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Abstract Dead Oil Viscosity is the viscosity of the crude oil at atmospheric pressure (no gas is in solution) and 

system temperature. It is a very important reservoir pressure- volume -temperature (PVT) parameter that solve 

numerous reservoir engineering problems and one of the most required factors for enhanced oil recovery 

processes. The procedures involve in measuring this reservoir property is highly exorbitant and time consuming, 

hence the use of empirical correlations and intelligent tools. This study utilized Extreme Gradient Boosting (XG 

boost) intelligent tool to estimate dead oil viscosity for Niger Delta Region. A total number of 263 data set was 

obtained from PVT report from the region, out of which, 70% were used to train the models, 15% for testing and 

15% for validation. Quantitative and qualitative analysis was carried out to compare the performance and 

reliability of the new developed XG Boost model with some selected empirical correlations. The result showed 

that the new developed machine learning model outperformed some selected common dead oil viscosity 

correlations with the best rank of 0.127, highest correlation coefficient of 0.98, mean absolute error (Ea) of 

0.151, with a better performance plot, followed by Ikiensikimama (2009) model with correlation coefficient of 

0.95, mean absolute error (Ea) of 0.135 and the Rank of 0.141. XG Boost designed in this study is very easy to 

use with a higher accuracy than the existing correlation. It can be used immediately after installation without 

any further configuration or optimization of parameters. 

 

Keywords Dead Oil Viscosity, EGBoost, Machine learning Algorithm, Statical Analysis, Niger Delta 

1. Introduction  

Crude oil viscosity is an important reservoir pressure- volume-temperature (PVT) parameter that controls and 

influences the flow of oil through porous media and pipelines. The pressure–volume–temperature (PVT) 

properties of reservoir fluid are very important parameters used by petroleum industry for proper reservoir 

estimation and management [1]. These reservoir PVT data are obtained from experimental measurement of the 

representative fluid samples collected from wellhead or wellbore of the oil reservoir. Examples of fluid 

pressure-volume-temperature (PVT) properties are oil formation volume factor (OFVF), solution gas - oil ratio 

(Rs), saturation pressure, oil viscosity and oil gravity. These PVT fluid properties are essential for estimation of 

reserves, reservoir performance determination, recovery efficiency, production optimization and design of 

production systems [2]. It is more profitable to avoid expensive, time-consuming experimental laboratory 

measurements and to test the validity of the test results hence the need for empirical correlation and machine 

learning model development. Dead oil viscosity is the reservoir PVT property of interest in this study. 

The viscosity, in general, is defined as the internal resistance of a fluid to flow. Oil viscosity is a strong function 

of many thermodynamic and physical properties such as pressure, temperature, solution gas–oil ratio (GOR), 

bubble point pressure, chemical composition, gas gravity, and oil gravity ([3], [4], [5], [6], [7]). Viscosity of 

crude oil is a fundamental factor in simulating reservoirs, forecasting production as well as planning thermal 
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enhanced oil recovery methods that make its accurate determination necessary. Depending on the reservoir 

pressure, crude oil viscosity is divided into three types, which are saturated, undersaturated, and dead oil 

viscosity [8]. Fig. 1 shows a typical oil viscosity diagram as a function of pressure at constant reservoir 

temperature. 

i. Saturated oil viscosity (bubble point) is defined as the viscosity of the oil at the bubble-point pressure 

and reservoir temperature. 

ii. Undersaturated oil viscosity is defined as the viscosity of the crude oil above the bubble point 

pressure and reservoir temperature. 

iii. Dead-oil viscosity: This is the viscosity of the crude oil at atmospheric pressure (no gas is in solution) 

and system temperature. 

 
Figure. 1 Typical viscosity trend as a function of pressure [8] 

 

This study focused on estimating dead oil viscosity using machine learning procedures of XG boost algorithm 

rather than traditional empirical methods which is more efficient, fast, powerful, and accurate. Many empirical 

correlations exist for predicting dead oil viscosity ([10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], 

[21], [22], [23], [24], [25]). [26] was the first author that developed the first traditional correlation for predicting 

dead oil viscosity, which has one input parameter of temperature. Andrade et al correlation can predict dead oil 

viscosity at both low and high temperatures. [10] presented correlation charts by analyzing 953 crude oil 

samples from 747 oil fields in the USA and California using inputs of oil gravity and temperature. [27] and [28] 

summarized the ranges and data origins used by some famous authors in developing dead oil viscosity 

correlation. 

