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Abstract Pressure sensors play a crucial role in various industries, especially in the industrial sector. However, 

due to their inherent temperature drift characteristics, the measurement results may not be accurate enough, 

leading to the inability to achieve precise control over equipment and production processes. Therefore, 

temperature compensation for the measurement results is essential. Commonly used temperature compensation 

methods include interpolation, BP neural networks, etc., but their calculations are relatively complex. In this 

paper, we propose a temperature compensation method for pressure sensors based on the random forest 

algorithm. This algorithm can handle complex data more quickly and accurately. Simulation results demonstrate 

the effectiveness and reliability of this algorithm. 
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Introduction  

Pressure sensors are widely used in various fields such as transportation, medical, and industrial sectors, and 

have become indispensable tools for production automation, measurement, scientific testing, and diagnostic 

systems. The quality of a system is critically dependent on the characteristics of the sensors and the accuracy 

and reliability of the output information. However, in practical production, sensors often exhibit cross-sensitivity 

output characteristics and are easily influenced by various environmental factors such as temperature, noise, and 

power supply fluctuations. The static characteristics of the sensors are not only affected by a single 

environmental parameter but sometimes even by multiple non-target parameters, leading to unstable sensor 

performance and low measurement accuracy. 

With the development of the integrated circuit and semiconductor industries, different fields have increasingly 

stringent requirements for the accuracy of pressure sensor transmitters. Silicon piezoresistive pressure sensors 

utilize the piezoresistive effect of silicon to convert pressure signals into electrical signals. They are 

characterized by high measurement accuracy, fast dynamic response, high sensitivity, and reliability. Therefore, 

silicon piezoresistive pressure sensors have been widely used in fields such as rail transportation, aerospace, and 

petroleum and petrochemical industries. Silicon piezoresistive pressure sensors use a Wheatstone bridge 

composed of silicon resistors with piezoresistive effects to transmit pressure signals. However, silicon resistor 

materials are sensitive to temperature, and manufacturing processes have limitations. As a result, silicon 

piezoresistive sensors exhibit temperature drift. Currently, most scholars eliminate the effects of temperature 

drift through temperature compensation. 

Currently, methods to eliminate the influence of temperature drift can be categorized into hardware 

compensation and software compensation. Hardware compensation optimizes manufacturing processes, circuit 

principles, and circuit parameters to compensate for sensor temperature drift. For example, Wang proposed a 

new control system to reduce the impact of temperature drift. This system can ensure that the maximum 

measurement error within the pressure range of 100~1100 hPa and the temperature range of -45°C to 45°C does 

not exceed ±0.2 hPa. M. Aryafar and others proposed a new compensation technique that can reduce the 

temperature sensitivity coefficient (TCS) of traditional non-compensated sensors to zero. However, hardware 

compensation is complex, difficult, less reliable, and less accurate. In contrast, software compensation methods, 

based on techniques such as lookup tables, interpolation, artificial intelligence, and numerical analysis, adjust 

sensor output signals with high compensation accuracy, low cost, and easy debugging. 
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Software compensation mainly includes two categories: numerical calculation methods and machine learning 

methods. Numerical calculation methods such as lookup tables, interpolation, and surface fitting rely on 

function fitting and interpolation. Traditional numerical calculation methods have advantages such as low 

computational complexity, good stability, real-time performance, and ease of implementation. Many scholars 

have conducted in-depth research on this. For example, Lin Zhu et al. used the method of least squares support 

vector machine to reduce the maximum temperature drift from 8901.4 Pa to 2.0 Pa within the temperature range 

of -40°C to 70°C and the pressure range of 20 kPa to 260 kPa. Scholars like Liu Peng used numerical analysis 

method combined with cubic spline interpolation, least squares method, and Newton interpolation method to 

establish a sensor temperature compensation model. The maximum relative error of this temperature 

compensation model within the range of -40°C to 80°C is 0.19%. 

