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Abstract In this paper, we study the state estimation problem of BCNs. First, a new concept of output-

dependent reconstructible for some special output sequences is proposed. and impose a flip control technique on 

the set of unreconstructible states. Then, a sufficient condition for all the states in the unreconstructible set of 

states to reach the reconstructible set of states is given. Third, an algorithm to find the required control sequence 

is designed so that all states in the unreconstructible state set reach the reconstructible state set. Finally, the 

corresponding observer is designed to estimate the state of the system. An example is given to illustrate the 

feasibility of the proposed methods. 
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Introduction 

The Boolean network (BN) model, originally proposed by Kauffman and others [1], is a discrete system based 

on directed graphs. Boolean network model has been widely used in many fields including cell differentiation, 

immune response, biological evolutionary neural network and gene regulation. The Boolean network with inputs 

and outputs is regarded as Boolean control network (BCN). A BCN can be seen as a family of BNs, each of 

them associated with a specific value of the input variables. 

In recent years, Cheng et al. have proposed a mathematical tool called Semi-tensor product (STP) [2-3], which 

can convert the dynamics of BNs into a model that is similar to the standard discrete-time state space model. In 

this way, logic-based problems can be transformed into algebraic problems. Based on the STP approach, some 

other theoretical issues of BCNs are studied such as controllability and observability [7, 8, 9, 10], 

reconstructibility [4, 5, 6,], output tracking [11, 12], perturbation decoupling problem [13, 14], optimal control 

[15, 16, 17], and other results [18, 19, 23]. But many of these works assume that the state is known or 

measurable. However, most control systems, including BCNs and others, are unknown or immeasurable.  

Therefore, the reconstructibility analysis of BCNs and the design of observer are particularly important, which 

will be the topic of this paper. 

State estimation is one of the hot topics in control theory and plays an important role in many fields, such as 

state feedback stabilization and fault diagnosis based on state estimation. Besides, the reconstructibility is the 

property that the finial state can be uniquely determined for BNs or BCNs, and the reconstructibility condition 

of BNs or BCNs is necessary for the existence of state observers and firstly proposed in [6]. Nowadays, many 

observer design methods have been proposed to uniquely estimate the system state of BCNs. Shift-register 

observers and multi-state observers were first proposed in the paper [6]. Subsequently, the paper [12] explains 

the relationship between observability and reconstructibility and proposes a class of Longaberger observers. 

Most of these papers rely solely on observers to estimate the system state, there is not much paper related to 

designing controllers. For BCNs, the system state and control input are multiplicatively coupled by the semi-
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tensor product of matrices. So, the observability and reconstructibility of BCNs are control input-dependent [6]. 

Therefore, it is necessary to design controllers only to estimate the system state. 

Flip control is a new control mechanism with little intervention in the system [21, 22, 23]. It works by changing 

the value of certain nodes in the BCN from 1 to 0 or from 0 to 1, simulating turning on or off genes in a 

biological system. Due to its ease of manipulation, many researchers have used flip control to study problems. 

For example, the paper [21] also investigated attractor controllability of BNs by flipping a subset of nodes in 

multiple attractor states. [22] studied the attractor stability of BNs by flipping some state nodes in the attractor 

once after the network passes through a transient period in the attractor. Cheng et al. provided controllability and 

stability criteria for BCNs by flipping a subset of nodes in some initial states instead of flipping the nodes in the 

attractor after the network passes through a transient period. Recently, Zhang et al. applied the flipped 

mechanism to switch Boolean control networks (SBCNs) for stability and set stabilization, where a subset of 

initial state nodes is considered to be flipped once [23]. In addition, the weak stability of BNs with flipped 

sequences has been studied in the paper [24]. So far, many researchers have applied state flip control to the 

stability and controllability of BNs (BCNs). However, there are not many directions to study state estimation of 

BCNs using flip control techniques. 

This paper focuses on the study of Boolean control network output dependence reconstructibility, which is 

mainly summarized as follows: 

1) By studying specific outputs, a new concept of output-dependent reconstructible state sets is proposed to 

estimates the system state. 