Recently, investigators have proved that machine learning and artificial intelligent which is an advanced soft 

computing tools can create relationship between the input and output data gotten from laboratory experiment 

([29], [30]). Machine learning is a subfield of artificial intelligent which enables machines to learn from past data 

or experience without being explicitly programmed [30]. Investigators has showed that the artificial intelligent 

can serve oil and gas industry to create a more reliable and accurate PVT predictive models ([31], [32], [33], [34], 

[35], [36], [37], [38], [39], [27]). [32] presented a novel approach for predicting the complete PVT behavior of 

reservoir oils and gas condensates using Artificial Neural Network (ANN). The method uses key measurements 

that can be performed rapidly either in the laboratory or at the well site as input to an ANN. The ANN was 

trained by a PVT studies database of over 650 reservoir fluids originating from all parts of the world. Tests of 

the trained ANN architecture utilizing a validation set of PVT studies indicate that, for all fluid types, most PVT 

property estimates can be obtained with a very low mean relative error of 0.5-2.5%, with no data set having a 

relative error more than 5%. This level of error is considered better than that provided by tuned Equation of 

State (EOS) models, which are currently in common use for the estimation of reservoir fluid properties. In 

addition to improved accuracy, the proposed ANN architecture avoids the ambiguity and numerical difficulties 

inherent to EOS models and provides for continuous improvements by the enrichment of the ANN training 

database with additional data. 

[40] published a study on neural network model for estimation of bubble point pressure and oil FVF at bubble 

point. The bubble point model was developed using 137 global data sets for testing trained models, and 1106 for 

training. The model has two hidden layers, five nodes in the first layer and three in the second layer. The neural 
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model performance shows average absolute error of 15.08%. The oil FVF at bubble point model was developed 

using 180 global data set for testing and 1165 for training. The model has an average absolute error of 11.68%, 

which is much higher than the conventional numerical correlations conversions. The author, however, pointed 

out that the newly developed model performed better when compared with empirical correlations, but suffers 

from stability and had some setbacks with trend analysis; and stated that the major problem to compare 

published Neural network models is the unavailable of the missing parameters of the network architecture in the 

publications. [41] published a work based on neural network using Matlab 7.5 to predict both bubble point 

pressure, and oil formation volume factor with the aid of two separated networks. The data in use was a set of 

160 measured points collected from the Middle East region; 140 points were used for training, and 20 for 

testing. The bubble point pressure network consisted of two hidden layers, with ten neurons for each layer. All 

hidden neurons activated by log sigmoid function. Four input data: Temperature, API gravity, gas oil ratio, gas 

relative density. The output neuron was designed to be activated with pure linear function. The results show that 

the network give accuracy in prediction than other published empirical correlation. The network has average 

relative error percent of 0.030704 and correlation coefficient of 0.9981. 

[42] presented an Artificial Neural Network (ANN) for estimation of PVT properties of compounds. The data 

sets were collected from Perry’s Chemical Engineers’ Handbook. Different training schemes for the back 

propagation learning algorithm, such as; Scaled Conjugate Gradient (SCG), Levenberg-Marquardt (LM) and 

Resilient back Propagation (RP) methods were used. The accuracy and trend stability of the trained networks 

were tested against unseen data. The LM algorithm with sixty neurons in the hidden layer has proved to be the 

best suitable algorithm with the minimum Mean Square Error (MSE) of 0.000606. The ANN’s capability to 

estimate the PVT properties is one of the best estimating methods with high performance. [43] published a work 

for predicting PVT properties of Iranian crude oils by applying artificial neural networks. The applied PVT data 

set that was used consists of 218 crude oil samples from Iranian reservoirs. The obtained results for both training 

and cross validation data sets confirm the great prediction power of ANNs, for both data sets with respect to 

traditional PVT correlations. The ANN test data outperforms the traditional method with coefficient of 

correlation of 0.990. 