However, numerical calculation methods are influenced by the accuracy of calibration data and the problem of 

increasing the order of fitting, so currently, most researchers use machine learning methods for temperature 

compensation of pressure sensors. For example, Wu Kaifeng used a genetic algorithm (GA) (full-scale relative 

error is 0.01%FS), Zhu Zhifeng improved the particle swarm optimization algorithm (PSO) (full temperature 

zone accuracy is 0.1364%), Yin Jiale and others proposed an algorithm based on FOA-LSSVM Fly 

Optimization Least Square Support Vector Machine (FOA-LSSVM) (the sensitivity temperature coefficient is 

improved from the compensated α′S=2.505×10-4/℃ to the original α′S=2.03×10-3/℃ by one order of 

magnitude), and the firefly algorithm (FA) and the gray wolf optimization algorithm (GWO) proposed by 

Xueliang Z et al. (full-scale error is reduced to 0.03%) and other machine learning methods. These methods 

determine the temperature compensation amount based on calibration test data and algorithms and can 

effectively improve temperature compensation accuracy. However, due to the complexity of data processing, a 

large number of samples, long training time, unstable algorithms, dependence on high-performance computers, 

and difficulty in loading into MCU chips, the application of these methods in engineering fields is severely 

constrained. 

The random forest algorithm (RF) is a classifier proposed by Leo Breiman and Adele Cutler, which uses 

multiple trees to train samples and make predictions. RF can be used for data classification and regression 

prediction, with the characteristics of fast learning speed, ability to handle large sample data, and high accuracy. 

Currently, it is commonly used in fields such as construction, ecological environment, and finance. For example, 

Aseel Hussien and Anna Hoła respectively used RF to predict the reliability of building structures and the 

moisture content of buildings, and Xiaobin Ma and others used RF to predict the ecological restoration of the 

Yangtze River Delta. 

Therefore, this paper models the data of silicon piezoresistive pressure sensors using the random forest 

algorithm. By analyzing the results of the algorithm, the influence of pressure sensor temperature drift on the 

actual pressure measurement results can be reduced, enabling more precise control of the production process, 

timely handling of abnormal production, improving the reliability of pressure prediction for the production 

system, and consequently enhancing the stability of the production system. 

 

Experimental Object and Data 

Silicon Piezoresistive Pressure Sensor 

The silicon piezoresistive pressure sensor consists of a silicon piezoresistive pressure sensing core and a signal 

processing module. The piezoresistive effect of semiconductor materials is used to indicate the pressure changes 

of the silicon resistive pressure sensing core. The working principle is shown in Figure 2-1, which utilizes four 

high-precision silicon piezoresistors to form a Wheatstone bridge. The output voltage signal is adjusted by the 

resistance change caused by tensile and compressive stress, and then the pressure is converted into an electrical 

signal through the signal conditioning of the operational amplifier. 

 
Figure 1: Principle Diagram of Silicon Resistive Pressure Sensor 
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When the pressure sensor is subjected to pressure stress in a certain direction, according to the piezoresistive 

effect, the resistance of the silicon piezoresistor will change, thereby affecting the resistance value change in the 

Wheatstone bridge. According to Kirchhoff's voltage law, we have: 

 

Equation (1): 𝑢0 = 𝑘𝑢𝑖 (
𝑅1

𝑅1+𝑅2
−

𝑅3

𝑅3+𝑅4
) 

Where: 𝑢𝑖   is the supply voltage to the Wheatstone bridge; 𝑢0 is the output voltage of the pressure sensor; 

R1, R2, R3, and R4 are the resistances at different positions in the Wheatstone bridge circuit; k is the 

amplification factor of the operational amplifier under ideal conditions. In the initial state without pressure input, 

R1 = R2 = R3 = R4 = R, indicating that the output of the pressure sensor is 0 when not subjected to any pressure. 

