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1. Introduction 

Let  H U  be the class of analytic functions on the open unit disk  : 1U z z    in the complex plane 

. By A , we will denote the class of the functions  f H U  given by the following series expansions   

  2 3 4

2 3 4
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f z z a z a z a z a z z a z a




             .   (1.1) 

The subclass of univalent functions of A  is denoted by S  in the literature. This class was first introduced by 

Köebe [1] and has become the core ingredient of advanced research in this field. Within a short period, in 1916 

Bieberbach [2] published a paper in which the famous coefficient hypothesis was proposed. This hypothesis states 

that if f S  and has the series form (1.1), then na n  for each 2n  . In 1985, it was de-Branges [3], who 

settled this long-lasting conjecture. There were a lot of papers devoted to this conjecture and its related coefficient 

problems (see [4-12]).  

It is well known that the starlike and convex function classes defined on the open unit disk U are defined 

analytically as follows 

 

 
* :  Re 0,  

zf z
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zf z

C f S z U
f z

           
  

. 

As is known that an analytical function   satisfying the conditions  0 0   and    1z   is called 

Schwartz function. Let’s  ,f g H U , then it is said that f  is subordinate to g  and denoted by f g , if 

there exists a Schwartz function   , such that     .f z g z  

In the past few years, numerous subclasses of the collection S  have been introduced as special choices of the 

classes 
*S  and C  (see for example [5-20]).  
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2. Materials and Methods 

Now, let's define some new subclass of univalent functions in the open unit disk U . 

Definition 2.1. For  0,1  , 
1

2
   and  0    the function f S  is said to be in the class 

 sinh , ,    , if the following conditions are satisfied 
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. 

From the Definition 1.1, in the special values of the parameters, we obtain the following function classes. 

Definition 2.2. For 
1

2
   and  0    the function f   is said to be in the class  *

sinh ,S   , if the 

following conditions are satisfied 

  
 

1
1 1 1 sinh ,  

z f z
z z U

f z





   
     
    

. 

Definition 2.2.1. For  0    the function f S  is said to be in the class  *

sinhS  , if the following 

conditions are satisfied 

 

 

1
1 1 1 sinh ,  

zf z
z z U

f z

   
     

   

. 

Definition 2.2.2. For 
1

2
   the function f S  is said to be in the class  *

sinhS  , if the following conditions 

are satisfied 

  
 

1 sinh ,  
z f z

z z U
f z




  . 

Definition 2.2.3. For the function f S  is said to be in the class 
*

sinhS , if the following conditions are satisfied 

 

 
1 sinh ,  

zf z
z z U

f z


  . 

Definition 2.3. For 
1

2
   and  0    the function f S  is said to be in the class  sinh ,C   , if the 

following conditions are satisfied 

  

 
1

1 1 1 sinh ,  

zf z

z z U
f z





             
  

    

. 

Definition 2.3.1. For  0    the function f S  is said to be in the class  sinhC  , if the following 

conditions are satisfied 
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1
1 1 1 sinh ,  

zf z
z z U

f z

             

. 

Definition 2.3.2. For 
1

2
   the function f S  is said to be in the class  sinhC  , if the following conditions 

are satisfied 

  

 
1 sinh ,  

zf z

z z U
f z


 
    


. 

Definition 2.3.3. For the function f S  is said to be in the class sinhC , if the following conditions are satisfied 

  
 

1 sinh ,  
zf z

z z U
f z


 


. 

Definition 2.4. For  0,1   and  0    the function f S  is said to be in the class  sinh ,   , if 

the following condition is satisfied 
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. 

Definition 2.4.1. For  0,1   the function f S  is said to be in the class  sinh  , if the following 

conditions are satisfied 
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z z U
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. 

Definition 2.5. For  0,1   and 
1

2
   the function f S  is said to be in the class  sinh , ,    if the 

following condition is satisfied 

 
  
 

  

 
1 1 sinh ,  

zf z
z f z

z z U
f z f z





 

 
      


. 

Let   be the class of analytic functions in U  satisfied the conditions  0 1p   and   Re 0p z  , ,z U  

which from the subordination principle easily can written 

 
1

:  ,
1

z
p A p z z U

z

 
    

 
, 

where  p z  has the series expansion of the form 

  2 3

1 2 3

1

1 1 ,  n

n

n

p z p z p z p z p z z U




           .  (2.1) 

Now, let us present some necessary lemmas known in the literature for the proof of our main results.   