[35] applied nonlinear multivariable regression and nonlinear optimization regression to optimize other 

correlations. They presented a neural network-based model for dead oil viscosity, in addition to optimization of 

published correlations. [37] employed ANN backward propagation procedure with the Levenberg-Marquardt 

algorithm to optimize the Nigerian crude oil viscosity. The authors utilized 1750 data points to optimize the oil 

viscosity models for dead and bubble point pressure oil viscosity. Furthermore, [24] proposed an ANN model 

that used a data set of laboratory measurements on oil samples from Yemen’s oil fields involved 545 data 

points. They expressed that ANN models were appropriate for predicting the dead oil, saturated and under-

saturated viscosity). In another study, [39] attempted to model the dead oil viscosity with various machine 

learning methods. They proposed that correlations can be divided into three classes: 1- Ones that predict the 

dead oil viscosity with limited data, 2- Ones that predict the dead oil viscosity using limited existing viscosity 

data, 3- Ones that check the quality of the existing data. 

Recently, some authors have started investing newly machine learning algorithm like XG Boots, random Forest 

and Supper learn and Lightgbm etc rather than Artificial Neural Network. [27] employed 2247 PVT data points 

both from light and heavy oil data set to predict dead oil viscosity. The researchers implemented six machine 

learning algorithms of random forest (RF), lightgbm, XGBoost, MLP neural network, Support Vector machine 

and SuperLearner simultaneously in predicting oil viscosity. Results indicate that the Super-Learner algorithm 

showed high performance compared to other used algorithms. [28] developed ensemble machine learning model 

for the prediction of dead, saturated and undersaturated oil viscosity. The authors investigated the different 

functional forms that are normally used in predicting various forms oil viscosity (dead, saturated and 

unsaturated viscosity). The authors reported that the best functional parameter for dead oil viscosity are 

temperature and API gravity and for the bubble point oil viscosity, API gravity, dead oil viscosity and bubble 

point pressure while for oil viscosity above bubble point the best functional form are oil viscosity at the bubble 

point, dead oil viscosity, bubble point pressure, pressure, and API gravity for all the ensemble SVR model 

developed. They said that Among all the empirical oil viscosity accessed their new ensemble SVR model 
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outperformed other existing oil viscosity evaluated by the statistical parameters they used. They also reported 

that error margin associated with dead oil viscosity is high. 

[29] did a novel study on multi-hybrid model for estimating oil viscosity of Iranian crude oil using 600 data 

points. They used the new multi-hybrid to develop oil viscosity at bubble point and below bubble point using 

GA and GMDH model. They reported that their new multi-hybrid model performed better than other existing 

empirical correlations with average absolute per cent error of 3.77, 0.268 and 0.01058 for saturated and 

undersaturated oil viscosity respectively. [8] presented a research work on crude oil viscosity determination for 

light and intermediate crude oil systems using global data. Hybrid model of GA and SVM were used to predict 

dead oil viscosity by applying 1497 data set. The authors reported that the new machining learning hybrid gave 

better predictions than some of the existing dead oil viscosity with a 17.17 average absolute per cent error. More 

literature on dead oil viscosity for both empirical and machine learning can be found in [28]. It can be found 

from the literature review that oil and gas industry still has an interest to develop models that can predict oil 

viscosity for proper reservoir fluid management and monitoring. Considering these points, the main aim of this 

study is to use XG Boosts machine learning algorithm for predicting dead oil viscosity applying Niger Delta 

data. 

 

2. Extreme Gradient Boosting (Xg Boost) 

Machine learning is a core sub-area of Artificial Intelligence (AI) that gives it ability to learn. The learning 

process is achieved by using algorithms to discover patterns and generate insights from the original or measured 

data they are exposed to (Fig. 1).. The machine learning algorithm adopted in this study is Extreme Gradient 

Boosting also known as XG Boot. It is a scalable, distributed gradient-boosted decision tree (GBDT) machine 

learning library that helps to understand data and make better decisions [44]. It provides parallel tree boosting 

and is the leading machine learning library for regression, classification, and ranking problems. The XG Boost 

algorithms builds on supervised machine learning, decision trees, ensemble learning, and gradient boosting. 

