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Abstract For Drosophila melanogaster segmentation polarity gene network, relying solely on the analysis of 

gene logical nodes will pose significant challenges in issues such as reconstructibility and state estimation. 

Boolean network is an effective mathematical model which describes gene regulation networks. Based on the 

algebraic expression of Drosophila melanogaster gene network by semi-tensor product (STP) of matrices, the 

state space of gene network is split into the unreconstructible state set and the reconstructible state set by 

analyzing the measurable outputs of the system, and the concept of the local reconstructibility is further 

proposed. Second, for the unreconstructible state set, a pinning control scheme is proposed, where a pinning 

algorithm is given such that all states in the unreconstructible state set can simultaneously reach the 

reconstructible state set, and then a sufficient condition for the existence of a common control sequence and 

solution method are also given. Further, a pinning control-based state estimation method is proposed. 

Meanwhile, the conclusions are applied to the Drosophila melanogaster segmentation polarity gene network to 

verify the validity of the methods. 

 

Keywords Boolean networks; semi-tensor product; reconstructibility; state estimation; pinning control; 

Drosophila melanogaster gene network 

1. Introduction  

Boolean network (BN) is an important model and can describe the interactions among entities of complex 

system biology. BN was firstly used to describe the dynamic behavior of genes by Kauffman [1]. Since then, 

BN has attracted much attention of scholars due to the advantages of simple structure and expanded to other 

aspects include BCN. Currently, Boolean networks have been successfully applied to gene regulatory networks 

include Drosophila segment polarity network, lac operon, and T-LGL signaling network. Recently, the matrix 

semi-tensor products [2-3] have been proposed to transform BN dynamics into discrete-time state space models. 

With the help of semi-tensor product (STP) of matrices, some excellent results of BNs and BCNs, such as 

controllability and reachability [4, 5, 6, 7], stability and stabilization [8, 9, 10], reconstructibility and observer 

design [11, 12, 13, 14, 15, 16, 17, 18, 19], pinning control [20, 21, 22, 23, 24, 25], have been developed. 

State estimation is an important topic in control theory. In state-space modeling, the system output can be 

measured directly, but the state of most systems is unknown or difficult to measure. Therefore, how to uniquely 

determine the system state based on the obtained data is important to understand and control a system. 

Drosophila melanogaster is a fully metamorphic insect with the advantages of small size, short life cycle, as well 

as convenient genetic manipulation and transgenic modalities. Most importantly, the evolutionary conservatism 

of Drosophila melanogaster offers the possibility of translating Drosophila findings to human disease research. 

Thus, Drosophila has become one of the most desirable model insects for biological studies. This paper will 

analyze the state estimation problem of Drosophila melanogaster segment polarity gene network to provide new 
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ideas for its study in biology. The reconstructibility of BNs reveals the ability to uniquely estimate the system 

state. At present, many excellent methods have been developed to tackle the problems of reconstructibility and 

state estimation. The reconstructibility was firstly developed in [11]. Then, paper [12] further discussed the 

reconstructibility of probabilistic BNs. Paper [13] analyzed the relationships between observability and 

reconstructibility of BCNs, and the reconstructibility of general BCNs was investigated. State estimation issue 

of stochastic time-varying BNs was investigated in [14]. Paper [15] investigated the optimal state estimation 

problem of BCNs with stochastic disturbances. The minimum reconstructibility of BCNs was solved in [16]. 

Paper [17] investigated the issues of state estimation and state estimation-based stabilization for Boolean control 

networks (BCNs). Recently, the reconstructibility was redefined in [18], where all states were used to determine 

the reconstructibility of BNs. Observability and reconstructibility criteria of BCNs were obtained via set 

controllability in [19]. After the outbreak of the COVID-19 pandemic, the development of vaccines became a 

top priority. And the primary prerequisite for the development of vaccines is the detection of the virus, thus it is 

particularly important to analyze the reconstructibility and state estimation of gene networks. However, the 

aforementioned papers do not fully consider the ability of output to estimate the system states. Therefore, this 

paper will propose a new method for reconstructibility analysis to uniquely determine the state of the Drosophila 

melanogaster segmentation polarity gene network. 

