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Abstract: In 2000, Et and Esi introduced new type of generalized difference sequences by using the structure of 

Çolak’s work from 1989 where he defined new types of sequence spaces while Çolak was also inspired by 

Kızmaz’s idea about the difference operator he studied in 1981. Then, using Et and Esi’s structure, Ansari and 

Chaudhry, in 2012, introduced a new type of generalized difference sequence spaces. Changing Ansari and 

Chaudhry’s construction slightly, Et and Işık, in 2012, obtained new type of generalized difference sequence 

spaces which have equivalent norm to that of Ansari and Chaudhry’s type Banach spaces. Then, Et and Işık 

found α-duals of the Banach spaces they got and investigated geometric properties for them. In this study, we 

consider α-duals of Et and Işık’s generalized difference sequence spaces but we study some Banach spaces 

closely related with those such that they are degenerate Lorentz-Marcinkiewicz spaces. We take those Banach 

spaces related with the α-duals of Et and Işık’s generalized difference sequence spaces in terms of fixed point 

theory and find large classes of closed, bounded and convex subsets in those with fixed point property for 

nonexpansive mappings. 

Keywords: Nonexpansive Mapping, Fixed Point Property, Difference Sequences, α-duals. 

1. Introduction 

Researches have shown that the fixed point exists for some function classes defined on certain classes of sets in 

some spaces, while it cannot be found at all in others. Fixed point theory has examined how this happens or does 

not happen.  

Researchers have made classifications and characterizations. In 1965, Browder [4] proved that every Hilbert 

space has a property satisfying that every nonexpansive mapping defined on any closed, bounded, and convex 

(cbc) nonempty subset domain with the same range has a fixed point. Since that time, spaces with this property 

have been considered to have the fixed point property for nonexpansive mappings (fppne). Then, researchers 

considered looking for the spaces with the property and if the property still exists when larger classes of 

mappings are taken. Then also they have seen spaces failing the properties. For example, in 1965, Browder [5] 

and Göhde [16] with independent studies, they saw that uniform convex Banach spaces have the fppne. Then, 

Kirk [19] generalized the result for the reflexive Banach spaces with normal structure. In fact, Goebel and Kirk 

[13] noticed that Kirk’s result was able to extend for uniformly Lipschitz mappings and some researchers have 

studied estimating the Lipschitz coefficient satisfying the property for uniform Lipschitz mappings on different 

Banach spaces. For example, Goebel and Kirk [14] showed that for Hilbert spaces, the best Lipschitz coefficient 

would be a scalar less than a number in the interval [√2  ,    
𝜋

2
], and Goebel and Kirk [13] and Lim [20] showed 

independently that for a Lebesgue space 𝐿𝑝 when 2 < 𝑝 < ∞, the coefficient is smaller by a scalar larger than or 

equal to (1 +
1

2𝑝)

1

𝑝
 while Alspach [1] showed that when 𝑝 = 2, there exists a fixed point free Lipschitz mapping 
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with Lispchitz coefficient √2   defined on a cbc subset. In fact, √2   is the smallest Lipschitz coefficient for 

Alspach’s mapping. We need to note that, similar to the definition of the Banach spaces satisfying the fppne, if a 

Banach space has a property that every uniformly Lipschitz mapping defined on any cbc nonempty subset 

domain with the same range has a fixed point, then that Banach space has the fixed point property for uniformly 

Lischitz mapping (fppul). In terms of fixed point property for uniformly Lipschitz mappings, Dowling, Lennard, 

and Turett [7] showed that if a Banach space contains an isomorphic copy of ℓ1, then it fails the fppul. It is a 

well-known fact by researchers that 𝑐0 or ℓ1 is almost isometrically embedded in every non-reflexive Banach 

space with an unconditional basis (see [23]). For this reason, classical non-reflexive Banach spaces fail the fixed 

point property for non-expansive mappings, that is, in these spaces, there can be a closed, convex and bounded 

subset and a non-expansive invariant 𝑇 mapping defined on that set such that 𝑇 has no fixed point. This result is 

based on well-known theorems in literature (see for example Theorem 1.c.12 in [23] and Theorem 1.c.5 in [24]). 

