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Abstract In current research on human skeletal action recognition, convolutional networks lack the ability to 

model global skeletal information, while Transformer networks exhibit weaker learning capabilities for short-

term local skeletal information. Moreover, these networks are susceptible to interference from other high-

frequency noise when modeling fine-grained skeletal spatial information. To address these issues, a multi-scale 

spatial temporal convolution dynamic gated Transformer network (MSST-CDGT) is proposed for human 

skeletal action recognition. Initially, the network performs positional encoding on human skeletal information 

and introduces a multi-scale spatial dynamic gated Transformer to suppress high-frequency noise in non-spatial 

dimensions, simultaneously modeling both local multi-scale and global spatial information of the skeletal 

structure. Subsequently, a multi-scale temporal convolution network is designed to model the temporal sequence 

information of the skeletal structure. Finally, a multi-stream data fusion framework is constructed to weightedly 

integrate the multi-stream operation data of the skeletal structure and obtain prediction results. The proposed 

network achieves accuracies of 92.6% and 96.8% on the NTU-RGB+D 60 dataset across subject and view 

benchmarks and accuracies of 89.5% and 90.7% on the NTU-RGB+D 120 dataset across subject and setting 

benchmarks, respectively. 
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1. Introduction  

Human skeletal action recognition has emerged as a research hotspot in the field of computer vision [1], with 

widespread applications in areas such as intelligent surveillance [2], industrial control [3], autonomous driving 

[4], rehabilitation training [5], and motion instruction [6]. Algorithms for human skeletal action recognition can 

be broadly categorized into two main types: traditional methods and deep learning methods. Traditional human 

skeletal action recognition algorithms rely on manual extraction of action features. For example, Yang et al. 

[7]proposed a feature representation based on differences in joint positions, while Wang et al. [8]used Speeded 

Up Robust Features (SURF) descriptors and optical flow to match inter-frame feature points. Although 

traditional methods have achieved initial success in action recognition, they can only extract simple shallow 

features, resulting in limited feature representation capabilities. 

Deep learning-based human skeletal action recognition algorithms can be broadly categorized into two major 

types: convolutional networks [9] and Transformer-based networks [10]. For instance, Yan et al. [11] proposed 

a seminal Spatial Temporal Graph Convolutional Network (ST-GCN), representing human motion skeletal 

sequences as a spatial temporal graph and designing action recognition models by extending graph networks. 

Shi et al. [12] argued that the fixed topological structure used by ST-GCN lacks flexibility in modeling and 
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introduced a Two Stream Adaptive Graph Convolutional Network (2s-AGCN), which significantly enhances 

recognition performance by fusing skeletal features and keypoint features using a dual-stream structure. Cheng 

et al. [13] proposed a Shift Graph Convolutional Network (Shift-GCN) to endow the model with flexible 

receptive fields. In recent years, Transformers have emerged with their unique global modeling capabilities and 

self-attention mechanisms, showing broader prospects for development. For example, Plizzari et al. [14] 

introduced a Spatial Temporal Transformer Network (ST-TR) for human skeletal action recognition, which 

models dependencies between joints using Transformer self-attention algorithms, thereby capturing the entire 

skeleton's long-range dependencies. Shi et al. [15] proposed a novel Decoupled Spatial-Temporal Attention 

Network (DSTA-Net), which can model spatial temporal dependencies between joints without requiring the 

positions of keypoints and connectivity information. Despite the multifaceted explorations in previous human 

skeletal action recognition tasks, there are still unresolved issues: 

(1) Graph convolution-based human skeletal action recognition networks are subject to limitations due to 

the finite receptive field of convolutional operations, resulting in inherent shortcomings in their 

network potential. Although Transformers can capture global human joint information, their ability to 

extract discriminative features from local short-term information is weaker compared to convolutional 

networks. Therefore, addressing how to model a human skeletal action recognition network that can 

overcome the shortcomings of both convolutional and Transformer networks while inheriting their 

advantages is crucial in this research field. 