2) For the set of output-dependent unreconstructible states, the flip control technique is introduced, then a 

sufficient condition is proposed for the set of output-dependent unreconstructible states to reach a 

reconstructible state.  

3) An algorithm is designed for all states in the output-dependent unreconstructible state set, and a sequence of 

common joint control pairs is obtained. Then, the state of the system is finally uniquely estimated by the 

designed controller and observer. 

 

Preliminaries and Problem Formulation 

Preliminaries 

: {0,1}=D
, 

n

n

=   D D D D

. 
S

 is the cardinality of the set S . +Z
 is the set of nonnegative integers, and 

m nM
 is a set of m n  matrices. 

i

n  denotes the i -th column of the n n identity matrix
m nA  .

: { | 1,..., }i

n n i n = =
, 2 ：=

. 
:m n m n L

 denotes the set of n m logical matrices. 
( )

ij
C

 denotes the i -th row 

and 
j

-th column element of C . 
( )Col M

is the set of columns of M . 
( )iCol M

is the i -th column of the 

matrix M . For 
m nA R  and 

p qB R , the semi-tensor product (STP) of two matrices[2] is defined as 

( ) ( )/ / ,l n l pA B A I B I=   â
 where 

 1 ,l cm n p=
 is the least common multiple of n  and 

p
, and ‘ ’ is the 

Kronecker product. Let 
n2X D , then nX X X= â â

, where 

1 1 2 2 2 2

2 2 2 2 2 2
   

n n

n n n n n nn        =   
   is the 

power-reducing matrix. 

 

System Formulation 

A BCN with n  states, m  inputs and p  outputs are represented as 

 
( ) ( ) ( )( )

( ) ( )( )

1 , , 1,2, , ,

, 1,2, , ,

i i

j j

X t f X t U t i n

Y t h X t j p

 + = =


= =

 (1) 

where ( ) ( ) ( )( )1 , ,
T n

nX t X t X t= D , ( ) ( ) ( )( )1 , ,
T m

mU t U t U t= D , ( ) ( ) ( )( )1 , ,
T

p

pY t Y t Y t= D , are 

the state, input and output vectors, respectively. : n m

if
+ →D D  and : n m

jh + →D D , are logical functions. 
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The vector form of Boolean variables 
iX , 

jY  and 
kU  can be simply expressed as   2

T

i i ix X X=   , 

2

T

j j jy Y Y =     and   2

T

k k ku U U=   , respectively. Let ( ) ( )1 2
 n

n

i ix t x t== â , 

( ) ( )1 2
 m

m

i iu t u t== â , ( ) ( )1 2
 p

p

i iy t y t== â , the algebraic form of BCN (1) is  

 
( ) ( ) ( )

( ) ( )

1 ,

,

x t Lu t x t

y t Hx t

+ =


=

 (2) 

where 
2 2n n mL +

L  and 
2 2p nH


L  are the logical matrices. 

 

Matrix Representation of Flipping control 

Definition 1([20]): For a flip set    1 2, , , 1,rA A A A n=  , the flip function with respect to A  is defined as 

 ( ) ( )
1 21, , , , , , , , ,

rA A A A A nX X X X X X X= =   

which can transform the logical state X  to 
AX . The flip matrix of ( )A X  is denoted by 

AH  and satisfies

( )
2

,  1, 2n

i n

j Acol j  =   H , if 
2 2

  a
n n

j i

Ax x


 = ⎯⎯→ = . 

Definition 2([20]): Let    1 2= , , , 1,sB B B B n . For A B , the combinatorial flip matrix with respect to B  

is defined as  

 ( ) 2 2
,

otherwise

1,   

0,  .

n
A

nB A

B ij

j ia Θ
C

X X
 


   
= 


⎯⎯→



 

Equivalently, if there exists a subset 
BA Θ , then ( ) 1A ij

=H  holds. In order to represent the above in 

mathematical notations, we can derive 
B

B AA Θ
C


= H  and 

2 2n nBC


B . 