Furthermore, the pinning control strategy aims to control some nodes of the system such that the system 

implements the desired goal. For example, the p53 network can be forced to enter the apoptotic attractor by 

controlling only some nodes in the presence of DNA damage [20]. Paper [21] investigated the stabilization 

problem of BCNs under pinning control. The paper [22] analyzed the single-input pinning control design 

problem for reachability of BNs, and the design method was extended to BNs under arbitrary disturbance inputs 

[23]. A pinning control design method for global stabilization of BNs was discussed in [24]. We know from the 

aforementioned papers that the pinning control technique plays a vital role in field of state feedback stabilization 

of BNs and BCNs. In this paper, we analyze the reconstructibility and state estimation of the Drosophila 

melanogaster segmentation polarity gene network by designing a pinning control strategy. 

The main contributions of this paper are summarized as follows.  

1) The concept of the locally reconstructible is proposed, where the state space of Drosophila 

melanogaster segmentation polarity gene network is split into the unreconstructible state set and the 

reconstructible state set. 

2) A pinning scheme is designed such that all states in the unreconstructible state set can be 

simultaneously steered to the reconstructible state set. 

3) Considering the pinning scheme for each unreconstructible state set, a sufficient condition of the 

existence of a common control sequence is provided, and an algorithm is proposed to summarize the 

pinging controller design. 

4) Then a pinning control-based state estimation method is also discussed to solve the state estimation 

problem of the Drosophila melanogaster segmentation polarity gene network. 

 

2. Preliminaries and Problem Formulation 

2.1 Preliminaries 

Notations: : {0,1}=D , n

n

=   D D D D . S  is the cardinality of the set S . 
+Z  is the set of nonnegative 

integers, and 
m nM  is a set of m n  matrices. The elements in D  are identified with a 2- D  vector as 

1

21T =  and 2

20F = . i

n  denotes the i -th column of identity matrix 
nI .  : 1, ,i

n n i n = = . 
2: =  . 

 : 1 ,1 , ,1m n m m m

n

 =1 . ( )iCol A  stands for the i -th column of the matrix A  and the set of columns of the matrix 

A , respectively. For an n mn  matrix A , we split A  into n -square blocks with dimension n n  and denote 

by ( )iBlk A  the i -th block of A , then ( )Blk A  denotes the set of blocks of matrix A . We denote logical matrix 

1 2, , , nii i

m m mL    =    as  1 2, , ,m nL i i i= . Further, the set of m n  logical matrices is denoted by 
m nL . Then, 
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:C A B= Bâ  denotes Boolean product of ( )ij m nA a = L  and ( )ij m nB b = L , where ( )ij m nC c = L  and 

1

n

ij ik kj

k

c a b
=

 
=   
 


B

D  

Definition 1([2]): The STP of two matrices 
m nA M  and 

p qB M  is defined as 

( )( )/ / ,l n l pA B A I B I=  â     (1) 

where ( )1 ,l cm n p=  is the least common multiple of n  and p . “ ”  is the Kronecker product. 

Lemma 1([3]): For a Boolean function ( )1, , nf X X : 
n →D D , there exists a unique matrix 

2 2nfM


L , 

called the structure matrix of ( )f  , such that 

( )1 1, , n

n f i if X X M x== â     (2) 

A BN is generally described as 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2

1 2

1 , , , , 1,2, ,

, , , , 1,2, ,

i i n

j j n

x t f x t x t x t i n

y t h x t x t x t j p

 + = =


= =

  (3) 

where ( )ix t D  and ( )jy t D  are state and output logical variables, respectively. ( ) : n

if  →D D  and 

( ) : n

ih  →D D  are logical functions. Based on Lemma 1 and Khatri-Rao product [2], the equivalent algebraic 

form of BN (3) is given as 

( ) ( )

( ) ( )

1 ,

,

x t L x t

y t H x t

 + =


=

â

â
     (4) 

where ( ) ( )1 2n

n

i ix t x t== â , ( ) ( )1 2p

p

j jy t y t== â . 
2 2n nL


L  and 
2 2p nH


L are network transition matrix 

and output logical matrix, respectively. 

