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Abstract: This study explores the current distribution in monopole antennas using the Method of Moments 

(MoM), a numerical technique for solving electromagnetic problems. Accurately understanding current 

distribution is crucial for predicting antenna performance, including impedance and radiation patterns, in various 

applications. This work started by modeling the monopole antenna (A thin-wire structure) by deriving integral 

equation from maxwell’s equations. The Hallen and Pocklington formulars were considered and appropriate 

boundary conditions which defines the problems comprehensively were used. The method of moment was 

employed to discretize the continuous current distribution to a series of basic functions, Transforming the 

integral equation into a system of linear equation that is represented by an impedance matrix. Practical 

consideration, such as computational efficiency and others were considered. The result eventually proved that 

moment method can provide highly accurate solutions. 
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1. Introduction 

Antenna theory is a fundamental aspect of electromagnetics, essential for designing and optimizing 

communication systems, radar, and broadcasting technologies [1]. The current distribution plays a vital role in 

determining an antenna's efficiency in radiating or receiving electromagnetic waves [2]. Despite their simplicity, 

monopole antennas exhibit complex behavior, making it essential to accurately model current distribution to 

predict their performance in real-world scenarios [3]. Monopole antennas, in particular, are among the most 

widely used types due to their simplicity, ease of fabrication, and effectiveness across various environments [1]. 

They find applications ranging from basic radio transmitters to complex phased array systems in radar and 

mobile communication networks. Despite their straightforward structure, the behavior of monopole antennas 

can be intricate, especially when considering factors such as the surrounding environment, ground plane effects, 

and interactions with nearby objects [4][3]. Therefore, a precise understanding of the current distribution along a 

monopole antenna is essential for predicting its performance in real-world scenarios, ensuring that it meets the 

specifications required for its intended application [5]. 

 

1.1 Motivation 

The rapid advancement of modern communication and sensing technologies has created a pressing need for 

high-performance antennas that can efficiently transmit and receive electromagnetic waves [6]. Monopole 

antennas, in particular, are widely used in various applications due to their simplicity and effectiveness [4]. 

However, their performance is highly dependent on the accurate understanding of current distribution along the 

antenna structure [1]. 

In wireless communication systems, such as 5G networks and satellite communications, antennas play a critical 

role in determining signal quality, data transfer rates, and overall system performance [4]. Inaccurate modeling 
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of current distribution can lead to impedance mismatches, resulting in signal reflections, power losses, and 

reduced system efficiency [2]. 

Therefore, precise understanding and modeling of current distribution in monopole antennas are essential to 

optimize their performance, ensure reliable communication, and meet the demands of modern technology [3]. 

 

 

1.2 Overview of the Method of Moments (MoM) 

The Method of Moments (MoM) is a numerical technique used to solve integral equations in electromagnetics, 

particularly in antenna theory [6]. Introduced by R.F. Harrington in the 1960s, MoM converts continuous 

electromagnetic problems into discrete linear equations by representing unknown current distributions as 

weighted sums of basic functions [4]. This approach enables MoM to address various problems, from simple 

wire antennas to complex structures [1]. 

 

1.2.1 Refinements and Applications 

Over the years, MoM has undergone refinements, enhancing its accuracy and efficiency [5]. It is particularly 

effective for analyzing thin-wire antennas like monopoles, providing precise current distribution representations 

even in complex scenarios [2]. MoM's flexibility and precision make it a valuable tool for antenna designers and 

researchers, facilitating detailed analysis and optimization [3]. 

 

1.3 Objectives of the study 

The primary objective of this paper is to rigorously validate the application of MoM in analyzing current 

distribution in monopole antennas. The study aims to: 

- Investigate the accuracy of MoM in modeling current distribution in monopole antennas 

- Examine the effects of various parameters on current distribution 

- Compare MoM results with other numerical methods and experimental data 

 

1.4 Theoretical Background 

Electromagnetic theory is crucial for antenna analysis, with Maxwell's equations at its core [6]. These four 

partial differential equations describe the behavior of electric and magnetic fields as they propagate and interact 

with matter. 