These theorems state that for a Banach lattice or Banach space with an unconditional basis to be reflexive, it is 

necessary and sufficient if it does not contain any isomorphic copies of 𝑐0 or ℓ1. Therefore, this close relation to 

the reflexivity or nonreflexivity of Banach space, researchers have worked for years and questioned whether 𝑐0 

or ℓ1 can be renormed to have a fixed point for nonexpansive mappings. Lin [21] showed in his study that what 

was thought was not true and that at least ℓ1  could be renormed to have the fixed point property for 

nonexpansive mappings. Then, the remaining question was if the same could have been done for 𝑐0, but the 

answer still remains open. Since the researchers have considered trying to obtain the analogous results for well-

known other classical nonreflexive Banach spaces, another experiment was done for Lebesgue integrable 

functions space 𝐿1[0,1] by Hernandes-Lineares and Maria [22] but they were able to obtain the positive answer 

when they restricted the nonexpansive mappings by assuming they were affine as well. One can say that there is 

no doubt most research has been inspired by the ideas of the study [15] where Goebel and Kuczumow proved 

that while ℓ1 fails the fixed point property since one can easily find a cbc nonweakly compact subset there and a 

fixed point free invariant nonexpansive map, it is possible to find a very large class subsets in target such that 

invariant nonexpansive mappings defined on the members of the class have fixed points. In fact, it is easy to 

notice the traces of those ideas in [21] work. Even Goebel and Kuczumow’s work has inspired many other 

researchers to investigate if there exist more example of nonreflexive Banach spaces with large classes 

satisfying fixed point property. For example, in 2004, Kaczor and Prus [17] wanted to generalize Goebel and 

Kuczumow’s findings and they proved that affine asymptotically nonexpansive invariant mappings defined on a 

large class of cbc subsets in ℓ1 can have fixed points. Moreover, in [12], Kaczor and Prus’ results were extended 

by having been found larger classes satisfying the fixed point property for affine asymptotically nonexpansive 

mappings. Thus, affinity condition became a tool for their works. In fact, another well-known nonreflexive 

Banach space, Lebesgue space 𝐿1[0,1], was studied in [22] and in their study they obtained an analogous result 

to [21] as they showed that 𝐿1[0,1] can be renormed to have the fixed point property for affine nonexpansive 

mappings. In this study, we will investigate some Banach spaces analogous to ℓ1. We actually consider 𝛼-duals 

of Et and Işık’s generalized difference sequence spaces but we study some Banach spaces closely related with 

those such that they are degenerate Lorentz-Marcinkiewicz spaces. We take those Banach spaces related with 

the 𝛼-duals of Et and Işık’s generalized difference sequence spaces and study Goebel-Kuczumow analogy for 

them. We prove that very large classes of closed, bounded and convex subsets in some Banach spaces which are 

closely related with 𝛼-duals of their generalized difference sequence spaces investigated by Et and Işık [11] and 

actually are degenerate Lorentz-Marcinkiewicz spaces have the fixed point property for nonexpansive 

mappings. Therefore, firstly we would like to give the definition of Cesàro sequence spaces which was defined 

by Shiue [28] in 1970, and next we present Kızmaz’s difference sequence space definition in [18] by noting that 

we work on a space which is derived from his ideas’ generalizations such that many researchers (see for 

example [6, 8, 9, 10, 25, 28]) have generalized his work as well. 

In fact, we need to note that Et and Esi’s work [10] and Et and Çolak’s work [9] used a common difference 

sequence definition from Çolak’s work [6]. 