When the sensor is subjected to pressure stress, the resistance values of the four silicon piezoresistors change, 

causing the bridge to lose its balanced state, which can be expressed as: 

 

Equation (2): 𝑢0 =
𝑢1

𝑅
ⅆ𝑅 

Where: ⅆ𝑅 is the change in resistance of the silicon piezoresistor when subjected to pressure stress. 

Ideally, if the sensitivity of the silicon resistive pressure sensing core is constant, the output voltage of the bridge 

would be directly proportional to the pressure. However, the temperature coefficient and the piezoresistive 

coefficient change with temperature, leading to nonlinearity and temperature drift of the sensor, affecting its 

sensitivity and accuracy. 

 

Selection of Experimental Data 

Due to equipment limitations, the characterization experiment data of DRUCK absolute diffusion silicon 

piezoresistive pressure sensors are selected as the basic data for this paper. It includes ten temperature 

preservation processes at ten different temperature points, including -20°C, -10°C, 0°C, 10°C, 20°C, 30°C, 

40°C, 50°C, 60°C, and 70°C. This data is derived from the paper "A comprehensive compensation method for 

piezoresistive pressure sensor based on surface fitting and improved grey wolf algorithm" and is obtained by 

sampling the output of the pressure sensor under set standard pressure generated by a high-performance 

automatic pressure calibrator. Specific data is shown in Table 1. 

 
Table 1: Experimental Data of Pressure Input and Output 

P (KPa) T (◦C)          

 -20.05 -10.04 0.03 9.96 19.93 30.00 39.94 50.04 59.93 69.97 

 VAD          

100 30,308 30,038 29,780 29,496 29,176 28,935 28,612 28,301 27,913 27,628 
200 39,069 38,651 38,253 37,834 37,381 37,027 36,588 36,142 35,650 35,253 
400 56,615 55,892 55,214 54,523 53,810 53,208 52,525 51,861 51,134 50,514 
600 74,188 73,166 72,199 71,234 70,263 69,415 68,494 67,58 66,630 65,789 
800 91,789 90,463 89,205 87,968 86,734 85,633 84,467 83,334 82,149 81,082 

1000 109,418 107,786 106,237 104,721 103,225 101,890 100,467 99,103 97,679 96,386 
1200 127,079 125,132 123,296 121,500 119,741 118,153 116,487 114,883 113,228 111,708 
1400 144,763 142,510 140,377 138,299 136,275 134,434 132,527 130,673 128,791 127,045 
1600 162,481 159,916 157,482 155,126 152,830 150,734 148,584 146,486 144,371 142,396 
1800 180,230 177,345 174,614 171,967 169,412 167,056 164,652 162,316 159,969 157,762 
2000 198,008 194,803 191,769 188,842 186,014 183,395 180,750 178,165 175,578 173,148 

 

Based on the experimental data, corresponding line charts can be plotted, as shown in Figure 2, where it can be 

clearly observed that the output values VAD of the pressure sensor under different pressures undergo significant 

changes with temperature variation. At a certain pressure, VAD decreases linearly with increasing temperature. 

However, in the high-pressure range, the influence of temperature on VAD becomes more severe. Therefore, 

VAD exhibits significant nonlinearity across the entire pressure range. Consequently, the nonlinear effect of 

temperature on the pressure sensor results in low measurement accuracy, necessitating appropriate temperature 

compensation. Otherwise, measurement accuracy will be compromised, affecting the monitoring of the entire 

production system. 
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Figure 2: Pressure Output of Pressure Sensor at Different Temperatures 

 

Temperature Compensation Model Based on Random Forest Algorithm (RF) 

The random forest algorithm model is a machine learning method that includes multiple decision tree classifiers, 

proposed by Breiman in 2001. The random forest model has high accuracy and effectiveness in data 

classification, sample regression, and model prediction, with minimal influence from outliers and noise. It is 

widely used in medicine, economics, ecology, biology, and geography. The random forest algorithm can train 

datasets of pressure under different temperatures, obtain corresponding real values through simulation tests, 

compare them with predicted results, and continuously use machine learning to compensate for pressure under 

different temperatures, making the measurement results more accurate. In this paper, MATLAB software is used 

to compensate pressure sensors using a random forest regression prediction model. 