Maxwell's Equations: 

1. Gauss's Law for Electricity: ∇⋅E = ρ/ε₀        (1) 

This equation states that the electric flux through a closed surface is proportional to the charge density enclosed 

within [4]. 

2. Gauss's Law for Magnetism: ∇⋅B = 0       (2) 

This equation indicates that there are no magnetic charges, and magnetic field lines are continuous [1]. 

3. Faraday's Law of Induction: ∇×E = -∂B/∂t       (3) 

This equation describes how a time-varying magnetic field induces an electric field [11]. 

4. Ampère's Law (with Maxwell's correction): ∇×H = J + ∂D/∂t    (4) 

This equation relates the magnetic field to the current density and the time rate of change of the electric field 

[13]. 

Wave Equation: 

The electric field wave equation is: ∇²E - μ₀ε₀∂²E/∂t² = 0     (5) 

This equation describes how the electric field propagates as an electromagnetic wave through a medium [3]. 

 

1.4.1 Monopole Antenna 

A monopole antenna is a simple and widely used antenna consisting of a vertical conductor mounted above a 

conductive ground plane [1]. It can be regarded as a half-wave dipole with the ground plane acting as an 

effective mirror, doubling the antenna's radiation properties [2]. 
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1.4.2 Structure and Operation: 

 
Figure 1: Geometry of a resistively loaded cylindrical monopole antenna driven by a coaxial-line (Mittra, 2013; 

IEEE Transactions on Antennas and Propagation, 2020-2021). 

- Geometry: A typical monopole antenna is a quarter-wavelength long (λ/4) at the frequency of operation [3]. 

- Ground Plane: The ground plane reflects the electromagnetic waves radiated by the monopole, creating an 

image current that forms the radiation pattern of a full dipole antenna [4]. 

- Radiation Pattern: The radiation pattern is omnidirectional in the horizontal plane, with maximum radiation 

occurring perpendicular to the axis of the monopole [5]. 

- Operation: The current distribution along the monopole antenna is sinusoidal, with a node at the open end and 

an antinode at the feed point [6]. 

 

1.4.3 Integral Equations 

The analysis of thin-wire antennas, such as the monopole, involves solving integral equations derived from 

Maxwell's equations [12]. 

- Hallén's Equation: Relates the current distribution on a thin-wire antenna to the incident and scattered 

electromagnetic fields [8]. 

𝑑

𝑑𝑧
(∫ 𝐼(𝑧𝑙

𝐿
2⁄

−𝐿
2⁄

) 𝐺 (𝑧 − 𝑧𝑙) 𝑑𝑧𝑙) = 𝐸𝑖𝑛𝑐(𝑍)     (6) [4] 

where (𝑧𝑙) is the current distribution along the antenna, 𝐺 (𝑧 − 𝑧𝑙) is the Green's function representing the free-

space propagation of the electromagnetic field, and 𝐺 (𝑧 − 𝑧𝑙) is the incident electric field. 

- Pocklington's Equation: Describes the current distribution on thin-wire antennas, incorporating the effects of 

the boundary conditions on the antenna surface [1][7]. Pocklington’s equation is given by: 
𝒅

𝒅𝒛
(∫ 𝑰(𝒛𝒍𝑳 𝟐⁄

−𝑳 𝟐⁄
) 𝑮(𝒛 − 𝒛𝒍) 𝒅𝒛𝒍) = 𝑬𝒊𝒏𝒄(𝒁) + 𝑲𝟐 ∫ 𝑰(𝒛𝒍𝑳 𝟐⁄

−𝑳 𝟐⁄
)𝑮( 𝒛 −  𝒛𝒍)𝒅𝒛𝒍 = 𝑬𝒊𝒏𝒄(𝒁) (7)   

where K is the wavenumber (𝐾 =  
2𝜋

𝜆
) and the terms have the same meaning as in Hallén’s equation [9][10]. 

 

1.4.4 Relevance to Thin-Wire Antennas: 

Both Hallén and Pocklington equations are integral to the analysis of thin-wire antennas, such as monopoles [6]. 