Lemma 2.1 ([21]). Let the function  p z  belong in the class  . Then,  



MUSTAFA N & MİNGSAR D               Journal of Scientific and Engineering Research, 2024, 11(11):65-72 

Journal of Scientific and Engineering Research 

68 

2np   for each n  and 2n k n kp p p    for  , ,   and 0,1n k n k    . 

The equalities hold for 

 
1

1

z
p z

z





. 

Lemma 2.2 ([21]) Let an analytic function  p z  be of the form (2.1), then 

 2 2

2 1 12 4p p p x   , 

      23 2 2 2 2

3 1 1 1 1 1 14 2 4 4 2 4 1p p p p x p p x p x y         

for ,x y  with 1 and 1x y  . 

In this paper, we give some coefficient estimates and examine Fekete-Szegö problem for the class 

 sinh , , .     Additionally, the results obtained in our study are compared with the results available in the 

literature. 

 

3. Results & Discussion 

In this section, we examine the coefficient estimates problem for the function class  sinh , ,     and solve 

Fekete-Szegö problem for this class. 

Firstly, we give the following theorem on coefficient evaluation. 

Theorem 3.1. If  ,sinh , ,f     , then are provided the following inequalities  
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  (3.1) 

where  
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. 

Proof. Let  sinh , ,f     . Then, are a Schwartz function :U U  , such that 

 
  
 

  

 
 

1 1
1 1 1 1 1 1 sinh

zf z
z f z

z
f z f z





  
 

                          
            

, z U . (3.2) 

Let’s the function p P  defined as follows 
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 .  (3.3) 

From these equality, we can write 
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2 31 1 1
2 3 1 2

( ) 1 1 1
...,  

( ) 1 2 2 2 2 4
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z z p z p p p z z U
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.  (3.4) 

From the (3.2), (3.4) can written  
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  (3.5) 

Comparing the coefficients of the same degree terms on the right and left sides of the equality (3.5), we obtain the 

following equalities for the coefficients 2a  and 3a   
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,  (3.6) 
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,  (3.7) 

According to the Lemma 2.1, from the equality (3.6) we obtain the first result of theorem. 

From the equalities (3.7) and (3.6) we obtain the following equality for 3a  
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  , we can write 

   

  

   

22
21

3 12 2

2 4 1 1 34

3 1 1 2 4 4 2 1 1

p
a x p

   

   

    
  

     

 

for some x  with 1x  .  

Applying triangle inequality to the last equality, we obtain 
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,  (3.9) 

where x   and 1t p . 

From the inequality (3.9), we can write 
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. 

Then, maximizing the function     2, , 1t a t     ,  we obtain the second result of theorem. 

With this the proof of theorem is completed. 

Taking 0   and 1   in the Theorem 3.1, we obtain the following results, respectively. 

Corollary 3.1. If  *

sinh ,f S   , then   
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Corollary 3.2. If  sinh ,f C   , then   
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(3.11) 

Note: 3.1. In the special values of the parameters   and   from Corollary 3.1 and Corollary 3.2, we obtain the 

results for the classes  *

sinhS  ,  *

sinhS  , 
*

sinhS  and  sinhC  ,  sinh ,C  sinhC , respectively. 

Now, we focused on the solution of the Fekete-Szegö problem for the class  sinh , ,    . 

Theorem 3.2. Let  sinh , ,f      and   . Then, 
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Proof. Let  sinh , ,f      and   . From the equalities (2.6) and (2.8), we can write  
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for some x  with 1x  .   

Applying triangle inequality to the equality (3.12), we obtain 
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From the last inequality, we can write 
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Maximizing the expression on the right hand side of the inequality (3.13) according to the parameter t , we have 

result of theorem. 

Thus, the proof of theorem is completed. 

If we take 0   and 1   in Theorem 3.2, we obtain the following results, respectively.  

Corollary 3.3. If  *

sinh ,f S   , then   

 

   

12

3 2

1 1

1                    1 , , ,

3 1 , , 1 1 , , ,

if l
a a

l if l

    


        

  
  

   

 

Where  
     

 

22

1 2

2 4 1 3 1 2 1
,

2 1
l

     
 



     



 

Corollary 3.4. If  sinh ,f C   , then 
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Note: 3.2. In the special values of the parameters   and   from Corollary 3.3 and Corollary 3.4, we obtain the 

results for the classes  *

sinhS  ,  *

sinhS  , 
*

sinhS  and  sinhC  ,  sinh ,C 
sinhC , respectively. 
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