2.2 Problem Formulation 

The segment polarity genes play a significant role in the embryonic development of Drosophila. Consider the 

following Drosophila melanogaster segmentation polarity gene network [25], 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( )( )

1 1 2 4

2 1 2 3

3 1 3

4 2 4

5 2 4 5 1 3

6 1 3 6 2 4

1 ,

1 ,

1 ,

1 ,

1 ,

1 ,

x t x t x t x t

x t x t x t x t

x t x t x t

x t x t x t

x t x t x t x t x t x t

x t x t x t x t x t x t

+ =


+ =


+ =


+ =
 + =

 + =

∧ ∧

∧ ∧

∨

∨

∧ ∨ ∧ ∧

∧ ∨ ∧ ∧

¬ ¬

¬ ¬

¬ ¬ ¬ ¬

¬ ¬ ¬ ¬

 (5) 

where 
1x , 

2x , 
3x , 

4x , 
5x , 

6x  represent the genes 
1wg , 

2wg , 
3wg , 

4wg , 
1PTC  and 

2PTC , respectively. Then, 

the output ( )y t  is given below: ,  and . By 

Lemma 1, the equivalent algebraic form of BN (5) is 

( ) ( )

( ) ( )

1 ,

,

x t L x t

y t H x t

 + =


=

â

â
     (6) 

where the network transition matrix L  and output logical matrix H  are given as follows. 





64 52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,

52,52,52,52,21,22,21,22,52,52,52,52,21,22,21,22,

52,52,52,52,52,52,52,52,41,41,43,43,41,41,43,43,

52,52,52,52,53,54,53,54,57,57,59,59,61,61,61,61 ,

L =

 




8 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,4,5,5,

5,5,5,5,5,5,5,5,5,5,5,5,5,6,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,7,8 .

H =
 

( ) ( )1 1y t x t= ( ) ( )2 2y t x t= ( ) ( ) ( ) ( ) ( )3 3 4 5 6y t x t x t x t x t= ∨ ∨ ∨
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First, this paper will investigate the reconstructibility and state estimation problem of BN (5) based on the 

system output, and the observer does not need to be designed. Then, for the unreconstructible states in system 

(5), it is considered whether the unreconstructible states can be steered to a reconstructible state by applying an 

external signal to the system, namely, pinning control, to realize that the state of the BN (5) is uniquely 

estimated by the measurable outputs and pinning control technique. 

 

3. Main results 

3.1 System analysis 

The following two cases are discussed for BN (6). 

Given the output matrix H . On the one hand, one can obviously see that the ( )iCol H ,  16,32,48,64i  is 

different from the other ones. That indicates that the output of system forms one-to-one mapping with the 

corresponding state in the system. Therefore, if the current output of the system is any one of these four outputs, 

the system state can be uniquely determined immediately. The state 
2 2n n

i   are called reconstructible, 

furthermore, the set of all such states is defined as the reconstructible state set and denoted by 
rS  

On the other hand, one can see that the output corresponding to the state 
2n

j ,  1,2, ,15j  is identical, 

namely 1

8 . That means that the state 
2n

j  cannot be uniquely determined based on the output. Then consider all 

such outputs ( )
2piCol H = , the state 

2 2n n

j   is called unreconstructible, furthermore, the set of all such 

states is defined as an unreconstructible state set and denoted by 
u

S , where 2u

 S . Then we also observe 

three other similar cases from the output matrix H , namely, 3 = , 5 = 和 7 = . Thus, the unreconstructible 

state set of BN may be not unique. 