(2) During network modeling, fine-grained spatial information of human skeletal structures is more 

susceptible to interference from high-frequency noise. Current research has not addressed this issue 

adequately. Additionally, the predominant use of single-scale modeling methods in current research 

overlooks the complexity and diversity of human movements. Single-scale networks often lose critical 

information, and the use of multiple large-scale convolutional kernels increases the network parameter 

count, leading to increased computational burden. 

In response to the aforementioned challenges, a Multi-Scale Spatial Temporal Convolution Dynamic Gated 

Transformer (MSST-CDGT) network is proposed for human skeletal action recognition. The research 

contributions are outlined as follows: 

(1) A multi-scale spatial dynamic gated Transformer is introduced, effectively suppressing high-frequency 

noise interference in non-spatial dimensions while modeling both local multi-scale and global spatial 

information of human skeletal structures. 

(2) A multi-scale temporal convolution network is designed, efficiently capturing rich features of human 

skeletal action sequences in the temporal dimension. 

(3) A multi-stream fusion network architecture is constructed to enhance the overall performance of the 

model. Experimental results demonstrate that the MSST-CDGT network outperforms mainstream 

human skeletal action recognition networks both domestically and internationally. 

 

2. Relevant Theory 

2.1 Spatial Temporal Graph Convolutional Action Recognition 

The human skeletal structure can be represented as an undirected graph ( , )G V E= , where 1 2{ , , , }NV v v v=     

represents the set of N vertices, and E represents the set of edges, formally represented by the adjacency matrix 
N NA . The elements of the adjacency matrix denote the degree of association between nodes in the 

topological graph. Continuous human skeletal sequence data can be represented by a feature matrix C T N X

, where C represents the coordinates of skeletal joints, T denotes the number of frames in the skeletal sequence, 

and N represents the number of skeletal data nodes. 

Skeletal action recognition based on spatial temporal graph convolution consists of a series of stacked modules, 

each comprising spatial graph convolution for modeling joint spatial features and temporal convolution for 

modeling joint temporal features. For modeling spatial joint features, we follow the structure proposed by Kipf 

et al. [9], and the computational process is illustrated as shown in Equation (1): 

t t=Z AX W
    (1) 
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Where 
t

N CX  represents the input information of the network at time t, and 
t

N CZ  denotes the output 

information of the network at time t. 

For the temporal dimension, convolution operations with a kernel size of tK 1  are employed to model the 

temporal features of the skeletal sequence. 

 

2.2 Transformer and Attention Mechanisms 

The Transformer consists of an encoder-decoder architecture, aimed at addressing the shortcomings of recurrent 

neural networks in handling long sequences and achieving data parallelization. The attention mechanism serves 

as a core component of the Transformer. Its computational process involves several steps: firstly, the input 

sequence undergoes three linear transformations to convert it into query vectors (Q), key vectors (K), and value 

vectors (V); secondly, the dot product of Q and K is transformed into an attention matrix with varying degrees of 

attention for each joint using the ( )softmax   function; finally, the dot product of the attention matrix and V 

yields the final output sequence. The computational process is illustrated by Equation (2): 

( )
T

Attention , ,
k

softmax
d

 
=  

 

QK
Q K V V

 (2) 

Here, kd  represents the dimensionality of the key vectors, and kd  represents the scaling factor, which serves 

to mitigate the issue of gradient explosion. 

 

3. Network Structure 

3.1 Overall Structure of the MSST-CDGT Network 

The overall structure of the proposed MSST-CDGT network, as illustrated in Figure 1, comprises ten basic 

blocks. Each basic block consists of multiple units: the Multi-Scale Spatial Dynamic Gated Transformer (MSS-

DGT) unit and the Multi-Scale Temporal Convolution (MST-C) unit. The output channels of each basic block 

are 64, 64, 64, 64, 128, 128, 128, 256, 256, and 256, respectively. Doubling the number of channels corresponds 

to doubling the stride. The human skeleton information 
C T N X  is input into the network and then 

undergoes positional encoding to obtain PE
C T N X . Subsequently, it is fed into the Multi-Scale Spatial 