Supervised machine learning uses algorithms to train a model to find patterns in a dataset with labels and 

features and then uses the trained model to predict the labels on a new dataset’s features. 

A Gradient Boosting Decision Trees (GBDT) is a decision tree ensemble learning algorithm similar to random 

forest, for classification and regression. Ensemble learning algorithms combine multiple machine learning 

algorithms to obtain a better model. Both random forest and GBDT build a model consisting of multiple 

decision trees. The difference is in how the trees are built and combined. The term “gradient boosting” comes 

from the idea of “boosting” or improving a single weak model by combining it with several other weak models 

to generate a collectively strong model. Gradient boosting is an extension of boosting where the process of 

additively generating weak models is formalized as a gradient descent algorithm over an objective function. 

Gradient boosting sets targeted outcomes for the next model to minimize errors. Targeted outcomes for each 

case are based on the gradient of the error (hence the name gradient boosting) with respect to the prediction. 

GBDTs iteratively train an ensemble of shallow decision trees, with each iteration using the error residuals of 

the previous model to fit the next model. The final prediction is a weighted sum of all the tree predictions. 

Random forest “bagging” minimizes the variance and overfitting, while GBDT “boosting” minimizes the bias 

and underfitting. 

XG Boost is a scalable and highly accurate implementation of gradient boosting that pushes the limits of 

computing power for boosted tree algorithms, being built largely for energizing machine learning model 

performance and computational speed. With XG Boost, trees are built in parallel, instead of sequentially like 

GBDT. It follows a level-wise strategy, scanning across gradient values and using these partial sums to evaluate 

the quality of splits at every possible split in the training set.  

https://www.simplilearn.com/tutorials/data-structure-tutorial/what-is-an-algorithm
https://en.wikipedia.org/wiki/Gradient_boosting
https://developer.nvidia.com/blog/gradient-boosting-decision-trees-xgboost-cuda/
https://en.wikipedia.org/wiki/Ensemble_learning
https://developer.nvidia.com/blog/gradient-boosting-decision-trees-xgboost-cuda/
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Figure. 2 Machine learning Process 

 

3. Methodology 

3.1 Data Description 

The data used was obtained from conventional PVT reports that derive the various fluid properties through 

liberation process from the Niger-Delta Region of Nigeria. The data parameters include. The data parameters 

applied are gas specific gravity, API gravity of the crude oil, separator temperature, separator pressure and 

separator gas-oil ratio. The ranges of the data applied are 0.6 < 𝛾𝑔 < 2.218, 20.5 < 𝛾𝐴𝑃𝐼 < 44.0, 75 < 𝑇𝑆 <

104 ℉,115 < 𝑃𝑆 < 2970 𝑝𝑠𝑖𝑎, 1007.0 < 𝑅𝑠 < 2970 𝑠𝑐𝑓/𝑠𝑡𝑏. The minimum (Min), maximum (Max), mean, 

standard deviation (SD) values of data used for, training, test and validation data are shown in Tables 1, 2 and 3. 

Table 1. Summary of minimum, maximum, mean and Standard Deviation values of training data for 

dead oil viscosity. 
 γg Ts(oF) Ps (Psia) Rsp(scf/stb) γAPIr μ(cp) 

MIN 0.6080 75.000 115.00 1007.00 21.20 0.1300 

MAX 2.2180 100.000 1371.00 2970.00 43.60 0.6700 

MEAN 1.3545 96.535 306.41 1807.86 36.46 0.4238 

SD 0.34284 6.8236 191.48 570.56 4.174 0.1098 

 

Table 2. Summary of minimum, maximum, mean and Standard Deviation values of test data for dead 

oil viscosity. 
 γg Ts(oF) Ps(Psia) Rsp(scf/stb) γAPIr μ(cp) 

MIN 0.7050 100.00 115.00 1039.00 24.80 0.2500 

MAX 1.6270 104.00 315.00 2533.00 43.90 0.5780 

MEAN 1.1418 100.83 226.38 1673.15 39.18 0.4453 

SD 0.2373 1.6594 76.089 393.80 4.03 0.0885 

 