Next, the sets 
rS  and 

u

S  of the BN (6) were calculated. By above analysis, one can see that ( ) 2

16 8Col H = , 

( ) 4

32 8Col H = , ( ) 6

48 8Col H =  and ( ) 8

64 8Col H =  are different from other columns of H , thus the 

reconstructible state set of BN (6) is  16 32 48 64

64 64 64 64, , ,r    =S . Next, one can obtain that the unreconstructible 

state set are as follows. 

1) If ( ) 1

8y t = ,  1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

64 64 64 64 64 64 64 64 64 64 64 64 64 64 64, , , , , , , , , , , , , ,u               =S , 

2) If ( ) 3

8y t = ,  3 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

64 64 64 64 64 64 64 64 64 64 64 64 64 64 64, , , , , , , , , , , , , ,u               =S , 

3) If ( ) 5

8y t = ,  5 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

64 64 64 64 64 64 64 64 64 64 64 64 64 64 64, , , , , , , , , , , , , ,u               =S , 

4) If ( ) 7

8y t = ,  7 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 64 64 64 64 64 64 64 64 64 64 64 64 64 64, , , , , , , , , , , , , ,u               =S . 

Then, we define the union of the unreconstructible state set of BN (6) is 1 3 5 7

u u u u u=S S S S S . According to 

the above analysis, an reconstructible state set 
rS  and the unreconstructible state sets 

u

S  satisfy 
2nr u = S S  

and 
r u =S S . The concept of the locally reconstructible BN is given below. 

Definition 2: Given Boolean networks (3). If the sets 
r =S  and 

u  S , the BN (3) is locally reconstructible. 

According to Definition 2, it is known that the BN (6) is the locally reconstructible. Obviously, the practical 

meaning of dividing the state space into two categories is equivalent to Definition 4 in [18]. However, different 

from the reconstructibility in [18] depend on the network transition matrix L  and the output matrix H , this 

paper defines the reconstructibility of BNs directly from the output matrix H . There is no need to design 

observers and the conclusions are more direct and concise. For the unreconstructible state sets 
u

S  of system (6), 

the state of the BN still cannot be uniquely determined. Next, this restriction will be broken by using pinning 

control. 
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3.2 Pinning control design 

In order to make any state in 
u

S  of system (6) be uniquely determined by the outputs, pinning control is 

imposed on BN (6) such that all states in 
u

S  can simultaneously reach the set 
rS . How to select pinning nodes 

and design the network transition matrix will be given. Suppose that BN (5) with pinning control is described as 

( ) ( ) ( ) ( )( )  

( ) ( ) ( )( )    

1 6 1

1 6 1

1 , , , , , , ,

1 , , , 1,2, ,6 \ , , ,

x t u t x t x t

x t f x t x t

  

  

   

  

 + = 


+ = 

  (7) 

where ( )
i

   and ( )f   are logical functions. For  1,2, ,6i   and 1,2, ,i = , 
i

x  are the pinned nodes, 

where   is the number of the controlled nodes. ( )u t   is the free single control sequence. Based on Lemma 

1, the equivalent algebraic form of BN (7) is given as 

( ) ( ) ( )1x t Lu t x t+ =      (8) 

where L  is network transition matrix. Assume the structure matrix 
2 2niM


L  of the logical function ( )if  , 

1,2, ,i n=  in BN (5). 
i

M  and M  stand for the structure matrix of the logical function ( )
i

   and ( )f   of 

system (7), respectively. Note that paper [5] given the reachability condition from one state to another one. Here, 

we extend the results of [5] to implement the simultaneous reachability from an unreconstructible state set to a 

reconstructible state set. Afterward, the termination condition for judging whether a set to a collection is 

reachable at the same time is given. This is the important step to analyze the reconstructibility of BN (6) and 

finish state estimation. The reachability matrix is defined as ( )
2

1

m

i

i

M Blk L
=

= . Based on the result of [5], the 

reachability from 
u

S  to 
rS  is identified by the following Lemma. 