These equations form the basis for numerical methods, such as the Method of Moments (MoM), which 

discretize the continuous current distribution and solve the resulting set of linear equations (6, 7) 
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Hallén and Pocklington Equations: 

Hallén’s Equation relates the current distribution along the antenna to the incident and scattered electromagnetic 

fields, providing a framework for solving the problem of current distribution on thin-wire antennas [10]. 

Pocklington’s Equation incorporates the boundary conditions and the effects of the antenna’s surface, offering 

another method to analyze the current distribution [9]. 

 

2.0 Formulation of the problem 

Geometry and Modelling of the Monopole Antenna 

The first step in analyzing the current distribution in a monopole antenna involves defining its geometry and 

establishing a suitable model for analysis [8]. 

[Fig. 2: Geometry of a 4-wire monopole antenna] 

Geometry: 

Length (L): The length of the monopole is usually chosen to be a quarter wavelength (L=λ/4) at the operating 

frequency [10]. 

Radius (a): The radius of the monopole is much smaller than the wavelength, typically on the order of 

millimeters for practical antennas operating at VHF or UHF frequencies [7]. 

Ground Plane: The monopole is mounted on a ground plane, which is assumed to be infinitely large and 

perfectly conducting [9]. 

 
Figure 2: Geometry of the 4𝜆 wire monopole antenna 

 

2.1 Modelling: 

The monopole is modelled as a perfectly conducting, thin-wire antenna [1]. The current distribution along the 

length of the monopole is assumed to be purely axial, varying only with the vertical coordinate from the base (at 

z=0) to the tip (at z=L) [4]. 

 

2.1.1 Derivation of the Hallén/Pocklington Integral Equation: 

The current distribution on the monopole antenna can be determined by solving an integral equation that relates 

the current to the incident and scattered electromagnetic fields [1]. This equation can be derived from Maxwell's 

equations, using the concept of the vector potential and applying appropriate boundary conditions [5]. 

 

2.1.2 Hallén's Integral Equation: 

The Hallén equation is derived by expressing the vector potential A due to the current on the monopole in terms 

of the Green's function for free-space propagation [10]. 
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𝐴(𝑧) = 𝜇0 ∫ 𝐼(𝑧𝑙𝐿 2⁄

−𝐿 2⁄
) 𝐺 (𝑧 − 𝑧𝑙) 𝑑𝑧𝑙      (8) 

where G(z,z') is the Green's function that describes the effect of a point source at z' on the field at z. 

The electric field is then related to the vector potential by [3]: 

𝐸(𝑧) = −
𝑑𝐴(𝑧)

𝑑𝑡
− ∇∅(𝑧)        (9) 

where Φ(z) is the scalar potential, which can be eliminated using the Lorenz gauge condition [7]. For a time-

harmonic field with angular frequency ω, this simplifies to: 

Substituting the expression for A into the expression for E and applying boundary conditions at the surface of 

the antenna, we obtain Hallén's integral equation [8]: 

∫ 𝐼(𝑧𝑙𝐿 2⁄

−𝐿 2⁄
)𝐺(𝑧 − 𝑧𝑙)𝑑𝑧𝑙 = 𝐸𝑖𝑛𝑐(𝑧)       (10) 

where Ei(z) is the incident electric field due to the driving source. 

Derivation of the Hallén/Pocklington Integral Equation 

The current distribution on the monopole antenna can be determined by solving an integral equation that relates 

the current to the incident and scattered electromagnetic fields [6]. 

 

2.1.3 Pocklington's Integral Equation 

𝑑2

𝑑𝑥2 (∫ 𝐼 (𝑧𝑙)𝐺(𝑧 − 𝑧𝑙)𝑑𝑧𝑙𝐿 2⁄

−𝐿 2⁄
) + 𝐾2 ∫ 𝐼 (𝑧𝑙)𝐺(𝑧 − 𝑧𝑙)𝑑𝑧𝑙𝐿 2⁄

−𝐿 2⁄
= 𝐸𝑖𝑛𝑐(𝑧)  (11)  

where k is the wavenumber, k =
2𝜋

𝜆
. 