Dynamic Gated Transformer to model local multiscale and global spatial information of the human skeleton 

while suppressing high-frequency noise interference. Then, the data passes through the Multi-Scale Temporal 

Convolution unit to model the temporal sequence information of the human skeleton. The network incorporates 

residual connections, divided into two branches. These branches fuse the positional encoding embedded 

skeleton information XPE with the processed information from the Multi-Scale Spatial Dynamic Gated 

Transformer unit and the Multi-Scale Temporal Convolution unit, respectively. This fusion effectively delivers 

XPE to the deeper layers of the network, thereby enhancing the richness of network information and facilitating 

more stable gradient propagation. Finally, the output is obtained after passing through the Fully Connected layer 

(FC) and Softmax operation, yielding action recognition results. 

 
Figure 1: Overall Structure of The MSST-CDGT Network 
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3.2 Multi-Scale Spatial Dynamic Gated Transformer 

In Transformer-based methods for human skeleton action recognition, modeling fine-grained spatial information 

is more susceptible to the influence of high-frequency noise. Although the attention mechanism can better 

model global spatial joint dependencies, it lacks the capability to model local spatial joint dependencies. To 

address this issue in spatial modeling of human skeleton data, we propose a Multi-Scale Spatial Dynamic Gated 

Transformer (MSS-DGT). MSS-DGT, as depicted in Figure 2, mainly consists of three components: Position 

Encoding (PE), Dynamic Gated Module (DGM), and Multi-Scale Spatial Transformer (MSS-TR). Each of these 

components will be elaborated upon below. 

 
Figure 2: Multi-Scale Spatial Dynamic Gated Transformer Network 

 

3.2.1 Position Encoding 

When Transformer processes sequential data in parallel, it overlooks the order of the sequences. For instance, 

when modeling spatial joint dependencies for the input three-dimensional skeleton sequence X, only the spatial 

positions of each joint are considered. To leverage the order information, a uniform position vector is generated 

for all frames, and it is overlaid with the original skeleton sequence to allocate joint position information. The 

computation of the position vector is illustrated in Equation (3), where sinusoidal and cosine functions with 

different frequencies are utilized for initializing the position vector. 

( ) ( )

( ) ( )

in

in

2

2

,2 sin 10000

,2 1 cos 10000

i C

i C

PE p i p

PE p i p

 =


+ =  (3) 

Where p and i represent the dimensions of the joint position and the position encoding vector, respectively. 

 

3.2.2 Dynamic Gated Module 

In the process of network modeling, the quality of human skeleton spatial information modeling directly 

influences the network performance. Due to the susceptibility to interference from other high-frequency noise 

when processing fine-grained spatial information, in order to suppress such non-spatial dimension high-

frequency noise contained in human skeleton information, inspired by the research of Lim et al. [16] on Gated 

Residual Networks (GRN), a Dynamic Gated Module (DGM) is proposed and introduced into the spatial 

modeling sub-network of the proposed action recognition network. This allows the network to learn spatially 

related information of human skeletons with higher quality, corresponding to the DGM module in the upper left 

of Figure 2(a). The specific structure of the DGM module is illustrated in Figure 2(b). For the input XPE, after 
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two different linear transformations followed by average pooling in the temporal and channel dimensions, 
1

1
NX  and 1

2
NX  are obtained, as shown in Equation (4): 

( ) ( )( )

( ) ( )( )

1 1 PET,C

2 2 PET,C

Mean linear

Mean linear

 =


=

X X

X X
  (4) 

Then, X1 and X2 are element-wise subtracted according to Equation (5), followed by a Linear transformation to 

obtain their attention matrix DGM
N NA . 

( )( )DGM 1 2Linear Subtract ,=A X X
  (5) 

The proposed dynamic gated module does not completely block the transmission of specific information within 

the module. Instead, it dynamically processes information in the time and channel dimensions, suppressing the 

interference of high-frequency noise on the spatial information modeling process. While preserving the 

contributions of other dimensions to the network, it enhances the modeling quality of spatial dimension 

information. 