Now, first we recall that Shiue [28], in 1970, introduced the Cesàro sequence spaces written as  

ces𝑝 = {(𝑥𝑛)𝑛 ⊂ ℝ |(∑

∞

𝑛=1

(
1

𝑛
∑

𝑛

𝑘=1

|𝑥𝑘|)

𝑝

)

1/𝑝

< ∞} 
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such that ℓ𝑝 ⊂ ces𝑝 and  

ces∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ |sup
𝑛

1

𝑛
∑

𝑛

𝑘=1

|𝑥𝑘|   < ∞} 

such that ℓ∞ ⊂ 𝑐𝑒𝑠∞ where 1 ≤ 𝑝 < ∞. Then, from the definition of Cesàro sequence spaces, Kızmaz [18], 

defined difference sequence spaces for ℓ∞ ,   c , and c0  and symbolized them by ℓ∞(𝛥) , c(𝛥) , and c0(𝛥) , 

respectively. In his introduction, he defined the difference operator 𝛥 applied to the sequence 𝑥 = (𝑥𝑛)𝑛 using 

the formula 𝛥𝑥 = (𝑥𝑘 − 𝑥𝑘+1)𝑘. In fact, he investigated Köthe-Toeplitz duals and their topological properties. 

As one of the researchers generalizing his ideas, Çolak [6] in 1989, introduced firstly a generalized difference 

sequence space by taking an arbitrary sequence of nonzero complex values 𝑣 = (𝑣𝑛)𝑛 and then denoting a new 

difference operator by 𝛥𝑣   such that for any sequence 𝑥 = (𝑥𝑛)𝑛, he defined the difference sequence of that 

𝛥𝑣𝑥 = (𝑣𝑘𝑥𝑘 − 𝑣𝑘+1𝑥𝑘+1)𝑘. Then, Et and Esi [10] in 2000, generalized Çolak’s difference sequence space by 

defining  

𝛥𝑣(ℓ∞) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ|𝛥𝑣𝑥 ∈ ℓ∞}, 

𝛥𝑣(c) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ|𝛥𝑣𝑥 ∈ c} 

𝛥𝑣(c0) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ|𝛥𝑣𝑥 ∈ c0}. 

Furthermore, their 𝑚𝑡ℎ order generalized difference sequence space is given for any 𝑚 ∈ ℕ by 𝛥𝑣
0𝑥 = (𝑣𝑘𝑥𝑘)𝑘 , 

𝛥𝑣
𝑚𝑥 = (𝛥𝑣

𝑚𝑥𝑘)𝑘 = (𝛥𝑣
𝑚−1𝑥𝑘 − 𝛥𝑣

𝑚−1𝑥𝑘+1)𝑘 with 𝛥𝑣
𝑚𝑥𝑘 = ∑𝑚

𝑖=0 (−1)𝑖 (
𝑚
𝑖

) 𝑣𝑘+𝑖𝑥𝑘+𝑖    for each 𝑘 ∈ ℕ. 

Next, in 2004, Bektaş, Et and Çolak [3] obtained the Köthe-Toeplitz duals for the generalized difference 

sequence space of Et and Esi’s. We may recall here that their 𝑚𝑡ℎ order difference sequence space has the 

following norm for any 𝑚 ∈ ℕ:  

‖𝑥‖𝑣
(𝑚)

= ∑

𝑚

𝑘=1

|𝑣𝑘𝑥𝑘| + ‖𝛥𝑣
𝑚𝑥‖∞ 

Then, the corresponding Köthe-Toeplitz dual was obtained as in [3] and [10] such that it is written as below:   

𝐷1
𝑚 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑚𝑣𝑛

−1𝑎𝑛)𝑛 ∈ ℓ1} = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ:    ‖𝑎‖(𝑚) = ∑

∞

𝑘=1

𝑘𝑚|𝑎𝑘|

|𝑣𝑘|
< ∞}. 

Note that 𝐷1
𝑚 ⊂ ℓ1 if 𝑘𝑚|𝑣𝑘

−1| > 1 for each 𝑘, 𝑚 ∈ ℕ and ℓ1 ⊂ 𝐷1
𝑚 if 𝑘𝑚|𝑣𝑘

−1| < 1 for each 𝑘, 𝑚 ∈ ℕ. 

Ansari and Chaudhry [2], in 2012, introduced a new type of generalized difference sequence spaces by picking 

an arbitrary sequence of nonzero complex values 𝑣 = (𝑣𝑛)𝑛 as Çolak [6] did and next by symbolizing the new 

difference sequence space as 𝛥𝑣,𝑟
𝑚 (𝐸)   for arbitrary 𝑟 ∈ ℝ, 𝑚 ∈ ℕ and writing that space as below where 𝑋 is 

any of the sequence spaces ℓ∞, 𝑐 or 𝑐0.  