Here, two sets A  and B  are briefly explained. For a given state, A  is the actual flip set, and every element of 

A  corresponding to a node in the given state must be flipped. However, B  is a combinatorial flip set, and a 

subset of B  is chosen to represent as coming to be flipped. 

 

Main results 

State analysis of Boolean control network 

Definition 3: For the Boolean control network (2), the output is
2

,  1, 2p

i py Hx i  = =    . Then the set of 

output-dependent state estimates can be defined as 

  2
1, 1,2, , 2n

j n

c ijH H j= = =  (3) 

From equation (3), it is clear that the
1 2 2 2p nH H H =  . 

Definition 4: Consider a Boolean control network (2), if there is a column in the output that is different from the 

other columns, then the state corresponding to that column is the true state, and we know that the output depends 

on the set of state estimates, which is satisfied 1cH = , then the state of the BCN (2) is the output-dependent 

reconstructible. 

Corollary 1: Consider the Boolean control network (2), for which each column in the output H is different, and 

it can be shown that the output-dependent set of state estimates in Definition 4, are satisfied 1cH = , then the 

BCN (2) is output-dependent globally reconstructible. 

In Corollary 1, the cardinal number of given 
cH  is 1, i.e., 1cH = , and it is clear that the state of the system 

estimated by 
2p

iy =  is unique, otherwise it is not. Therefore, the proof of Corollary 1 is straightforward and 

obvious. It should be noted that if 0cH = , then 
2p

iy =  does not exist, so the case of 0cH =  is not considered 

in this paper. 
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Definition 5: For a BCN (2) the set of output state estimates satisfies 1cH  , 1,2, ,2pc = , then the state of 

the BCN (2) is output-dependent reconstructible. 

In Definition 4 the BCN can satisfy 1cH =  by relying on the set of output state estimates, then the BCN (2) is 

output-dependent reconstructible. However, in Definition 5, it is known that there exists a set of output-

dependent state estimates to satisfy 1cH  . At this time, it is necessary to add state flip control to flip the 

dependent output unreconstructible state to the output dependent reconstructible state set to realize the state 

estimation of the Boolean control network. 

Example 1: Consider the equations of a BCN with 3n = , 1m = , 2p =  where the logic matrix is of the form 

8 2,1,1,5,5,2,1,7,1,2,1,5,5,1,1,7L  =  , 4 1,1,2,2,4,3,1,3H  =  . 

By equation (3) it can be concluded that can be known 
1

4y = ,  1 2 7

1 8 8 8, ,H   = ; 
2

4y = ,  3 4

2 8 8,H  = ; 

3

4y = ,  6 8

3 8 8,H  = ; 
4

4y = ,  5

4 8H = ; i.e. 1 2 3 4H H H H= =  , by definition 4 it can be known that for 

Example 1 for the output 
4

4y =
 is output-dependent reconstructible. In summary, considering the BCN (2), it is 

known that part of the states are output-dependent reconstructible and part of the states are output-dependent 

unreconstructible, while the set of state estimates for output-dependent unreconstructible states can be flipped 

into an output-dependent reconstructible set of states by adding a flipped control. 

 

Co-controller design 

In summary, in the case of Definition 5, the system state cannot be estimated from the output, which requires 

other control techniques to estimate the system state. The design steps are as follows: 

1) In the case of Definition 5, determine the set of output-dependent reconstructible states by output, using the 

representation output-dependent reconstructible state set, simply referred to as the reconstructible state set. 

Determine the set of dependent output unreconstructible state estimates, simply referred to as the 

unreconstructible state set. 

2) For the set of unreconstructible state estimates, the design of the sequence of joint control pairs makes it 

possible to flip the states in the set of unreconstructible state estimates to the set of reconstructible state 

estimates. 

3) Unreconstructible state estimation sets all states to design common joint control pair sequences to realize 

state estimation for BCNs. 