 

3.2.3 Multi-Scale Spatial Transformer 

To address the shortcomings of both convolutional and Transformer-based human skeleton action recognition 

networks, inspired by the characteristics of convolutional operations and the attention mechanism of 

Transformers, a multi-scale spatial Transformer network is proposed. As illustrated in the green box in Figure 

2(a), the input vector XPE, obtained after position encoding, is fed into four spatial attention modules (SA) of 

different scales. Each SA module involves operations for computing Q, K, and V, with the parameter K 

representing the scale size. When K=1, it models global joint dependencies, while K=3 and 5 are used to model 

local joint dependencies at corresponding scales. Here, we provide a detailed description of the second SA 

module, as shown in Figure 2(c). Initially, XPE undergoes three separate 1×3 convolutions to derive Q, K, and V, 

with the computation process depicted in Equation (6): 

( )1 3 PE, , Conv =Q K V X
   (6) 

After obtaining the query vector Q and the key vector K, the spatial attention matrix S
N NA  is computed 

through Equation (7). 

( )T
S Softmax=A QK

   (7) 

The spatial attention matrix AS represents specific dependencies among the joints within this branch. To 

encourage the network to learn universal dependencies between joints, local spatial global attention (LSGA) 

matrices ALSGA and spatial global attention (SGA) matrices ASGA are added for each branch. Each ALSGA within a 

branch is unique and is used to learn universal dependencies between joints in the corresponding branch. As for 

ASGA, it is shared among all branches to learn universal dependencies between joints across branches. It is 

initialized using a normal distribution and optimized along with the network. Finally, the obtained AS, ALSGA, 

and ASGA are combined through Equation (8) to yield the attention matrix K
N NA  for this branch. 

K K S LSGA SGA =   + +A A A A   (8) 

In this equation,   and K  respectively denote scalars shared across branches and specific to each branch, 

utilized to regulate the strength of AS, optimized alongside the network. 

For the attention matrix AK, it is multiplied with the matrix ADGM obtained from the dynamic gated module to 

achieve dynamic correction of the attention matrix AK. This yields the corrected attention matrix Z
N NA  

belonging to this branch. Afterwards, it is multiplied with the value vector V, and then added to XPE for fusion, 

resulting in the final output 4
K

C T N  X  of this spatial attention module. The computation process is 

illustrated as equation (9): 

K K DGM PE=   +X A A V X    (9) 

In summary, the multi-scale spatial dynamic gated Transformer encodes the original human skeleton sequence X 

into XPE through position encoding. Subsequently, it is inputted into both the dynamic gated module and the 

multi-scale spatial Transformer for learning skeleton spatial features. The attention matrices from the dynamic 
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gated module and the multi-scale spatial attention module are fused, followed by concatenation of the output 

features from the four different scales of spatial attention modules. Then, they are fused with XPE through 

addition. After batch normalization (BN) and ReLU activation functions, the final output S
C T N X  of the 

multi-scale spatial dynamic gated Transformer is obtained. 

 

3.3 Multi-Scale Temporal Convolution 

 
Figure 3: Multi-Scale Temporal Convolution Network 

 

In the task of human skeleton action recognition, different actions performed by individuals correspond to 

sequences of different lengths. To enable the network to finely learn the temporal sequence features of different 

actions, a multi-scale temporal convolution (MST-C) network is designed. As illustrated in Figure 3, MST-C 

comprises one branch of 3×1 convolution, two branches of 5×1 convolution with different dilation factors, and 

one branch of 3×1 max pooling. Each branch undergoes channel division using 1×1 convolution. The 

computation process is depicted in Equation (10): 

( )( )

( )( )

( )( )

( )( )

1 1
T 3 1 1 1 S

2 1
T 5 1 1 1 S

3 2
T 5 1 1 1 S

4
T 3 1 1 1 SMaxPool

d

d

d

f f

f f

f f

f

=
 

=
 

=
 

 

 =


=


=


=

X X

X X

X X

X X
  (10) 