Table 3. Summary of minimum, maximum, mean and Standard Deviation values of Validation data for 

dead oil viscosity  
γg Ts(oF) Ps(Psia) Rsp(scf/stb) γAPIr μ(cp) 

MIN 0.6200 86.90 195.00 1028.00 20.50 0.2160 

`MAX 1.7157 100.00 315.00 2597.00 44.00 0.5910 

MEAN 1.1518 98.77 270.77 1746.68 35.22 0.4327 

SD 0.3434 3.304 44.13 452.53 6.013 0.0965 
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3.2 Data Validation 

Before any experimental PVT data are used for design or study purposes, it is necessary to ensure that there are 

no error or major inconsistencies that would render any subsequent work useless. Two such means of data 

validation are the Campbell diagram (Buckley plot) and the Mass Balance Diagram which are otherwise known 

as cross plot. These techniques were used to validate the data set used in this work.  

3.3 Modeling Technique 

Extreme gradient Boost (XGBoost) was used to build the oil dead viscosity model using the quadratic extreme 

gradient function procedure with MATLAB (2021) version.  

The procedure involves the importation of input and output data into the MATLAB environment using the 

import command. The input parameters are gas gravity, separator temperature, separator pressure and API 

gravity and output parameter is dead oil viscosity.  

3.4  Evaluation Methods (Correlation Comparison) 

To compare the performance and accuracy of the new model to other empirical correlations, two forms of 

analyses were performed which are quantitative and qualitative screening. For quantitative screening method, 

statistical error analysis was used, which are percent mean relative error (MRE), percent mean absolute error 

(MAE), percent standard deviation relative (SDR), percent standard deviation absolute (SDA) and correlation 

coefficient (R).  

For correlation comparison, a new approach of combining all the statistical parameters mentioned above (MRE, 

MAE, SDR, SDA and Rank) into a single comparable parameter called Rank was used. The use of multiple 

combinations of statistical parameters in selecting the best correlation can be modeled as a constraint 

optimization problem with the function formulated as; 

j

m

j

ji qSRankMin ,1

1

,
=

=  (1) 

Subject to 

=

n

i

jiS
1

,

  (2) 

With 10  ijS   (3) 

Where Si,j is the strength of the statistical parameter j of correlation i and qij, the statistical parameter j 

corresponding to correlation i. j = MRE, MAE, …. R1, where R1 = (1-R) and the rank (Z), (or weight) of the 

desired correlation. The optimization model outlined in Equations 1 to 3 was adopted in a sensitivity analysis to 

obtain acceptable parameter strengths The final acceptable parameter strengths so obtained for the quantitative 

screening are 0.4 for MAE, 0.2 for R, 0.15 for SDA, 0.15 for SDR, and 0.1 for MRE. The correlation with the 

lowest rank was selected as the best correlation for that fluid property. It is necessary to mention that minimum 

values were expected to be best for all other statistical parameters adopted in this study except R, where a 

maximum value of 1 was expected [25].  

Performance plots were used for qualitative screening. It is a graph of the predicted versus measured gas 

compressibility data with a 45o reference line to readily ascertain the correlation’s fitness and accuracy. A 

perfect correlation would plot as a straight line with a slope of 45o. 

 

4.Results and Discussion 

The XG Boosts model was tested with 15% of training data (36 data) points that were not previously used 

during training and validation. These data were randomly selected by the Extreme gradient Boosts model to test 

the accuracy and stability of the newly developed model. These data points were randomly selected by the 

MATLAB tool to test the accuracy and stability of the new developed model. The predictions and performance 

of the new intelligent soft computer model was compared with data from the field and the estimations from 

other empirical correlations like [16], [15], [25], [17] and [10]. These empirical correlations were carefully 

selected having reported by some researchers of about their excellent performance in predicting dead oil 

viscosity. Two out of these five selected correlations were developed precisely for Niger-Delta Region ([16], 

[25]). 