Lemma 2 [5]: For BN (8), the set 
rS  is reachable from 

u

S  at time step s , if for 
2n

j

u

 S  and some 
2n

i

r S  

( )( )
,

1s

i j

M =
B

      (9) 

holds. Moreover, the set 
rS  is not reachable from 

u

S , if there exists a positive integer k +  such that  

( ) ( ) ( ) ( ) 
( )( )

1 1 2

,

, , ,

0, 1, 2, ,

k k

i j

M M M M

M k 

+ 



= =


B B B B

B

   (10) 

hold. ( )  , 1,iM i n= A  is a matrix array, where 
2 2niM


L , and jCA
 denotes all combinations of the selected 

j  structural matrices from the array A . We first assume  1 2

2 2 2
, , ,n n n

jj j

u
   =S  and  1 2

2 2 2
, , ,n n n

ii i

r
  =S , 

where 2n +  . Next, Algorithm 1 is provided to choose the pinning nodes 
1
, ,x x

   and compute the 

network transition matrix L  of system (8). 

Algorithm 1: The construction of Lc and the selection of pinning nodes 

Input: network node number n , sets 
rS  and 

u

S , 
iM  and 1,2, ,i n=  

Output: pinning node and network transition matrix  

Procedure:  

Step 1：Initialize 1j = .  1 2, , , nM M M=A . cel = A  

Step2：Let 1t =  and jC = A
. 

Step3： ( ),:B t=  , and let 1i = . 

Step4：let 1k = . 

Step5：If    B i k= A , then 
2 2n

k k kM M M 
 = − 1 , and  

k
cel k M= , 

k
x  is pinning nodes. Otherwise, 

go to step 6. 

Step6：If k n= ,go to step 7. Otherwise, 1k k= +  and go to step 5. 
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Step7：If ( )i size B= , go to step 8. Otherwise, 1i i= + , and go to step 4. Meanwhile, let 1q = . 

Step8：let 1p = . 

Step9：If    cel q p= A , then construct matrix p pM M M
 =   .  cel p M=  and go to step10. 

Step10：If p n= , go to step 11. Otherwise, 1p p= +  and go to step 9. 

Step11：If q n= , go to step 12. Otherwise, 1q q= +  and go to step 8. 

Step12：Calculate L  by ( )  ( )1

n

r iCol L Col cel r==â , 1,2ni     , and split it into ( ) ( )1 2L Blk L Blk L =   . 

Meanwhile, calculate ( )
2

1

M Blk L
 =

= , and let 1s = . 

Step13：Given the set 
rS  and 

u

S . If the condition (8) holds, output L  and pinning node, end this algorithm. 

Otherwise, 1s s= +  and go to step 14. 

Step14：If the condition (8) holds, go to step15. Otherwise, 1s s= +  and go to step13. 

Step15：If ( )t size=  , go to step16. Otherwise, 1t t= +  and go to step 3. 

Step16：If j n= , end this algorithm. Otherwise, 1j j= +  and go to step 2.  

By Algorithm 1, the designed pinning scheme can simultaneously steer all states in the set 
uS  to the target state 

set 
rS . As few nodes as possible will be chosen such that all states of set 

uS can simultaneously reach set 
rS  by 

Algorithm 1. while minimizing the number of pinning nodes and reducing computational complexity. Next, the 

feasibility of Algorithm 1 will be verified by introducing pinning control to BN (5). The results of subsection 3.1 

show that the reconstructible state set and the unreconstructible state sets of BN (5) are 
rS , 1

uS , 3

uS , 5

uS  and 

7

uS . First, consider the initial state set 1

uS , the BN (5) is transformed into its equivalent algebraic form by 

Lemma 1. 