Where ( )1
3 1
df =
  , ( )1

5 1
df =
  , and ( )2

5 1
df =
   represent convolution operations with kernel sizes of 3, 5, and 5, 

respectively, and dilation factors of 1, 1, and 2. ( )1 1f    denotes standard 1×1 convolution operation, and the 

final branch employs 3×1 MaxPool operation to extract salient information along the temporal dimension. The 

final feature T
C T N  X , with different receptive fields, is obtained by concatenating the results from the four 

branches, as depicted in Equation (11): 

( )1 2 3 4
T T T T TConcat , , ,=X X X X X

  (11) 

Finally, the residual connection is introduced to merge XS with TX , resulting in the final output T
C T N  X  

of the MST-C network. The residual connection preserves the original features of the temporal frames while 

better propagating gradient information, thereby enhancing network stability. Multi-scale temporal convolution 

reduces network parameter count while increasing the network's receptive field, allowing for richer human 

skeletal information to be captured in the temporal dimension. 
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3.4 Multi Stream Fusion Architecture 

 
Figure 4: Multi Stream Data Fusion Network 

 

In the task of human skeletal action recognition, relying solely on individual human joint data may not fully 

exploit the network's performance potential. The skeletal and motion information associated with human joint 

data are complementary in nature, and effectively combining them is advantageous for action recognition. 

Therefore, a framework comprising four data streams, as illustrated in Figure 4, is constructed to form a multi-

stream fusion network architecture. The first data stream utilizes the original skeletal joint coordinates as input, 

referred to as the joint stream. The second data stream represents the joint motion stream, depicting the 

coordinate differences between adjacent frames in time. The third data stream employs the differences in spatial 

coordinates of skeletal joints as input, known as the bone stream. The fourth data stream utilizes the bone 

motion stream, representing the disparities in skeletal information between adjacent frames in time. 

Subsequently, the softmax scores of multiple streams are weighted and fused to obtain the final result. 

 

4. Experimental Results and Analysis 

4.1 Datasets 

To validate and analyze the performance of the MSST-CDGT network, experiments were conducted on the 

NTU-RGB+D 60 [17] and NTU-RGB+D 120 [18] datasets. NTU-RGB+D 60 is one of the commonly used 

large-scale datasets in human action recognition research, comprising 56,880 samples and over 4 million frames 

of data. It includes two different evaluation benchmark protocols: Cross-Subject (X-Sub) and Cross-View (X-

View). In the Cross-Subject benchmark protocol, 40 individuals participating in the test were evenly divided 

into training and testing groups, with 60 action classes executed. In the Cross-View benchmark protocol, data 

captured by three cameras were used, where data from camera 1 were used for testing, and data from cameras 2 

and 3 were used for training. NTU-RGB+D 120 is an extended and upgraded version of NTU-RGB+D 60, 

containing 120 categories and 114,480 samples. Slightly differently, the evaluation benchmark protocols are 

Cross-Subject (X-Sub) and Cross-Setup (X-Set). For the Cross-Subject benchmark protocol, 106 individuals 

participating in the test were evenly divided into training and testing groups. For the Cross-Setup benchmark 

protocol, 32 different setups were completed by changing the positions and backgrounds, with corresponding 

numbers assigned. Samples with even numbers were used for training, and samples with odd numbers were used 

for testing. 

 

4.2 Experimental Setup 

The experimental setup utilized an Intel(R) Xeon(R) Gold 6348 CPU, 2 NVIDIA GeForce RTX 3080 Ti GPUs, 

running on a Windows 10 Professional Workstation Edition. PyTorch deep learning framework was employed 

for the experiments, programmed in Python, and utilizing CUDA and cuDNN libraries. Each behavioral sample 

for the experiment was uniformly sampled with a sequence length of 100 for the skeleton input. A warm-up 

strategy was implemented for the first 5 epochs of the experiment. The optimization strategy utilized a 

stochastic gradient descent (SGD) algorithm with a weight decay of 0.0004 and Nesterov momentum of 0.9. The 

batch size was set to 64, with a total of 85 training epochs. The initial learning rate was set to 0.1, and it was 

reduced to one-tenth of its value at epochs 35, 55, and 75. The evaluation metric used was the action recognition 

accuracy (Acc), calculated as shown in Equation (12), where corrN  and totalN  represent the number of correctly 

predicted instances and the total number of instances, respectively. 
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corr totalf N N=
    (12) 

 

4.3 Ablation Experiments 

To validate and analyze the performance of various aspects of the MSST-CDGT network, comprehensive 

ablation experiments were conducted on the NTU-RGB+D 60 dataset using joint data under the cross-subject 

(X-Sub) benchmark protocol. 