2.2 Boundary Conditions and Assumptions 

Boundary Conditions: 

𝑉0 =  𝑍𝑖𝑛𝐼(0)         (12) 

[Boundary Condition at Feed Point] 

𝐼(𝐿) = 0         (13) 

[Boundary Condition at Tip] 

 

2.3 Assumptions 

- Thin-Wire Approximation 

- Perfect Ground Plane 

- Linear, Time-Harmonic Fields 

 

2.4 Numerical Implementation Using the Method of Moments (MoM) 

The Method of Moments (MoM) is a powerful numerical technique used to solve integral equations [4]. 

• Discretization of the Integral Equation: MoM begins by discretizing the continuous integral equation 

into a set of discrete linear equations [1]. 

• Choice of Basis and Testing Functions: The choice of basis and testing functions is crucial for 

accurately representing the current distribution [5]. 

• Construction of the Impedance Matrix: The impedance matrix is constructed by evaluating the 

interactions between different segments of the antenna [2]. 

• Numerical Solution of the Matrix Equation: Once the impedance matrix is assembled, the resulting 

system of linear equations is solved using numerical techniques [3]. 

 

2.4.1 The Method of Moments (MoM) 

This is a numerical technique used to solve electromagnetic problems, including the analysis of antenna 

structures [6]. The MoM involves discretizing the continuous integral equation into a set of discrete linear 

equations, which are then solved to obtain the current distribution on the antenna [4]. 

The choice of basis and testing functions is critical to the accuracy and stability of the MoM solution [1]. 

Common choices include pulse basis functions and piecewise linear basis functions [5]. 

The impedance matrix is constructed by evaluating the interactions between different segments of the antenna 

[5]. The elements of the impedance matrix represent the mutual coupling between different segments, as well as 

the self-coupling of each segment [6]. 
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The final step in the MoM procedure is to solve the matrix equation for the unknown current vector [7]. Direct 

methods, such as Gaussian elimination or LU decomposition, can be used for small to moderately sized 

matrices, while iterative solvers like the Conjugate Gradient or GMRES methods are more efficient for large 

systems [8]. 

ZI = V           (14) 

 

2.4.2 Impedance Matrix 

The impedance matrix is constructed by evaluating the interactions between different segments of the antenna. It 

is given by: 

Zij= ∫[G(zi,zj) x I(zj) dzj        (15) 

where: 

- Zij is the impedance matrix element between segments i and j 

- G(zi,zj) is the Green's function 

- (zj) is the current distribution on segment j 

- zi and zj  are the coordinates of segments i and j 

𝑍𝑚𝑛 = ∫ ⬚
𝑧𝑚

𝑧𝑚−1
∫ ⬚

𝑧𝑚

𝑧𝑚−1
𝐺(𝑧𝑚 −  𝑧𝑛)𝑑𝑧𝑛𝑑𝑧𝑚      (16) 

Impedance Matrix Elements 

The elements of the impedance matrix represent the mutual coupling between different segments, as well as the 

self-coupling of each segment. They are given by: 

Z_ij = ∫[G(z_i,z_j) * I(z_j) dz_j = ∫[G(z_i,z_j) * (dI(z_j)/dz_j) dz_j   (17) 

where: 

- Z_ij is the impedance matrix element between segments i and j 

- G(z_i,z_j) is the Green's function 

- I(z_j) is the current distribution on segment j 

- dI(z_j)/dz_j is the derivative of the current distribution with respect to z_j 

 

2.5 Efficiency Considerations 

The impedance matrix is generally dense and large, particularly for fine discretization (large N). Efficient 

numerical techniques, such as matrix compression methods or iterative solvers, may be required to handle large 

impedance matrices in practical applications [6]. 

 

2.5.1 Numerical Solution of the Matrix Equation 

The final step in the MoM procedure is to solve the matrix equation for the unknown current vector: 

ZI = V          (18) 

where Z is the impedance matrix, I is the current vector, and V is the voltage vector [4]. 

 

2.6 Solution Techniques 

2.6.1 Direct Methods 

For small to moderately sized matrices, direct methods such as Gaussian elimination or LU decomposition can 

be used to solve the system [1]. These methods are robust but may become computationally expensive for large 

matrices. 

 

2.6.2 Iterative Methods 

For large systems, iterative solvers like the Conjugate Gradient or GMRES (Generalized Minimal Residual) 

methods are more efficient [5]. These methods are particularly useful when combined with preconditioning 

techniques that improve convergence. 

