 
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Minimize 
1

2
||𝑊||2 + 𝐶(∑ 𝜉𝑘

𝑄
𝑘=1 + ∑ 𝜉𝑘

′𝑄
𝑘=1 )                                           (8) 

subject to the constraints shown in Equations (4)-(7). In Equation (8), the parameter C used to balance the 

complexity and loss must be specified by users in advance. The Lagrangian by using primal variables thus can 

be formulated as follows:  

 

𝐿𝑃(𝑊, 𝑤0, 𝛯, 𝛯′, 𝛬, 𝛬′, 𝛤, 𝛤′) 

=
1

2
𝑊𝑇𝑊 + 𝐶 (∑ 𝜉𝑘

𝑄

𝑘=1

+ ∑ 𝜉𝑘
′

𝑄

𝑘=1

) − ∑ 𝜆𝑘

𝑄

𝑘=1

(𝑊𝑇𝛷(𝑋𝑘) + 𝑤0 − 𝑦𝑘 + 𝜀 + 𝜉𝑘) − 

∑ 𝜆𝑘
′𝑄

𝑘=1 (𝑦𝑘 − 𝑊𝑇𝛷(𝑋𝑘) − 𝑤0 + 𝜀 + 𝜉𝑘
′ ) − ∑ (𝛾𝑘𝜉𝑘 + 𝛾𝑘

′ 𝜉𝑘
′ )𝑄

𝑘=1 .                       (9) 

Here, 𝛯 = (𝜉1, . . . , 𝜉𝑄)𝑇  and 𝛯′ = (𝜉1
′ , . . . , 𝜉𝑄

′ )𝑇  are vectors consisting of slack variables. In addition, 𝛬 =

(𝜆1, . . . , 𝜆𝑄)𝑇 、 𝛬′ = (𝜆1
′ , . . . , 𝜆𝑄

′ )𝑇 、 𝛤 = (𝛾1, . . . , 𝛾𝑄)𝑇  and 𝛤′ = (𝛾1
′ , . . . , 𝛾𝑄

′ )𝑇 are the Lagrangian multiplier 

vectors of Equations (4)-(7). The optimality thus can be found by taking the partial derivative of LP with 

respect to the primal variables to its saddle point, as follows:  

𝜕𝐿𝑃(𝑊,𝑤0,𝛯,𝛯′,𝛬,𝛬′,𝛤,𝛤′)

𝜕𝑊
= 0 ⇒ 𝑊 = ∑ (𝜆𝑘 − 𝜆𝑘

′ )𝑄
𝑘=1 𝛷(𝑋𝑘)                                                          (10) 

𝜕𝐿𝑃(𝑊,𝑤0,𝛯,𝛯′,𝛬,𝛬′,𝛤,𝛤′)

𝜕𝑤0
= 0 ⇒ ∑ (𝜆𝑘 − 𝜆𝑘

′ )𝑄
𝑘=1 = 0                                              (11) 

𝜕𝐿𝑃(𝑊,𝑤0,𝛯,𝛯′,𝛬,𝛬′,𝛤,𝛤′)

𝜕𝜉𝑘
= 0 ⇒ 𝛾𝑘 = 𝐶 − 𝜆𝑘                                                          (12) 

𝜕𝐿𝑃(𝑊,𝑤0,𝛯,𝛯′,𝛬,𝛬′,𝛤,𝛤′)

𝜕𝜉𝑘
′ = 0 ⇒ 𝛾𝑘

′ = 𝐶 − 𝜆𝑘
′                                                            (13) 

Through substituting Equation (10), (11), (12), and (13) into Equation (9), the simplified dual form LD then can 

be obtained as follows: 

Maximize 

𝐿𝐷(𝛬, 𝛬′) = ∑ 𝑑𝑘
𝑁
𝑘=1 (𝜆𝑘 − 𝜆𝑘

′ ) − 𝜀 ∑ (𝜆𝑘 + 𝜆𝑘
′ )𝑁

𝑘=1 −
1

2
∑ ∑ (𝜆𝑘 − 𝜆𝑘

′ )(𝜆𝑙 − 𝜆𝑙
′)𝛷(𝑋𝑘)𝛷(𝑋𝑙)