( ) ( )1 iix t x tM+ = 1,2, ,6i =     (11) 

Where 




1 2 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,2,2,2,2,1,1,1,1, 

2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2

M =

，
 




2 2 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,

2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2

M =

，
 




3 2 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,

1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2

M =

，
 




4 2 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,2,2,2,2,

1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,1,1,1,1,2,2,2,2

M =

，
 




5 2 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,2,2,2,2,1,1,1,1,

2,2,2,2,2,2,2,2,1,1,2,2,1,1,2,2,2,2,2,2,1,1,1,1,1,1,2,2,1,1,1,1

M =

，
 




6 2 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,2,1,2,2,2,2,2,1,2,1,2, 

2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,2,2,2,2,1,2,1,2,1,1,1,1,1,1,1,1

M =

。
 

Then the equation (11) can be further transformed into (8). By Algorithm 1, we know that the appropriate 

pinning node is 
3x  and 

4x , namely, 
1 1 = ,

2 2 = ,
3 3 = ,

4 4 = ,
5 5 = ,

6 6 = . The structure matrices of node 

logical functions are obtained as 

 
2 2

,  3,4

,  1,2,5,6

n
k k k

l l

M M M k

M M M l






  = − =  


= =

1
 

Hence, one has 
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4

1 64 52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,

52,52,52,52,21,22,21,22,52,52,52,52,21,22,21,22,

52,52,52,52,52,52,52,52,41,41,43,43,41,41,43,43,

52,52,52,52,53,54,53,54,57,57,59,59,61,61,6

i iL M ==  =



1,61,

64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,

64,64,64,64,25,26,25,26,64,64,64,64,25,26,25,26,

64,64,64,64,64,64,64,64,37,37,39,39,37,37,39,39,

64,64,64,64,57,58,57,58,53,53,55,55,49,49,49,49 。

 

The reachability matrix M  of (8) is as follow. 

( ) ( ) ( )



2

1 2

1

64 52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,

52,52,52,52,21,22,21,22,52,52,52,52,21,22,21,22,

52,52,52,52,52,52,52,52,41,41,43,43,41,41,43,43,

52,52,52,52,53,54,53,54,57,

m

i

i

M Blk L Blk L Blk L



=

= = +

=





64

57,59,59,61,61,61,61 ,

64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,

64,64,64,64,25,26,25,26,64,64,64,64,25,26,25,26

64,64,64,64,64,64,64,64,37,37,39,39,37,37,39,39,

64,64,64,64,57,58,57,58,53,53,55

+

,55,49,49,49,49 。

 

So, there have ( )( )1

64,

1
j

M =
B

,  1,2, ,15j , which implies that all states in 1

uS  can simultaneously reach 

rS  at 2s =  based on Lemma 2. Similarly, the reachability from 3

uS , 5

uS  and 7

uS  to 
rS  can be verified by 

designing pinning control. 

3.3 Control sequence design 

In subsection 3.2, although the pinning control can be designed such that all states in 
u

S  can simultaneously 

reach 
rS , the control sequences may be different for different state 

ux S . However, we can only determine 

from the output which the unreconstructible state set the current state is in, not the system state. Therefore, a 

common control sequence needs to be designed such that all states in 
u

S  can reach 
rS . To analyze the existence 

conditions of the common control sequence and design it, the sets  1 2

2 2 2
, , ,n n n

jj j

u
   =S  and 

 1 2

2 2 2
, , ,n n n

ii i

r
  =S  are still assumed to be given. 

Theorem 1: Consider BN (7) with pinning control, a common control sequence ( ) ( ) ( )( )0 1 1, , ,s su u t u t u t −=  

can guide all states in 
u

S  reaching 
rS  at 

st t= , if there exist a positive integer number   and 1 2ms   such 

that for  
2

, 1,n

j

u
     S , 

( )
2n

js

rBlk L 

  S      (12) 

holds, where ( )1

0 2 2 2im n n ms

s s

iL I L +

−

= 
=  â L . 