For a flip transition of 
2n

j  from to 
2n

i , it can be represented by a sequence of joint control pairs 

( ) ( ) ( )
0 1 1

2 2

0 1 1: , , , , ,
kj i

n n

k

A A A kΛ u u u
 

  
−  

 
  

−=  

denoted simply as kΛ , jA B  is a flip set, 
2mju  is a control input,  0, 1j k − . Hence a transformation 

path can be obtained: 

 1 20 11
, ,,

0 12 2 2

a a ka k
n n n

u uupj i

tx x x
 

  = = ⎯⎯⎯→ = ⎯⎯⎯→ ⎯⎯⎯→ =P  

Definition 6([24]): Given a subset  1,B n , the matrix 
2 2n nL


  is called the flip transfer matrix of BCN(2) 

under flip control of B , where = BL MC , 
2

2 2
1

:

m

m mq

q

M M


=

=  . According to Definition 2, L  is called the flip 

control transfer matrix based on B . 

Lemma 1([24]):    1 2: , , , 1,sB B B B n=  and the flip control transfer matrix L  in Definition 5 , then there is

( ) ( )2 2
, ,n n

k
j i

ij

L x k    =
  

, and then ( )k

ij
L  is a joint control pair 

k

ijΛ  under which one can go from state 
2n

jd  to 

state 
2n

id  after k  flip-inputs. 

Lemma 2([24]): there exists a feasible path P  from the initial state 
2n

j  to 
2n

i . The length of the path is 

represented by jk . Considering that there are 2n  states in the state space of the BCN (2), there must be some 

loops in the path, and removing the loops in the path, the length of jk  is less than or equal to 2 1n − , 2 1nk  − . 
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According to Lemma1, the reachability ( ) 0
ij

L   between any two states in BCN(2) under B  flip control, 

based on the computation of the matrix L  and its powers, implies that there exists at least one flip set 
AH  and a 

control transfer matrix qM  such that 
2 2n n

i j

q AM = H . Assume that the dependence outputs the 

unreconstructible state estimation set 
cH ,  1 2

2 2 2
, , ,n n ncH   = , where 2n  . 

Theorem 1: For a given subset  1,B n  and initial state 0 2n

jx = , destination state 
2n

i

dx = ，
2n

i R  in the 

set of reconstructible states, if ( ) 0k

ij
L  , then BCN (2) is reachable under B  flip control to the set of 

reconstructible states R . 

Proof: When given a subset  1,B n , it follows from Lemma 2 that any initial state 0 2n

j

cx H=   can evolve 

to a reconstructible states 
2n

i ，
2n

i R , after k  steps, i.e., 
2 2n n

i j

q A q A

k

M M = H H , ( )2 2
, , n n

k j i

ijx k   = . 

Consider any other initial state if 
2n cH   is and 

2 2n n

j    similarly there exists a sequence of joint control 

pairs 
k

ijΛ  that reach the initial state 
2n

d  to reach the reconstructible state 
2n

i

dx =  by reaching it to the 

reconstructible state 
2n

i

dx =  at step k . Similarly, when 1cH  , all states in 
cH  are able to reach the 

reconstructible state 
2n

i

dx =  under the joint control sequence 
k

ijΛ , i.e., when, t k , ( )2 2
, , n n

k j i

ijx k Λ  = . In 

other words, assuming that there exists any initial state 
2n

j

cHd  that cannot reach the set of reconstructible 

states R  under the sequence of joint control pairs, then we get ( )  0,  1,k

ij
L j =  , implying 1cH  , which 

contradicts ( ) 0k

ij
L  , so the assumption is not true. Proof complete. 

 

Finding Common Flip Sets and Control Inputs 

Since the current state cannot be determined through the outputs, it is necessary to design the joint control input 

kΛ  to transfer all states in the unreconstructible state set to the reconstructible state set. Next, algorithms are 

proposed to compute the desired joint control inputs, which can lead any initial state of the network to a given 

state. Assume that the desired flipping set is B  and B = , with 1 2 2 1
,  ,  , A A A  −

 for all subsets of B . The 

case of the empty set and full set is not considered in this paper. Based on the flip control transfer matrix L , it 

can be determined that there is a flip transition from 
2n

j  to 
2n

i . A flip transition path: 