 𝛥𝑣,𝑟
𝑚 (𝑋) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ|𝛥𝑣

𝑚𝑥 ∈ 𝑋} 

where Ansari and Chaudhry [2] defined the norm by  

‖𝑥‖𝛥,𝑣
𝑚 = ∑

𝑚

𝑘=1

|𝑣𝑘𝑥𝑘| + sup
𝑘∈ℕ

|𝑘𝑟𝛥𝑣
𝑚𝑥𝑘| 

Then, by obtaining an equivalent norm to Ansari and Chaudhry’s Banach space, Et and Işık [11] defined 𝑚𝑡ℎ 

order generalized type difference sequence for any 𝑚 ∈ ℕ given by  

𝛥𝑣,𝑟
(𝑚)(𝑋) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ|𝛥𝑣

𝑚𝑥 ∈ 𝑋} 

where the norm is as follows:  

‖𝑥‖𝛥,𝑣
(𝑚)

= sup
𝑘∈ℕ

|𝑘𝑟𝛥𝑣
𝑚𝑥𝑘| 

Then, Et and Işık found 𝛼-duals of the Banach spaces they got and investigated geometric properties for them 

such that 𝑚th order 𝛼-duals for their Banach spaces are written as   

𝑈1
𝑚 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑚−𝑟𝑣𝑛

−1𝑎𝑛)𝑛 ∈ ℓ1} = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ:    ‖𝑎‖~
(𝑚) = ∑

∞

𝑘=1

𝑘𝑚−𝑟|𝑎𝑘|

|𝑣𝑘|
< ∞} 

Note that 𝑈1
𝑚 ⊂ ℓ1 if 𝑘𝑚−𝑟|𝑣𝑘

−1| > 1 for each 𝑘, 𝑚 ∈ ℕ and ℓ1 ⊂ 𝑈1
𝑚 if 𝑘𝑚−𝑟|𝑣𝑘

−1| < 1 for each 𝑘, 𝑚 ∈ ℕ. 

The space we are studying is given by below for any 𝑚 ∈ ℕ. 
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𝑊1
𝑚 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ |(

𝑎𝑛

𝑛𝑚−𝑟𝑣𝑛

)
𝑛

∈ ℓ1} = {𝑎 = (𝑎𝑘)𝑘 ⊂ ℝ ∶     ‖𝑎‖(𝑚)
~ = ∑

∞

𝑘=1

|𝑎𝑘|

𝑘𝑚−𝑟|𝑣𝑘|
< ∞}. 

Note that ℓ1 ⊂ 𝑊1
𝑚 if 𝑘𝑚−𝑟|𝑣𝑘| > 1 for each 𝑘, 𝑚 ∈ ℕ. 

Now, we will need the following well-known preliminaries before giving our main results. [14] may be 

suggested as a good reference for these fundamentals. 

Definition 1.1 Consider that (𝑋, ∥⋅∥) is a Banach space and let 𝐶 be a non-empty cbc subset. Let : 𝐶 → 𝐶 be a 

mapping. We say that 

1. 𝑇 is an affine mapping if for every 𝑡 ∈ [0,1] and 𝑎, 𝑏 ∈ 𝐶, 𝑇((1 − 𝑡)𝑎 + 𝑡𝑏) = (1 − 𝑡)𝑇(𝑎) + 𝑡  𝑇(𝑏). 

2. 𝑇 is a nonexpansive mapping if for every 𝑎, 𝑏 ∈ 𝐶, ∥ 𝑇(𝑎) − 𝑇(𝑏) ∥≤∥ 𝑎 − 𝑏 ∥. 

Then, we will easily obtain an analogous key lemma from the below lemma in the work [15]. 