4.1 Statistical Analysis Result 
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The results of the statistical assessment as presented in Fig. 3 gives the statistical accuracies for all the dead oil 

viscosity correlations and XGboost model examined. The results show that the XGboost algorithm has both 

reliable and efficient performance as to compare to other existing correlations with the best rank of 0.127, mean 

absolute error of 0.151, standard deviation absolute error of 0.145 and the highest coefficient of correlation of 

0.981. Table 3 shows the numerical values of all the models accessed with XGboost model. The two indigenous 

correlations performed better than other evaluated empirical correlations. The trend is expected because 

correlations performed better in their region of originality. [25] gave the best Rank of 0.141 with Mean absolute 

Error (MAE) of 0.135 and correlation coefficient (R) of 0.95 followed [16] which gave the rank of 0.176, Mean 

absolute Error (MAE) of 0.301 and correlation coefficient of 0.94. This study recommends [25] as a good 

predictive model for dead oil viscosity for Niger Delta region in absence of the machine learning algorithm 

developed in this study.  

[17], [15] and [10] are foreign correlations accessed. Among the foreign correlations [17] performed better than 

others with a rank of 0.206, followed by [15] and finally [10]. [17] Correlation can be used to forecast dead oil 

viscosity for Niger Delta region in absence of the newly developed intelligent model, [25] and [16]. This study 

showed again the supremacy of machining learning in predicting reservoir PVT properties particularly in 

applying XG Boosts algorithm. 

Table 3: Statistical Accuracy of Oil Formation Volume Factor Using Niger-Delta Data 

AUTHORS %MRE  %MAE  %SRE %SAE R Rank 

Extreme Gradient 0.162 0.151 0.166 0.145 0.98 0.127 

Ikiensikimama (2009) 0.371 0.135 0.198 0.107 0.95 0.141 

Egbogah and Jack (1990) 0.141 0.301 0.147 0.101 0.94 0.176 

Labedi (1982) 0.301 0.223 0.185 0.363 0.92 0.206 

Petrosky and Farshad (1995) 0.316 0.324 0.211 0.31 0.94 0.243 

Beal (1947) 0.412 0.4.25 0.322 0.345 0.91 0.265 

 

 
Figure. 3. Comparison of the Statistical Accuracy for Different correlations using Niger -Delta Data 

 

4.1.2 Cross Plot Result  

Cross plots of the predicted versus experimental data for dead oil viscosity are illustrated in Figs. 4 to 8. It is a 

plot of predicted versus measured properties with a 45° reference line to readily ascertain the correlation’s 

fitness and accuracy. 

Fig. 8 shows the cross plots of predictions from GX Boost and measured data. It shows the tightest cloud of 

points around the 45° line with very good clusters at low band, indicating the excellent agreement between the 

experimental and the calculated data values when compared to Figs. 4 to 7. In addition, this indicates the 

superior performance of the XG Boots model over empirical correlations evaluated. The accuracy of the model 
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indicates that the Extreme Gradient Boost intelligent model does not over fit the data, which implies that it was 

successfully trained. 

 
Figure. 4. Cross Plot of Egbogah and Jack (1990) Model for Dead Oil Viscosity 

 

 
Figure. 5. Cross plots of Petrosky and Farshad (1995) Model for Dead Oil Viscosity 

 

 
Figure. 6. Cross Plots of Ikiensikimama (2009) Model for Dead Oil Viscosity 
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Figure. 7. Cross Plots of Labedi (1995) Model for Dead Oil Viscosity 

 

 
Figure. 8. Cross Plots of XG Boots Model for Dead Oil Viscosity 

 

5.Conclusion 

The newly developed XG Boots model for predicting crude oil dead viscosity for Niger-Delta region was 

developed in this study using MATLAB 2021 Version. The quadratic extreme imbedded in the Extreme 

Gradient boost was used to estimate the model parameters. The new intelligent tool outperformed the existing 

correlations by the statistical parameters used. It shows a best rank with a numerical value of 0.127, correlation 

coefficient of 0.98 and superior performance plot as compared to the existing empirical correlations for those 

regions where the data was used. This leads to a bright light of machine learning modeling and will assist 

petroleum exploration engineers to estimate various reservoir properties with better accuracy, leading to reduced 

exploration time and increased productions. 
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