  1

0 12 2 2n n n

pj i

kx x x  = = → = → =P , 

where px  is located at the k p−  step reachable from 
kx . For convenience, suppose that 0

2 2n n

p j =  and 

2 2

k
n n

p i = . After finding the path from 
2n

j  to 
2n

i , there may be several different feasible sequences of joint 

control pairs. In using of flip control, it is only desirable to find at least 1 sequence of joint control pairs that can 

make all the states in the set of unreconstructible states reach the states in the set of reconstructible states. Here, 

assume the set  1 2

2 2 2
, , ,n n niS = d d d , 2n  . Algorithm 1 is proposed below to compute the sequence of joint 

control pairs for each state in the set of unreconstructible states as well as at each step using a search algorithm. 

 

Algorithm 1: Finding joint control pair sequences 

input： cH
,R，set 

k

jS =
 

Output: 
k

jS
 

line 1:  for 
1: cj H=

 

line 2:    for 1: 2 1nk = −  

line 3：   

1

0 0 12 2n n
rt

i

q A dx M x x x = → = → → =â âH
 



Qian X & Wang S                                  Journal of Scientific and Engineering Research, 2024, 11(5):178-187 

Journal of Scientific and Engineering Research 

183 

 

line 4：Save the flip-function 
( )A X

 in line 3 and the control transfer matrix qM
 to form a 

sequence of joint control pairs 

( ) ( ) ( )
1 2 1

2 2

0 1 1: , , , , ,
r r rkj i

n n

k

A A A kΛ u u u
 

  
   −

 
  

−=

 stored in the set 
k

jS
. 

line 5:    for end 

line 6:  for end 

 

In Algorithm 1, a search algorithm is used in line3 to compute the sequence of joint control pairs for all state 

computations in the unreconstructible state set, where tqM
 is the control input, AH

 denotes the algebraic 

matrix of the flip function 
( )A X

, and tr
A

 is the set of flips required for the flip, 
1, 2 1r   −  . Where 

k

jS
 

superscript k  denotes k steps, where 
k

jS
, and subscript 

j
 denotes the individual state values in the set of 

unreconstructible states 
j

. For example, 
4

3S
, denotes the set of all control sequences for the state at time 4t = . 

Output the set of joint control pair sequences 
k

jS
, which is represented as 

1 2 1 2

1 1 1 2 2 2, , ; , , ; ;k k k

jS S S S S S S
. 

From Algorithm 1, all pairs of control sequences are obtained for each state in the unreconstructible state set that 

arrives at a reconstructable state. For the output-dependent unreconstructible state estimation set cH
, and 

1cH 
, not all sequences of joint control pairs are able to transfer all the states in the unreconstructible state set 

to the reconstructible state set, which in turn determines the system specific state. Therefore, for the set of 

unreconstructible state estimates, a common sequence of joint control pairs must be found. Algorithm 2 is 

proposed below to compute the common control sequence. Its common control sequence pair 
kΛ  is denoted to. 

 

Algorithm 2: Finding common control sequence pairs 

Input:
1 1 1 2 2 2

1 2 1 2 1 2, , , ; ; , , , ; ; , ,k k kS S S S S S S S S  ，
kS =   

Output: 
kΛ  

line 1: Initialize 1k =  and 2 1nk  − . 

line 2: Selection set 
k

jS
, and find the intersection 

kS  

line 3: Assign the common control sequence in the intersection 
kS  from step 2 to 

kΛ , stop the 

algorithm. 

line 4: If the intersection set 
kS    in line 2. 

line 5: 1k k= + . 

In Algorithm 2, line 2, when 1k = , selects the set of joint control pair sequences 
1 1 1

1 2, , ,S S S  that can reach the 

set of reconstructible states in one step. line 3 will find the common joint control pair sequence. 