 

4.3.1 Impact of Different Spatial and Temporal Scales on the Network 

To verify the impact of different spatial and temporal scales on the network, experiments were conducted on the 

MSST-CDGT network under various spatial temporal scales to analyze its accuracy, network parameter count, 

and computational load. Observing Table 1, it was found that the network, with multi-scale spatial temporal 

modeling, achieved the highest accuracy of 90.7% while maintaining relatively low network parameter count 

and computational load. This indicates that the proposed multi-scale spatial temporal convolution dynamic gated 

Transformer network can effectively capture features at different scales, learn rich contextual action 

information, enhance network robustness, and better adapt to noise variations at different scales, thereby 

ultimately improving overall network performance. 

Table 1: Performance of Networks at Different Scales 

Networks of Different Scales Params (M) FLOPs (G) Acc (%) 

Single-scale spatial temporal network 3.04 3.30 90.2 

Single-scale spatial network 1.24 1.39 90.2 

Single-scale temporal network 3.69 4.13 90.3 

Multi-scale spatial temporal network 1.90 2.22 90.7 

 

4.3.2 Impact of Dynamic Gated Module on the Network 

To validate the impact of the proposed dynamic gated module on network performance, experiments were 

conducted by integrating the dynamic gated module into the constructed multi-scale spatial transformer 

network. Observing Table 2, it was found that the multi-scale spatial dynamic gated transformer achieved a 1% 

increase in recognition accuracy compared to the multi-scale spatial transformer network, with only an 

additional parameter count of 0.08M. This indicates a significant improvement in network performance due to 

the dynamic gated module. The reason lies in its ability to suppress high-frequency noise in other dimensions 

during the process of human skeleton spatial modeling, allowing the network to focus more on learning spatial 

information and thus achieve higher-quality modeling of human skeleton spatial information. 

Table 2: Performance of Different Networks 

Method Params (M) Acc (%) 

Multi-Scale Spatial Transformer 1.82 89.7 

Multi-Scale Spatial Dynamic Gated Transformer 1.90 90.7 

 

4.3.3 Experiments on the Validity of Individual Modules 

To validate the effectiveness of each module in the proposed MSST-CDGT network, experiments were 

conducted by individually removing the position encoding module, dynamic gated module, global attention 

module, local attention module, and spatial attention module to assess their respective impacts on the overall 

network performance. The experimental results are shown in Table 3, where "√" indicates the inclusion of the 

corresponding module in the network, and "×" indicates the removal of the module from the network. 

Observing Table 3, it was found that the network incorporating all modules (Network 5) achieved an accuracy 

of 90.7%. When the position encoding module was removed from Network 1, the accuracy decreased by 0.4% 

compared to Network 5, indicating that encoding joint sequence information can effectively enhance network 

performance. Removing the global attention module from Network 2 resulted in a decrease in accuracy by 0.8% 

compared to Network 5, demonstrating that the global attention module effectively models global joint 

dependency relationships, thereby improving overall network performance. Removing the local attention 

module from Network 3 led to a decrease in accuracy by 0.2% compared to Network 5, indicating that the local 
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attention module enhances the network's ability to learn multi-scale local details and effectively improves 

overall network performance. When the spatial attention module was removed from Network 4, the accuracy 

decreased by 0.7% compared to Network 5, highlighting the effective contribution of the spatial attention 

module to overall network performance. 