𝑁
𝑙=1

𝑁
𝑘=1 .         (14) 

Subject to 

∑ (𝜆𝑘 − 𝜆𝑘
′ ) = 0𝑁

𝑘=1                                                (15) 

0 ≤ 𝜆𝑘 ≤ 𝐶, 𝑘 = 1,2, … , 𝑁                                    (16) 

0 ≤ 𝜆𝑘
′ ≤ 𝐶, 𝑘 = 1,2, … , 𝑁                                    (17) 

Here, the inner product Φ(Xk)Φ(Xl) can also be expressed in terms of K(Xk, Xl), called the kernel function, 

according to Mercer’s Theorem. The commonly used kernel functions include linear, polynomial 

(homogeneous), polynomial (inhomogeneous), radial basis function, and hyperbolic tangent, etc. The Ŵ, i.e. the 

optimal approximation for the weight vector W is therefore acquired by optimizing the Lagrangian as follows: 

𝑊̂ = ∑ (𝜆̂𝑘 − 𝜆̂𝑘
′ )

𝑛𝑠
𝑘=1 𝛷(𝑋𝑘)                                         (18) 

Here, the ns is the total number of support vectors and the index k only runs over the support vectors 1 to ns. The 

support vectors are Xks that lie nearest to the max-margin hyperplane in SVR. 

SVR had been extensively applied in various fields, e.g. [20-22]. 

Silhouette Coefficient 

Silhouette proposed by [23] is a method for interpretating and validating the consistency within clusters of data. 

How similar an object is to its own cluster compared to other clusters can be evaluated by the silhouette value. 

The silhouette ranges between -1 and +1, and a high silhouette indicates that the object is well matched to its 

own cluster and poorly matched to the neighboring clusters. In other words, the clustering configuration is 

appropriate when most objects can have high silhouettes. On the other hand, there are too many or too few in the 

clustering configuration if many points have a low or negative silhouette value. The clustering can be considered 

as “strong”, “reasonable”, and “weak” when an average silhouette is over 0.7, over 0.5, and over 0.25, 

respectively. Notably, it becomes difficult to achieve high silhouette values with increasing dimensionality of 

data since the curse of dimensionality, as the distances become more similar. The silhouette can be calculated 

based on any distance metric, such as the Euclidean distance or the Manhattan distance. 

Assume the data have been clustered by using any technique into k clusters. 
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For data point i in the cluster CI, i.e. i ∈ CI, let 

 𝑎(𝑖) =
1

|𝐶𝐼|−1
∑ 𝑑(𝑖, 𝑗)𝑗∈𝐶𝐼,𝑖≠𝑗                                                (19) 

be the mean distance between i and all other data points in the same cluster. 

Where, 

|CI| is the number of points belonging to cluster C; 

d(i, j) is the distance between data points i and j in the cluster C. 

a(i) is a measure of how well i is assigned to its cluster. The smaller the a(i) value implies the better assignment. 

The mean dissimilarity of point i to some cluster CJ is defined as the mean of the distance from i to all points in 

CJ that differs from CI, i.e. CJ ≠ CI. 

For each data point i ∈ CI, define 

𝑏(𝑖) = 𝑚𝑖𝑛
𝐽≠𝐼

1

|𝐶𝐽|
∑ 𝑑(𝑖, 𝑗)𝑗∈𝐶𝐽

                                                      (20) 

Therefore, a silhouette (value) of data point i can be defined as 

s(𝑖) =
𝑏(𝑖)−𝑎(𝑖)

𝑚𝑎𝑥 {𝑎(𝑖),𝑏(𝑖)}
, 𝑖𝑓 |𝐶𝐼| > 1                                                 (21) 

and 

s(𝑖) = 0, 𝑖𝑓 |𝐶𝐼| = 1                                                                    (22) 

The s(i) ranges from -1 to +1, and is set as 0 when the cluster’s size equals 1. The cluster that has the smallest 

mean dissimilarity is called as the “neighboring cluster” of i since because the cluster is the next best fit cluster 

for point i. Later, [24] introduced the silhouette coefficient for the maximum value of the mean s(i) over all data 

of the entire dataset as 

𝑆𝐶 = 𝑚𝑎𝑥
𝑘

𝑠̃(𝑘)                                                                         (23) 

where s̃(k) is the mean s(i) over all data of the entire dataset for a specific number of clusters k. A larger 

silhouette coefficient indicates the better clustering results. 