Firstly, the data from Table 2 is imported into MATLAB, with different temperatures as the feature variables of 

the dataset. According to GB/T15487-2015, general performance tests should be conducted at atmospheric 

temperatures between 18-22°C. Therefore, target values are set at VAD values of 29000, 37000, 53000, 70000, 

86000, 102000, 119000, 135000, 151000, 168000, and 185000 for pressures of 100Kpa, 200Kpa, 400Kpa, 

600Kpa, 800Kpa, 1000Kpa, 1200Kpa, 1400Kpa, 1600Kpa, 1800Kpa, and 2000Kpa, respectively. 

 

Table 2: Dataset after ±3 of Original Data 
Temperature 
 -20.05 

Temperature 
-10.04 

Temperature 
0.03 

Temperature 
9.96 

Temperature 
19.93 

temperature 
30 

Temperature 
39.94 

Temperature 
50.04 

Temperature 
59.93 

Temperature 
69.97 

target 
value 

30,311 30,041 29,783 29,499 29,179 28,938 28,615 28,304 27,916 27,631 29,000 

39,072 38,654 38,256 37,837 37,384 37,030 36,591 36,145 35,653 35,256 37,000 
56,618 55,895 55,217 54,526 53,813 53,211 52,528 51,864 51,137 50,517 53,000 

74,191 73,169 72,202 71,237 70,266 69,418 68,497 67,586 66,633 65,792 70,000 

91,792 90,466 89,208 87,971 86,737 85,636 84,470 83,337 82,152 81,085 86,000 
109,421 107,789 106,240 104,724 103,228 101,893 100,470 99,106 97,682 96,389 102,000 

127,082 125,135 123,299 121,503 119,744 118,156 116,490 114,886 113,231 111,711 119,000 

144,766 142,513 140,380 138,302 136,278 134,437 132,530 130,676 128,794 127,048 135,000 
162,484 159,919 157,485 155,129 152,833 150,737 148,587 146,489 144,374 142,399 151,000 

180,233 177,348 174,617 171,970 169,415 167,059 164,655 162,319 159,972 157,765 168,000 

198,011 194,806 191,772 188,845 186,017 183,398 180,753 178,168 175,581 173,151 185,000 
30,305 30,035 29,777 29,493 29,173 28,932 28,609 28,298 27,910 27,625 29,000 

39,066 38,648 38,250 37,831 37,378 37,024 36,585 36,139 35,647 35,250 37,000 

56,612 55,889 55,211 54,520 53,807 53,205 52,522 51,858 51,131 50,511 53,000 

74,185 73,163 72,196 71,231 70,260 69,412 68,491 67,580 66,627 65,786 70,000 

91,786 90,460 89,202 87,965 86,731 85,630 84,464 83,331 82,146 81,079 86,000 

109,415 107,783 106,234 104,718 103,222 101,887 100,464 99,100 97,676 96,383 102,000 
127,076 125,129 123,293 121,497 119,738 118,150 116,484 114,880 113,225 111,705 119,000 

144,760 142,507 140,374 138,296 136,272 134,431 132,524 130,670 128,788 127,042 135,000 

162,478 159,913 157,479 155,123 152,827 150,731 148,581 146,483 144,368 142,393 151,000 
180,227 177,342 174,611 171,964 169,409 167,053 164,649 162,313 159,966 157,759 168,000 

198,005 194,800 191,766 188,839 186,011 183,392 180,747 178,162 175,575 173,145 185,000 

30,308 30,038 29,780 29,496 29,176 28,935 28,612 28,301 27,913 27,628 29,000 
39,069 38,651 38,253 37,834 37,381 37,027 36,588 36,142 35,650 35,253 37,000 