Table 3: Effectiveness Experiments of Each Module in the MSST-CDGT Network 

Networks Position Encoding Global Attention Local Attention Spatial Attention Acc (%) 

1 × √ √ √ 90.3 

2 √ × √ √ 89.9 

3 √ √ × √ 90.5 

4 √ √ √ × 90.0 

5 √ √ √ √ 90.7 

 

4.4 Multi Stream Data Fusion Experiment 

To validate the effectiveness of the constructed multi-stream data fusion framework, experiments were 

conducted on the NTU-RGB+D 60 dataset and NTU-RGB+D 120 dataset, comparing the performance of 

network ensembles trained with different data fusion approaches. Multiple data fusion comparative experiments 

were performed on the proposed MSST-CDGT network: the first using joint stream, the second using bone 

stream, the third employing a dual-stream fusion (2S) combining joint and bone streams, and the fourth 

incorporating a four-stream (4S) fusion including joint, bone, joint motion, and bone motion streams. As shown 

in Table 4, with an increase in the number of fused data streams, the overall performance of the network 

improved accordingly. This indicates that the constructed multi-stream data fusion framework enhances the 

diversity of feature learning in the network, effectively boosting its overall performance. 

Table 4: Multi Stream Data Fusion Experiments on the NTU-RGB+D 60 and NTU-RGB+D 120 Datasets 

Data Types 
NTU-RGB+D 60 NTU-RGB+D 120 

X-Sub (%) X-View (%) X-Sub (%) X-Set (%) 

Joint 90.7 95.7 85.0 86.8 

Bone 90.5 95.0 86.8 87.9 

2S 92.2 96.6 89.1 90.4 

4S 92.6 96.8 89.5 90.7 

 

4.5 Visualization of Experimental Analysis 

4.5.1 Visualization of the Attention Weighting Matrix 

 
 

Figure 5: Attention Weight Matrix Visualization 

To validate the effectiveness of the proposed MSST-CDGT network in modeling local multiscale and global 

information, visual experiments were conducted to analyze the attention weight matrices in the network. This 

aimed to intuitively demonstrate the degree of attention that the network's attention mechanism pays to each 
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human joint during its operation. Taking the "phone call" action as an example, visualizations were performed 

on the spatial global attention and multiscale spatial attention matrices at the 7th and 9th layers of the network 

during action recognition. As shown in Figure 5, the origin of each attention matrix is located at the top left 

corner, with the vertical axis representing different human joints following the scheme proposed by Shahroudy 

et al. [17], and the horizontal axis representing consecutive time frames. The attention matrices are mainly 

colored in orange and blue, where deeper shades of orange indicate higher attention to the corresponding joint, 

while deeper shades of blue indicate lower attention. Observation of Figure 5 reveals that the spatial global 

attention matrices exhibit consistent coloration among different joints at the same time frame. This is because 

spatial global attention allows the network to consider dependencies with all other joints when computing 

information for a specific joint, enhancing the global modeling of the human skeleton and facilitating better 

recognition of various actions. Additionally, observation of the multiscale spatial attention matrices shows 

varying degrees of color change for different human joints across different scales. This is because the attention 

mechanism allocates different degrees of attention to each human joint at different scales, focusing more on 

joints with larger variations to accurately identify differences between various human actions. The experiments 

demonstrate the effectiveness of multiscale spatial attention in the MSST-CDGT network for different-scale 

human joints and the effectiveness of spatial global attention in globally modeling dependencies among all 

human joints. 

 

4.5.2 Human Action Recognition Visualization 

 
Figure 6: Experiment Video Frames for Human Action Recognition 

To validate the practical effectiveness of the proposed MSST-CDGT network in action recognition, visual 

experiments were conducted for human action recognition. Firstly, a human pose estimation network [19] was 

utilized to extract human joint data from videos in COCO format [20], thus obtaining complete human skeleton 

information from the videos. Subsequently, the obtained human skeleton information was fed into the MSST-

CDGT network for action recognition. Randomly selected videos of two actions, "phone call" and "hopping", 

were chosen for the human action recognition visual experiment, and the visual experiment results were 

provided. Observing the video frames extracted from the action recognition visual experiment in Figure 6, both 

actions, "phone call" in Figure 6(a) and "hopping" in Figure 6(b), were correctly recognized, with the 

recognition results displayed in the top left corner of the videos. The visual experiment results for human action 

recognition further validate the effectiveness of the MSST-CDGT network. 