Proposed Procedure 

In this study, the self-organizing map (SOM) and support vector regression (SVR) algorithm are used to propose 

a systematic approach for predicting the scales of earthquakes in the future as briefly depicted in Figure 2 and 

illustrated as follows: 

Step 1: Data Collection 

Step 1-1: Collect the scale and depth of each earthquake occurred during the research period. 

Step 1-2: Normalize the scales and depths into [-1, 1] based on their corresponding maximum and minimum 

values. 

Step 2: Data Clustering 

Step 2-1: Cluster the normalized earthquake data obtained in Step 1-2 into clusters of different numbers by using 

SOM with various structures. 

Step 2-2: Determine the best number of clusters based on the clustering performance evaluated by the silhouette 

coefficient. 

Step 3: Prediction Data Preparation 

Step 3-1: Set the scale of each earthquake in each cluster as the dependent variable 

Step 3-2: Set the scales of earthquakes of a certain number, e.g. 10, occurred previously as the corresponding 

independent variables for the dependent variable set in Step 3-1. 

Step 3-3: Merge each dependent variable’s value (set in Step 3-1) along with its corresponding independent 

variables’ values (set in Step 3-2) to form the prediction data. 

Step 4: Data Segmentation 

Divide the prediction data prepared in Step 3-3 into training and test data according to a pre-determined ratio, 

e.g. 3:1, randomly or based on a certain principle. 

Step 5: SVR Model Construction 

For each cluster, construct a prediction model by using the SVR technique to the training and test data 

determined in Step 4. 

Step 6: Prediction Performance Evaluation 
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Evaluate the prediction performance of SVR models for clusters of various numbers when implementing these 

SVR models on the test data that are never seen before. 

 
Figure 2: Proposed procedure 

 

3. Case Study 

Data Collection 

Earthquakes of more than a hundred occurs per year in Taiwan. There are even 466 earthquakes in 2023. 

However, most of these earthquakes are noninductive. Furthermore, the detailed observation data of earthquakes 

can only be available on the web since 1995. Therefore, the scales and depths of 4292 inductive earthquakes 

occurred from 1 January 1995 to 14 October 2024 are collected as the raw data in this case study. The scales and 

depths are then normalized into [-1, 1] based on (7.3, 2.1) and (268.6, 0.1) that are the maximum and minimum 

values of scales and depths, respectively.  

Data Clustering 

The SOM neural network is applied to cluster the normalized earthquake data. Here, the SOM function is 

implemented by utilizing Weka 3.9.5 [25] data mining software. The topology of SOM is set as a rectangle, 

consisting of the scale and depth, with a height of 1 and a various width from 1 to 10 whose parameters’ setting 

is depicted in Figure 3. The rest parameters are fixed based on their default settings. The clustering performance 

is evaluated by the silhouette coefficient. The implementation results are summarized in Table 1 where an 

asterisk denotes the best clustering. Hence, the original data are divided into 5 groups with 360, 1232, 242, 1772 

and 687 items, respectively. 

 
Figure 3: Parameters’ setting in Weka. 
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Table 1: Clustering results of SOM 

Number of clusters  2 3 4 5 6 7 8 9 10 

Silhouette coefficient 0.5147 0.4534 0.4534 0.5317* 0.4843 0.4841 0.4667 0.4631 0.4785 

 

Prediction Data Preparation 

For each cluster, the scale of each earthquake clustered in this group is set as the dependent variable and the 

scales of 10 earthquakes occurred previously are set as the corresponding independent variables. Therefore, 

there are 350, 1222, 232, 1762 and 677 items in clusters 1 to 5, respectively. These data form the prediction data 

for SVR. 