 

Lemma 1.2 Let {𝑢𝑛} be a sequence in ℓ1 converging to 𝑢 in weak-star topology. Then, for every 𝑤 ∈ ℓ1,   

 𝑄(𝑤) = 𝑄(𝑢) + ‖𝑤 − 𝑢‖1 

where  

   𝑄(𝑤) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑢𝑛 − 𝑤‖1. 

Note that our scalar field in this study will be real numbers although Çolak [6] considers complex values of 𝑣 =

(𝑣𝑛)𝑛 while introducing his structer of the difference sequence which is taken as the fundamental concept in this 

study. 

 

2. Main Results 

In this section, we will present our results. As mentioned in the first section, we investigate Goebel and 

Kuzmunow analogy for the space 𝑊1
𝑚 for each 𝑚 ∈ ℕ. We aim to show that there is a large class of cbc subsets 

in 𝑊1
𝑚 such that every nonexpansive invariant mapping defined on the subsets in the class taken has a fixed 

point. Recall that the invariant mappings have the same domain and the range. Note that we will assume that 𝑟 ∈

ℝ is arbitrary due to the definition of the space. 

First, due to isometric isomorphism, using Lemma 1.2, we will provide the straight analogous result as a lemma 

below which will be a key step as in the works such as [15], and [12] and in fact the methods in the study [12] 

will be our lead in this work. 

Lemma 2.1 Let 𝑚 ∈ ℕ and {𝑢𝑛} be a sequence in the Banach space 𝑊1
𝑚 and assume {𝑢𝑛} converges to 𝑢 in 

weak-star topology. Then, for every 𝑤 ∈ 𝑊1
𝑚,  

 𝑄(𝑤) = 𝑄(𝑢) + ‖𝑤 − 𝑢‖~
(𝑚) 

 where  

   𝑄(𝑤) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑢𝑛 − 𝑤‖~
(𝑚). 

Then, we obtain our results by the following theorems. 

Theorem 2.2 Fix 𝑚 ∈ ℕ , 𝑟 ∈ ℝ  and 𝑡 ∈ (0,1) . Let (𝑓𝑛)𝑛∈ℕ  be a sequence defined by 𝑓1: = 𝑡  𝑣1  𝑒1 , 𝑓2: =

𝑡2𝑚−𝑟  𝑣2  𝑒2, and 𝑓𝑛: = 𝑛𝑚−𝑟𝑣𝑛𝑒𝑛 for all integers 𝑛 ≥ 3 where the sequence (𝑒𝑛)𝑛∈ℕ is the canonical basis of 

both 𝑐0 and ℓ1. Then, consider the cbc subset 𝐸(𝑚) = 𝐸𝑡
(𝑚) of 𝑊1

𝑚 by  

𝐸(𝑚) ≔ {∑

∞

𝑛=1

𝛼𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝛼𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛼𝑛 = 1}  . 

Then, 𝐸(𝑚) has the fixed point property for ‖  .  ‖~
(𝑚)-nonexpansive mappings.  

Proof. Fix 𝑚 ∈ ℕ, 𝑟 ∈ ℝ and 𝑡 ∈ (0,1). Let 𝑇: 𝐸(𝑚) → 𝐸(𝑚) be a ‖  .  ‖~
(𝑚)-nonexpansive mapping. Then, there 

exists a sequence so called aproximate fixed point sequence (𝑢(𝑛))
𝑛∈ℕ

∈ 𝐸(𝑚) such that ‖𝑇𝑢(𝑛) − 𝑢(𝑛)‖
~

(𝑚)
→
𝑛

0. 

Due to isometric isomorphism, 𝑊1
𝑚  shares common geometric properties with ℓ1  and so both 𝑊1

𝑚  and its 

predual have similar fixed point theory properties to ℓ1 and 𝑐0, respectively. Thus, considering that on bounded 

subsets the weak star topology on ℓ1  is equivalent to the coardinate-wise convergence topology, and 𝑐0  is 

separable, in 𝑊1
𝑚, the unit closed ball is weak*-sequentially compact due to Banach-Alaoglu theorem. Then, we 

can say that we may denote the weak* closure of the set 𝐸(𝑚) by  
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𝐶(𝑚) ≔ 𝐸(𝑚)
𝑤∗