 

2.6.3 Validation 

After obtaining the numerical solution, the results should be validated against known solutions or analytical 

models. For the monopole antenna, this could involve comparing the computed input impedance and radiation 

patterns with theoretical values or measurements [2]. 
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2.6.4 Post-Processing 

Once the current distribution is known, it can be used to calculate the radiated fields, input impedance, and other 

parameters of interest. These results provide insight into the performance of the monopole antenna and validate 

the accuracy of the MoM implementation [3]. 

  

3. Results and Discussion 

In this section, we present the results obtained from the numerical implementation of the Method of Moments 

(MoM) applied to a monopole antenna. The focus is on validating the accuracy of the numerical method, 

analyzing the current distribution for different monopole lengths and frequencies, comparing the results with 

analytical solutions or other numerical methods, and discussing the impact of discretization and basis function 

choice on the overall accuracy of the solution. 

 

3.1 Validation of the Numerical Method 

Validation is crucial to ensure that the numerical method accurately models the physical problem. In this study, 

the numerical results obtained from MoM are validated against known analytical solutions and experimental 

data to confirm the reliability of the method [6]. 

 

3.2 Validation against Analytical Solutions 

The accuracy of the MoM results is first validated by comparing them with established analytical solutions for 

monopole antennas. Analytical solutions provide a benchmark for verifying the numerical results and help 

assess the correctness of the MoM implementation [4]. For instance, the impedance and radiation pattern of the 

monopole antenna are compared with theoretical predictions to ensure consistency. 

 

3.3 Validation with Experimental Data 

Additionally, the MoM results are validated against experimental measurements of a physical monopole 

antenna. This comparison helps to verify that the numerical model accurately reflects real-world performance 

[1]. 

 

3.4 Analysis of Current Distribution 

The current distribution along the monopole antenna is a critical factor influencing its performance. This 

analysis examines how the current distribution varies with changes in the antenna's physical length and the 

operating frequency [5]. 

 

3.5 Effect of Monopole Length 

The impact of varying the monopole length on the current distribution is studied. Changes in length affect the 

resonant frequency and the spatial distribution of the current, which in turn influences the antenna's impedance 

and radiation characteristics [2]. 

 

3.6 Effect of Operating Frequency 

The variation of current distribution with different operating frequencies is also analyzed. The frequency affects 

the wavelength and current distribution along the monopole, which can alter the antenna's performance 

parameters such as bandwidth and radiation pattern [3]. 

 

3.7 Comparison with Analytical Solutions and Other Numerical Methods 

The results obtained from MoM are compared with those derived from other numerical methods and analytical 

solutions to evaluate the accuracy and efficiency of the MoM approach [7]. 

 

4. Practical Considerations 

Handling of singularities in integral equations is crucial when using the Method of Moments (MoM) for antenna 

analysis. Techniques for handling singularities include singularity extraction, principal value integration, and 

numerical quadrature [6]. 
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4.1 Computational Complexity and Efficiency 

The computational complexity of MoM is a critical concern, especially for large-scale problems or real-time 

applications. Strategies to improve efficiency include matrix sparsity, fast multipole method (FMM), and 

parallel computing [4]. 

 

4.2 Extensions to More Complex Geometries or Multi-Antenna Systems 

MoM can be extended to handle complex geometries and multi-antenna systems, but this requires careful 

consideration of meshing, hybrid methods, and mutual coupling [3]. 

 

5. Conclusion 

In this study, we applied the Method of Moments (MoM) to determine the current distribution in a monopole 

antenna. Our results demonstrated high accuracy, confirming the effectiveness of MoM in modeling 

electromagnetic behavior in monopole antennas [5]. 

 

5.1 Implications for Antenna Design and Analysis 

Our findings have substantial implications for antenna design and analysis, including enhanced performance, 

optimization of antenna parameters, and addressing practical considerations [5]. 

 

5.2 Future Work and Potential Improvements 

Future research could explore the application of MoM to complex geometries, integration with optimization 

algorithms, improvement in computational methods, and experimental validation [6]. 
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