 

Luenberger-like observer design 

Next, observers are invoked to observe the states in the reconstructible state set. for the purpose of state 

estimation. The following form of Luenberger-like observer is obtained from the paper [25]: 

 

( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )
2

ˆ 0 ,  0,

ˆ ˆ 1 ,

ˆ  1 1 ,  0.n

T

T T

n

T T

n

x H y t t

x t Lx t H y t

I H Lx t u t y t t

 = =


=  −


=   − − 

 (4) 

From equation (4) it is clear that it is not of the same form as BCN(2). As a result, (4) can be rewritten to make 

the following class of Luenberger-like observer 
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( ) ( )

( ) ( ) ( ) ( )

ˆ , 0,

ˆ ˆ1 1 , 1,

T

T T

n

x t H y t t

x t Lu t x t H y t t

 = =


+ =   + 

 (5) 

where the state estimate at 1t   can be obtained by using the pseudo-commutative nature of the STP operation 

to obtain a simplified state estimate of: ( ) ( ) ( ) ( )
2

ˆ 1n

T T

n I H Lu t x t y t  + . 

Lemma 3([26]): Let A  and B  be matrices with the same dimension m n , then the Hadamard product of A  

and B  is denoted as A B , defined as ( )T

m nA B H A B H=  , where ( )1 2, , , n

n n n nH diag   = . 

The known input and output trajectories are ( ) ( ) ( ) ( ) ( ) ( ) 0 , 0 , 1 , 1 , , ,y u y u y t u t , Then all possible state 

values compatible with the input and output trajectories are contained in ( )ˆ 1x t + . Since Boolean control 

network systems are time-invariant, system state reconstructability implies that the input and output trajectories 

at the same moment can uniquely determine the state values at the last moment of the system. A shift register 

observer based directly on input and output trajectories of length 1r +  has been proposed in the paper [6]. Thus 

state estimation at a given moment naturally requires immediate information about the outputs. Using Lemma 3, 

the following equation is obtained, 

 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( ) ( ) ( )( )

( ) ( ) ( )

( ) ( ) ( ) ( )

1

2

ˆ ˆ1 1

ˆ 1

ˆ 1

ˆ 1

ˆ 1 .n

T

T T

n

T T

n

T T

n

T T

n

x t Lu t x t H y t

H Lu t x t H y t H

H Lu t x t H y t

Lu t x t H y t

I H Lu t x t y t

+ = +

=  +

= +

=  +

=   +

 

 

Simulation Example 

In this section, the theoretical results obtained are demonstrated using a simple BCN, reconsidering the Boolean 

control network of Example 1. 

By equation (3) it follows that 
1

4y =  can be known as  1 2 7

1 8 8 8, ,H   = ; 
2

4y = ,  3 4

2 8 8,H  = ; 
3

4y = ,

 6 8

3 8 8,H  = ; 
4

4y = ,  5

4 8H = , knowing, 1 2 3 4H H H H= =  , From Definition 4 it is clear that the 

pair of BCNs (4) is output-dependent reconstructible for output 
4

4y = . It can be shown that the state 
5

8  can be 

reconstructed with the set of states  5

8=R  by output confirmation. 

Next, the joint control sequence will be designed by the algorithm to transfer all states in the output-dependent 

unreconstructible state set to the reconstructible state set. If the output is 
1

4y =  know  1 2 7

1 8 8 8, ,H   = , a 

partial sequence of joint control pairs of all states in the unreconstructible state set arriving at the reconstructible 

state set can be derived by Algorithm 1, and due to space constraints. Due to space limitations, only some of the 

joint control sequence pairs are listed: 
 ( )  ( )  ( )3

2 1 21 3 3
, , , , ,Λ u u u  = . A partial common control sequence 

can be derived by Algorithm 2: 
 ( )  ( )  ( )3

2 1 21 3 3
, , , , ,Λ u u u  = . For all states in the unreconstructible state 

set 
cH , they can be transferred to the reconstructible state set. The specific transfer path is shown below: 

      2 1 11 3 3, , ,1 5 1 5

8 8 8 8

u u u
   ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

H H H
, 

      2 1 11 3 3, , ,2 1 1 5

8 8 8 8

u u u
   ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

H H H
, 

      2 1 11 3 3, , ,7 1 1 5

8 8 8 8

u u u
   ⎯⎯⎯→ ⎯⎯⎯→ ⎯⎯⎯→

H H H
, 

where  1H  is the algebraic matrix of the flip-function ( )A X  for the state transfer process, the lower right 

corner  1  denotes a  1A = , and 
1u  or 

2u  denotes a sequence of joint control inputs, which will not be 

described in the following. 