Data Segmentation 

Randomly divide the prediction data into training and test data based on a 3:1 ratio. For example, the training 

and test data include 263 and 87 items, respectively, for the first cluster. 

SVR Model Construction 

The SVR technique that is implemented by the LIBSVM software [26] for the training and test data in each 

cluster to construct a prediction model. A grid search method is applied to determine the optimal parameters of 

SVR including C, Gamma and epsilon. In addition, an epsilon-SVR is utilized in this study thus the parameter s 

of LIBSVM is set as shown in Figure 4 that illustrates the best parameters’ setting obtained by the grid search 

for the first cluster. Therefore, the best SVR prediction model then can be acquired according to the found 

parameters’ setting. 

 
Figure 4: Best parameters’ setting of SVR for the first cluster 

 

Prediction Performance Evaluation 

The test data that are never met before are fed into the obtained SVR prediction models to realize the 

generalization capability of these SVR models. The prediction performance is evaluated by the MAPE (Mean 

Absolute Percentage Error), MSE (Mean Squared Error) and R2. Table 2 shows the implementation results. 

According to Table 2, the maximum value of R2 for the training and test data can only attain 0.08227 and 

0.02573, respectively.  

The minimum MAPEs are 3.76% and 3.88% regarding the training and test data, respectively. The SVR model 

bring the minimum MSEs as 0.00654 and 0.00570 when implementing on the training and test data, receptively. 

Based on these results, the prediction performance for predicting the scales of earthquakes can be considered 

adequate since it is essentially a very hard problem even though the performance indices do not look well. 

 

Table 2: Results of implementing SVR models on the test data 

Cluster 1    

Index MAPE MSE R2 

Training data 0.06172 0.02852 0.08227 

Test data 0.05470 0.02061 0.00009 
 

Cluster 4    

Index MAPE MSE R2 

Training data 0.04316 0.00654 0.04226 

Test data 0.03968 0.00570 0.01785 
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Cluster 2    

Index MAPE MSE R2 

Training data 0.03757 0.00683 0.01855 

Test data 0.03877 0.00742 0.00124 
 

Cluster 5    

Index MAPE MSE R2 

Training data 0.06278 0.01055 0.06407 

Test data 0.07005 0.01301 0.02573 
 

 
Cluster 3    

Index MAPE MSE R2 

Training data 0.09841 0.05628 0.03518 

Test data 0.08640 0.04471 0.00142 
 

 

 

4. Conclusions 

Since ancient times, earthquakes always have been a kind of natural disaster that humans scare very much due to 

their uncertainties about occurring timing, scales, depths and locations. Furthermore, the countries around the 

earthquake-affected areas will face large amount of losses in life, property, safety, economy, society, culture and 

politics when a strong earthquake occurs. However, human had not fully realized the factors that affect the 

occurrence of earthquakes and the mechanisms trigging earthquakes. Although it is a difficult problem for 

accurately predicting the information of earthquakes, e.g. the scale, depth, location and timing, in advance, 

earthquake prediction problems have always attracted the interests of researchers and been an enthusiasm 

scientific issue around the world. Especially, Taiwan locates in the Circum-Pacific seismic belt that is the largest 

and most active seismic zone of the earth. Taiwan must face earthquakes quite frequently since the intersection, 

collision and subduction of the Eurasian and Philippine Sea Plates that trigger the strata to deform and fracture. 

The earthquake prediction problem therefore particularly becomes an important issue for the people and 

government of Taiwan. In this study, the self-organizing map (SOM) neural network and support vector 

regression (SVR) are utilized to develop a systematic procedure for predicting the scales of earthquakes. A case 

study on predicting the scales of earthquakes during 1995/1/1/ and 2024/12/14 in Taiwan is used to demonstrate 

the effectiveness and efficiency of the proposed procedure. According to the experimental results, the procedure 

proposed in this study can provide adequate prediction performance by evaluating the prediction performance 

based on the MAPE (Mean Absolute Percentage Error), MSE (Mean Squared Error) and R2. Prediction of the 

depths, timing and locations of future earthquakes more precisely might be a direction in the future research. 
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