Proof. Consider BN (8). 

( ) ( ) ( )1x t Lu t x t+ =      (13) 

For a given common control sequence ( ) ( ) ( )( )0 1 1, , ,s su u t u t u t −=  and  
2

, 1,n

j

u
     S , one can 

iteratively obtain 



Wang S & Yang J                                     Journal of Scientific and Engineering Research, 2024, 11(4):95-105 

Journal of Scientific and Engineering Research 

102 

( ) ( ) ( ) ( )

( )( ) ( )( ) ( )

( ) ( )

2 1

1

1 2 0 2

0

12 2 22

0

0 12 2
.

n

m m ns m

s
im n

j

s s s

j

k s k

t j

i k s k

x t Lu t Lu t Lu t

L I L I L I L u t

I L u t













−

−

− −

= −

= = −

=

=   

= 

â

â â

 

where ( )1

0 2

s
im

s t

iL I L−

== â . Then the matrix 
s

L  is split into 2ms  blocks. 

( ) ( ) ( )1 2 2ms

s s s s

L Blk L Blk L Blk L =
  

 

Then, the condition (12) means that the common control sequence 
su  makes the state 

2n

j  reach 
rS , and the 

STP of 
su  can be calculated by ( )0

1 2msk s ku t = − =â . So, the condition (12) guarantees that all states in 
u

S  reach 

rS  at t s=  since the state 
2n

j

u
  S  is arbitrarily given. 

For any initial state 
ux S , the final state of the system (8) will eventually keep switching among many cycles 

or evolving in some cycle [5]. Thus, there exists a positive integer s  such that 

( ) ( )1 0

0 12im

s

i k sx I L u k x−

= = −= â â  

After all initial states in 
u

S  stabilize in cycles in finite time steps, there exists a positive integer s such that the 

equation 

( ) ( )1

1

s
s i

i

Blk L Blk L+

=

      (14) 

holds. If the common control sequence cannot be obtained before the equation (11) holds, that indicates there is 

not a common control sequence for the pinning scheme. Next, an algorithm will be provided to compute the 

common control sequence for  1 2

2 2 2
, , ,n n n

jj j

u
   =S  and  1 2

2 2 2
, , ,n n n

ii i

r
  =S . First, let us assume that the 

pinning nodes and L  have been obtain from Algorithm 1. u  and s  are the STP and length of control sequence, 

respectively. 

Algorithm 2:  

Input: L , 
u

S , 
rS  

Output: u , s  

Procedure: 

Step 1: Initialize 1s = . 

Step 2: Let 1 =  and calculate ( )1

0 2im

s
s

iL I L−

== â , then split 
s

L  into a block matrix 

( ) ( ) ( )1 2 2ms

s s s s

L Blk L Blk L Blk L =
  

 

Step 3: If we can find a positive integer  , 1 2ms  , such that  
2

, 1,n

j

u
     S , ( ) 2n

s j

rBlk L 

  S  

holds, then go to step 5. Otherwise, go to step 4. 

Step 4: If ( ) ( )1

1

s
s i

i

Blk L Blk L
+

=

 , end this Algorithm. Otherwise, 1s s= +  and go to step 2. 

Step 5: Let ( )0

1 2msk s ku u t 

 = −= =â , output u  and s , and end this Algorithm. 

Next, the control sequence 
su  for the set 

u

S  in BN (6) are designed. Considering the pinning control scheme in 

Subsection 3.2, the common control sequence is calculated by Algorithm 2. 

Let 1s = , calculate 
1

L  and split it into 2 2ms =  blocks. 