For the set of unreconstructible states  1 2 7

1 8 8 8, ,H   = , all state transfer diagrams are shown in Fig. 1. 
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Figure 1: State transfer diagram                                       Figure 2: State transfer diagram 

 

From Fig. 1, it can be seen that there exists a sequence of public joint control pairs 

 ( )  ( )  ( )3

2 1 21 3 3
, , , , ,Λ u u u  =

, which is able to reach in the reconstructible state for all states in the 

unreconstructible state set 
 1 2 7

1 8 8 8, ,H   =
. And the existent sequence of public joint control pairs is not 

unique. 

Similarly, it follows that for the set of irreducible states 
 3 4

2 8 8,H  =
, there exists a common joint control 

sequence pair 
 ( )  ( )  ( )3

1 1 13 3 1
, , , , ,Λ u u u  =

 by Algorithm 1 and Algorithm. The transfer diagram is shown 

in Fig 2. 

Similarly, it follows that for the set of irreducible states 
 6 8

3 8 8,H  =
, there exists a common joint control 

sequence pair 
 ( )  ( )  ( )3

1 1 13 3 1
, , , , ,Λ u u u  =

 by Algorithm 1 and Algorithm. The transfer diagram is shown 

in Fig 3. 

In summary, for the irreducible state set cH
 of the Boolean control network (2), a sequence of joint control 

pairs can be designed to reach the irreducible state set to the reconstructible state set. In turn, the state estimation 

of the Boolean control network is realized. 

Next the observer is applied to observe the states in the set of Boolean control network dependent output 

reconstructible states. The state of its observation system is shown in Fig. 4. 

 

 
      Figure 3: State transfer diagram                          Figure 4: State estimation diagram 

 

It can be concluded from the state estimation diagram in Fig. 4 that the system state can be observed by applying 

the Luenberger-like observer. 
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Conclusion 

This chapter discusses output-based reconstructability analysis and state estimation for BCNs. Special output 

sequences are utilized to determine part of the system state and the reconstructible state set is given. Since the 

states corresponding to some outputs of the system are not unique, the system state cannot be determined. 

Therefore, it is necessary to design a joint flipping control pair sequence, so that the state of the 

unreconstructible state set can reach the reconstructible state set, and then estimate the state of the system. Then, 

Then the specific state of the system is observed by the Luenberger-like observer. Finally, an example is used to 

validate the necessity of the research results obtained. 

 

References 

[1]. Kauffman S A. Metabolic Stability and Epigenesis in Randomly Constructed Genetic Nets [J]. Journal of 

Theoretical Biology, 1969, 22(3): 437-467. 

[2]. Cheng D Z, Semi-tensor product of matrices and its application to Morgen’s problem [J]. Sci. China 

Series, Inf, Sci, 2001, 2001(44):195–212. 

[3]. Cheng D Z, Qi H S, Li D Q. Analysis and Control of Boolean networks: A Semi-tensor Product 

Approach [J]. 7th Asian control conference, Hong Kong, China, 2009:1352-1356. 

[4]. Yang J Q, Qian W, Li Z Q. Redefined reconstructibility and state estimation for Boolean networks [J]. 

IEEE Transactions on Control of Network Systems, 2020, 7(4): 1882 – 1890. 

[5]. Yang J Q, Long H, Chen Y T. Li Zhi Q, Reconstructibility analysis and set-observer design for Boolean 

control networks [J]. WILEY Online Library, 2022,25(4): 2881-2892. 

[6]. Fornasini E, Valcher M E. Observability, reconstructibility and state observers of Boolean control 

networks [J]. IEEE Transactions on Automatic Control, 2012, 58(6): 1390-1401. 

[7]. Cheng D Z, Qi H S. Controllability and observability of Boolean control networks [J]. Automatica, 2009, 

45(7): 1659-1667. 