56,615 55,892 55,214 54,523 53,810 53,208 52,525 51,861 51,134 50,514 53,000 

74,188 73,166 72,199 71,234 70,263 69,415 68,494 67,583 66,630 65,789 70,000 
91,789 90,463 89,205 87,968 86,734 85,633 84,467 83,334 82,149 81,082 86,000 

109,418 107,786 106,237 104,721 103,225 101,890 100,467 99,103 97,679 96,386 102,000 

0

50,000

100,000

150,000

200,000

250,000

-20.05-10.04 0.03 9.96 19.93 30 39.94 50.04 59.93 69.97

V
A

D

T ( ◦C)
100kpa 200KPa 400KPa
600KPa 800KPa 1000KPa
1200KPa 1400KPa 1600KPa
1800KPa 2000KPa
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127,079 125,132 123,296 121,500 119,741 118,153 116,487 114,883 113,228 111,708 119,000 

144,763 142,510 140,377 138,299 136,275 134,434 132,527 130,673 128,791 127,045 135,000 

162,481 159,916 157,482 155,126 152,830 150,734 148,584 146,486 144,371 142,396 151,000 

180,230 177,345 174,614 171,967 169,412 167,056 164,652 162,316 159,969 157,762 168,000 
198,008 194,803 191,769 188,842 186,014 183,395 180,750 178,165 175,578 173,148 185,000 

 

Next, the data is divided into training and testing sets. The ±3 data obtained from Table 2 are used as the training 

set to train the random forest model. The original data from Table 2 is used as the testing set to evaluate the 

effectiveness of the training. Experimental data (Table 3-1) is obtained. The dataset is shuffled, and the first 22 

rows (excluding the feature row) are used as the input data for the training set, with the 11th column of the first 

22 rows serving as the output data. The first 10 columns of rows 23-33 are used as the input data for the testing 

set, with the 11th column of rows 23-33 serving as the output data. Normalization integration is applied to both 

the training and testing sets, followed by transposition to adapt the normalized data to the model. 

The training model is set with 1000 decision trees, with a minimum leaf size of 5 for each tree. Error plots are 

generated to visualize the error curve and establish the corresponding regression model, as shown in Figure 3. 

 

 
Figure 3: Training Model of Random Forest Algorithm 

 

Through simulation testing of the configured random forest algorithm model and subsequent reverse 

normalization of the obtained results, corresponding predicted values are obtained. 

 

Temperature Compensation Experiment Analysis The predictive values obtained from the random forest 

algorithm model are validated through MATLAB simulation, calculating the root mean square error of the 

model to measure its prediction effectiveness. The following results are obtained through validation: 

 
Figure 4: Comparison of Predictive Results between Training (a) and Testing (b) Sets 

Predictions of pressure sensor readings are made using the random forest algorithm regression on the training 

set. From the left center of Figure 4, it can be observed that the fluctuation of actual pressure values measured 

by the sensor due to temperature is smaller than the fluctuation of predicted values by the model. This indicates 

that the influence of temperature on the measured values of the pressure sensor is attenuated. Running the model 

with actual pressure sensor data yields results as shown on the right side of Figure 4, demonstrating that the 

model remains effective in reducing the impact of temperature on pressure sensors in practical situations, 

thereby achieving temperature compensation. 
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Figure 5: Impact of Different Temperatures on Pressure Sensor 

Figure 5 shows the importance of each temperature on the model's predictive effectiveness. Features 1 to 10 

represent temperatures from -20°C to 70°C, respectively. It is evident that temperatures at -20°C and 70°C have 

a higher importance on the pressure sensor, indicating a greater influence on pressure measurements at these 

temperatures, consistent with the nonlinear nature of temperature drift in pressure sensors, proving the 

effectiveness of the model. 

 
Figure 6: Error Curve of Random Forest Algorithm Model 

Subsequently, error estimation is performed on the model, resulting in the error curve shown in Figure 6. It can 

be observed that as the number of model iterations increases, the error for temperature compensation gradually 

decreases. When the model runs 1000 times, the final error of the model is only 0.00731, indicating that the 

model's temperature compensation for pressure sensors is relatively stable, proving the reliability of the model. 