( ) ( )1

1 2

s s

L Blk L Blk L =
  

 

Where 
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( ) 
1

1 64 52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,52,

52,52,52,52,21,22,21,22,52,52,52,52,21,22,21,22,

52,52,52,52,52,52,52,52,41,41,43,43,41,41,43,43,

52,52,52,52,53,54,53,54,57,57,59,59,61,61,61,6

Blk =L

1 ,

 

( ) 
1

2 64 64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,64,

64,64,64,64,25,26,25,26,64,64,64,64,25,26,25,26,

64,64,64,64,64,64,64,64,37,37,39,39,37,37,39,39,

64,64,64,64,57,58,57,58,53,53,55,55,49,49,49,4

Blk =L

9 .

 

Obviously, if 2 = , the condition ( )1

2 64

j

rBlk  L S  holds for  1,2, ,15j . Thus, ( )0

1 2msk s ku u t 

 = −= =â . 

Then, the common control sequence is ( )2

2su = . All states in set 1

uS  can simultaneously reach the set 
rS  

under 
su . Similarly, for other 

u

S  of BN (6), their common control sequences can be calculated according to the 

above proposed method.  

 

4. Pinning control-based state estimation 

For BN (5), a new method about state estimation is proposed. Consider the initial time 
0t , first, the state 

( )0 rx t S  and its corresponding output is one to one. Thus, the state ( )0 rx t S  can be uniquely determined 

from output ( )0y t . Hereafter, the state can be derived from ( ) ( )1x t Lx t+ =  for 
0t t . Second, if the current 

state ( )0 ux t S  is determined based on the output ( )0y t , then the pinning control is introduced into BN (5). 

The pinning scheme and common control sequence 
su  are designed by Algorithm 1 and Algorithm 2. Then, all 

states in set 
u

S  of BN (5) will reach 
rS  at 

st t= . The state estimator of BN (5) for ( )0 ux t  S  is as follow. 

( )
( ) ( )

( )
0 1, ,

ˆ 1
ˆ , ,

s s

s

Lu t x t t t t
x t

Lx t t t

−
  

+ = 


   (15) 

The states in set 
u

S  of BN (5) reach 
rS  at 

1st t −=  while the controller is removed at 
1st −
. Then the state is 

successfully estimated by output ( )1sy t − . Hereafter, ( ) ( )1x t Lx t+ =  for 
st t .The network state will be 

uniquely estimated by pinning control sequence 
su  at time t s= . 

Next, the state estimation process for the BN (6) is discussed. Assume that output trajectory of a state is as 

follow. 

( )8 7 7 7 7 7

8 8 8 8 8 8, , , , , ,       

One can see the output ( ) 8

0 8y t =  at the initial time step 
0t . Thus, the initial state ( ) 64

0 64x t =  can be uniquely 

determined by the system output. Similarly, if the output ( ) 2

0 8y t = , 4

8  and 6

8 , the corresponding states and 

the outputs are one-to-one, thus the states of the system (6) can also be uniquely determined. The above network 

state can be estimated based on the output. 

If the output ( ) 7

0 8y t = , then the state ( ) 7

0 ux t S  cannot be uniquely determined. Then pinning control is 

introduced into the system. The common control sequence ( )2

2su =  is obtained by Algorithm 2, this means 

that the control sequence 
su  is applied to the BN (6) at time 

0t , then all states in 1

uS  can simultaneously reach 

rS  after one time steps, and thus the state of the BN can be uniquely estimated using the estimator (12). 
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5. Conclusion 

This paper discusses the reconstructibility and state estimation problems of Drosophila melanogaster 

segmentation polarity gene network by system output. The concept of the locally reconstructible BN is proposed 

by system analysis. Additionally, for the unreconstructible state set, an algorithm is proposed to select pinning 

nodes and construct the network transition matrix such that all states in the unreconstructible state sets can 

simultaneously reach the reconstructible state set. Furthermore, a sufficient condition for the existence of a 

common control sequence and design algorithms are provided. Then, a state estimation method based on 

pinning control is provided to analyze the state estimation problem of Drosophila melanogaster segmentation 

polarity gene network. How to reduce the computational complexity will become our next consideration. 
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