[8]. Cheng D Z, Li C, He F. Observability of Boolean networks via set controllability approach [J]. Syst. 

Control Lett, 2018, 115: 22–25. 

[9]. Zhang K, Zhang L. Observability of Boolean control networks: A unified approach based on finite 

automata, IEEE Trans. Autom. Control 2016. 61(9):2733–2738. 

[10]. Xu X, Hong Y. Observability analysis and observer design for finite automata via matrix approach [J]. 

IET Control Theory & Applications. 2013,7(12):1609-1615. 

[11]. Li H T, Wang Y Z, Xie L H. Output tracking control of Boolean control networks via state feedback: 

constant reference signal case [J]. Automatica, 2015, 59: 54-59. 

[12]. Wang Y H, Li H T. Output trackability of Boolean control networks via ledley antecedence solution [J]. 

IEEE Transactions on Control of Network Systems—II: express briefs, 2022, 69(3):1183-1187. 

[13]. Y. Liu, B. Li, J. Lu, and J. Cao. Pinning control for the disturbance decoupling problem of Boolean 

networks,” IEEE Trans. Autom. Control, 2017:6595-6601. 

[14]. Y. Li, J. Zhu, B. Li, Y. A necessary and sufficient graphic condition for the original disturbance 

decoupling of Boolean networks [J]. IEEE Transactions on Automatic Control, 2021, 66(8):3765-3772. 

[15]. Wu Y, H. Sun X M. Zhao X D. Optimal control of Boolean control networks with average cost: a policy 

iteration approach [J]. Automatica, 2019, 100:378-387. 

[16]. Fornasini E, Valcher M E. Optimal control of Boolean control networks [J]. IEEE Transactions on 

Automatic Control, 2014, 59:1258-1270. 

[17]. Gao S, Sun C, Xiang C, Finite-Horizon Optimal Control of Boolean Control Networks: A Unified 

Graph-Theoretical Approach, IEEE Transactions on Neural Networks and Learning Systems, 2022, 

33(1): 157-171,  

[18]. M. Fang, Wang L, Wu Z. Asynchronous stabilization of Boolean control networks with stochastic 

switched signals [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2021, 51(4): 2425-

2432. 

[19]. Liu Y, Wang L, Lu J, et.al. Sampled-data stabilization of probabilistic Boolean control networks [J]. Syst 

Control Lett. 2019, 124: 106–111. 



Qian X & Wang S                                  Journal of Scientific and Engineering Research, 2024, 11(5):178-187 

Journal of Scientific and Engineering Research 

187 

 

[20]. Mohammad R R, Fariba B. Attractor stabilizability of Boolean networks with application to 

biomolecular regulatory networks [J]. IEEE Transactions on Control of Network Systems, 2019, 6(1):72-

82. 

[21]. Mahammad R R, Fariba B. Attractor controllability of Boolean networks by flipping a subset of their 

nodes [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2018, 28(4):043120. 

[22]. Rafimanzelat M, Bahrami F. Attractor stabilizability of Boolean networks with application to 

biomolecular regulatory networks. IEEE Transactions on Control of Network Systems, 2019. 72–81. 

[23]. Zhang Q L, Feng J E, Zhao Y et al. Stabilization and set stabilization of switched Boolean control 

networks via flipping mechanism [J]. Nonlinear Analysis: Hybrid Systems.2021, 41: 101055. 

[24]. Liu Z, Zhong J, Liu Y, et al. Weak stabilization of Boolean networks under state-flipped control. IEEE 

Transactions on Neural Networks & Learning Systems, 2021, 34(5):2693-2700. 

[25]. Zhang Z H, Thomas Lei F, Zhang P. Reconstructibility analysis and observer design for Boolean control 

networks [J]. IEEE Transactions on Control of Network Systems. 2020. 7(1):516-528. 

[26]. Cheng Dai zhan, Xia Yuan Qing, Ma Hong Bin, Matrix Algebra, Control, and Games [M]. Bei Jing: 

Beijing Institute of Technology Press, 2016. 