 

4.6 Comparisons to the State-of-the-Art 

To validate the performance of the proposed MSST-CDGT network, comparisons were made with state-of-the-

art networks on the NTU-RGB+D 60 and NTU-RGB+D 120 datasets. The selected comparison networks were 

advanced networks corresponding to the respective benchmarks. Observing Table 5, it can be noted that on the 

cross-subject X-Sub benchmark protocol of the NTU-RGB+D 60 dataset, the MSST-CDGT network achieved 

an accuracy of 92.6%, while on the cross-view X-View benchmark protocol, it achieved an accuracy of 96.8%. 

These experimental results were respectively 2.3% and 0.5% higher than the ST-TR [14] network and 1.1% and 
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0.4% higher than the DSTA-Net [15] network on the two benchmark protocols. Additionally, compared to the 

graph convolution-based Efficient GCN [30] network, the proposed network achieved higher accuracies of 0.5% 

and 0.7%. Furthermore, to further validate the generalization ability of the MSST-CDGT network, experiments 

were conducted on the larger-scale NTU-RGB+D 120 dataset. As shown in Table 5, the MSST-CDGT network 

achieved accuracies of 89.5% and 90.7% on the cross-subject X-Sub and cross-setup X-Set benchmark 

protocols, respectively. These experimental comparison results were all higher than those of mainstream human 

skeletal action recognition networks in recent years. 

 

Table 5: Comparative Experiments with State-of-the-Art Networks on the NTU-RGB+D 60 and NTU-RGB+D 

120 Datasets 

Method 
NTU-RGB+D 60 NTU-RGB+D 120 

Year 
X-Sub (%) X- View (%) X-Sub (%) X-Set (%) 

GAT [21] 89.0 95.2 84.0 86.1 2023 

ST-TR [14] 90.3 96.3 85.1 87.1 2021 

MADT-GCN [22] 90.4 96.5 86.5 88.2 2024 

TA-CNN [23] 90.7 95.1 85.7 87.3 2022 

LKA-GCN [24] 90.7 96.1 86.3 87.8 2023 

Shift-GCN [13] 90.7 96.5 85.9 87.6 2020 

STF-Net [25] 91.1 96.5 86.5 88.2 2023 

Hybrid-Net [26] 91.4 96.9 87.5 89.0 2023 

DSTA-Net [15] 91.5 96.4 86.6 89.0 2020 

MST-GCN [27] 91.5 96.6 87.5 88.8 2021 

JPA-DESTGCN [28] 91.6 96.9 87.5 88.5 2024 

Dual Head-Net [29] 92.0 96.6 88.2 89.3 2021 

Efficient-GCN [30] 92.1 96.1 88.7 88.9 2022 

MSST-CDGT 92.6 96.8 89.5 90.7 2024 

 

5. Conclusion 

The study introduces a multi-scale spatial temporal convolution dynamic gated Transformer network for human 

skeleton action recognition. It comprises multi-scale spatial dynamic gated Transformer units and multi-scale 

temporal convolution units. The multi-scale spatial dynamic gated Transformer unit enables global and local 

multi-scale spatial modeling of human skeleton information and utilizes dynamic gated modules to suppress 

high-frequency noise interference in the network. The multi-scale temporal convolution unit efficiently extracts 

rich skeleton temporal sequence features in the time dimension. Finally, through a multi-stream fusion 

architecture, the network weights and fuses the data of multiple skeleton streams, enhancing the overall 

performance of the network and producing the final output. Through comprehensive experiments, the 

effectiveness of the MSST-CDGT network has been verified, surpassing current mainstream human skeleton 

action recognition networks in overall performance. Future work will focus on integrating more modalities of 

information to further improve the network's recognition accuracy and robustness. 
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