 

Model Validation 

To further validate the effectiveness and feasibility of the model, measurements of pressure sensors between 0-

5000 Kpa and temperatures between -20°C and 70°C are selected for validation. 

 

Table 3: Calibration Data for 0-5000 Kpa Pressure Sensor 

P (KPa) T (◦C)          

 -20 -10 0 10 20 30 40 50 60 70 

 VAD          

0 999.0 999.6 999.9 1000.2 1000.2 1000.6 1003.9 1001.2 1002.5 1005.4 

500 1212.8 1209.7 1206.3 1203.3 1200.0 1197.6 1197.9 1192.4 1191.2 1191.7 

1000 1426.5 1419.7 1412.6 1403.3 1399.8 1394.5 1391.9 1383.7 1379.9 1377.9 

1500 1640.2 1629.7 1618.9 1609.3 1599.7 1591.4 1585.9 1575.0 1568.7 1564.2 

2000 1853.8 1839.7 1825.2 1812.3 1799.6 1788.4 1780.0 1766.4 1757.6 1750.5 

2500 2068.0 2050.2 2032.0 2015.8 1999.9 1985.8 1974.5 1958.4 1947.2 1938.2 

3000 2281.4 2260.0 2238.2 2218.7 2199.7 2182.7 2168.5 2149.7 2136.0 2124.5 
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3500 2495.5 2470.4 2445.0 2422.2 2400.0 2380.2 2363.1 2341.9 2325.7 2311.8 

4000 2709.1 2680.3 2651.3 2625.2 2599.9 2577.1 2557.3 2533.5 2514.5 2498.3 

4500 2923.1 2890.7 2858.0 2828.7 2800.1 2774.6 2751.8 2725.5 2704.2 2685.6 

5000 3136.5 3100.5 3064.3 3031.6 3000.0 2971.5 2945.8 2917.0 2893.1 2872.0 
 

Applying the data to the random forest algorithm model yields the following results. 

 

Figure 7: The results of the training (left) set and the test (right) set of the pressure sensor between 0-5000Kpa 

and -20°C--70°C 

By training the data, similar results to Figure 4-1 can be obtained. Regardless of whether it is the training set or 

the test set, convergence can be achieved for the maximum and minimum values of the data. That is, it is 

possible to compensate for the measurement results of the resistive pressure sensor under low and high 

temperature conditions, thereby achieving more accurate monitoring of the entire production system. This 

further demonstrates the effectiveness of the method. 

 
Figure 8: Feature Importance and Model Error Curve 

From Figure 5-2, it can be seen that the importance obtained from the data is similar to Figure 4-2, with extreme 

temperatures having a significant impact on the model's prediction results, and the model's error fluctuating 

around 0.007. 
 

Conclusion 

This study establishes a new temperature compensation model based on the random forest algorithm combined 

with pressure values at different temperatures. The model can compensate for the temperature of pressure sensor 

measurements, reducing the influence of temperature on sensor measurement results. Compared to other models, 

this model has faster learning speed, handles more data, is simpler to operate, and has higher prediction accuracy. 

It can compensate for pressure at different temperatures, with a measurement error of only 0.00731, 

significantly improving the accuracy of pressure sensors and having practical value. 

By using the random forest algorithm to compensate for the pressure values of resistive pressure sensors at 

different temperatures, firstly, through the analysis of two sets of experimental data, it is proven that this method 

is effective. Secondly, the final errors of the two different data sets are close, demonstrating the applicability and 

stability of the method. Finally, compared with other methods, the biggest advantage of this method is that it 

tends to be stable after around 100 iterations. Compared to other methods, this method has a faster learning 

speed and is simpler and quicker to operate, which facilitates faster detection of pressure anomalies in the entire 

production system and ensures stable operation of the production system. 
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