= {∑

∞

n=1

𝛼𝑛𝑓𝑛:  𝑒𝑎𝑐ℎ  𝛼𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛼𝑛 ≤ 1} 

and without loss of generality, we may pass to a subsequence if necessary and get a weak* limit 𝑢 ∈ 𝐶(m) of 

𝑢(𝑛). Then, by Lemma 2.1, we have a function 𝑟: 𝑊1
𝑚 → [0, ∞) defined by  

 𝑄(𝑤) = limsup
𝑛

‖𝑢(𝑛) − 𝑤‖
~

(𝑚)
  ,    ∀𝑤 ∈ 𝑊1

𝑚 

such that for every 𝑤 ∈ 𝑊1
𝑚,  

 𝑄(𝑤) = 𝑄(𝑢) + ‖𝑢 − 𝑤‖~
(𝑚). 

Case 1. 𝑢 ∈ 𝐸(𝑚). 

Then, 𝑟(𝑇𝑢) = 𝑟(𝑢) + ‖𝑇𝑢 − 𝑢‖~
(𝑚) and   

 𝑄(𝑇𝑢) = limsup
𝑛

‖𝑇𝑢 − 𝑢(𝑛)‖
~

(𝑚)
≤ limsup

𝑛
‖𝑇𝑢 − 𝑇(𝑢(𝑛))‖

~

(𝑚)
+ limsup

𝑛
‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖

~

(𝑚)
 

                              ≤ limsup
𝑛

‖𝑢 − 𝑢(𝑛)‖
~

(𝑚)
+ 0 = 𝑄(𝑢).                                    (1) 

Thus, 𝑄(𝑇𝑢) = 𝑄(𝑢) + ‖𝑇𝑢 − 𝑢‖~
(𝑚) ≤ 𝑟(𝑢) and so ‖𝑇𝑢 − 𝑢‖~

(𝑚) = 0. Therefore, 𝑇𝑢 = 𝑢. 

Case 2. 𝑢 ∈ 𝐶(𝑚)\𝐸(𝑚). 

Then, we may find scalars satisfying 𝑢 = ∑∞
𝑛=1 𝛿𝑛𝑓𝑛    such  that    ∑∞

𝑛=1 𝛿𝑛 < 1    𝑎𝑛𝑑    𝛿𝑛 ≥ 0, ∀𝑛 ∈ ℕ. 

Define 𝜉: = 1 − ∑∞
𝑛=1 𝛿𝑛 and for 𝛽 ∈ [

−𝛿1

𝜉
,

𝛿2

𝜉
+ 1] define  

ℎ𝛽: = (𝛿1 + 𝛽𝜉)𝑓1 + (𝛿2 + (1 − 𝛽)𝜉)𝑓2 + ∑

∞

𝑛=3

𝛿𝑛𝑓𝑛. 

Then,  

‖ℎ𝛽 − 𝑢‖
~

(𝑚)
= ‖𝛽𝑡𝜉𝑣1𝑒1 + (1 − 𝛽)𝜉𝑡  𝑣22m−r𝑒2‖~

(𝑚) = 𝑡|𝛽|𝜉 + 𝑡|1 − 𝛽|𝜉. 

‖ℎ𝛽 − 𝑢‖
~

(𝑚)
 is minimized for 𝛽 ∈ [0,1] and its minimum value would be 𝑡𝜉. 

Now fix 𝑤 ∈ 𝐸(𝑚). Then, we may find scalars satisfying 𝑤 = ∑∞
𝑛=1 𝛼𝑛𝑓𝑛 such that ∑∞

𝑛=1 𝛼𝑛     = 1 with 𝛼𝑛 ≥

0,    ∀𝑛 ∈ ℕ. We may also write each 𝑓𝑘 with coefficients 𝛾𝑘 for each 𝑘 ∈ ℕ where 𝛾1: = 𝑡  𝑣1, 𝛾2: = 𝑡 2𝑚−𝑟  𝑣2, 

and 𝛾𝑛: = 𝑛𝑚−𝑟𝑣𝑛 for all integers 𝑛 ≥ 3 such that for each 𝑛 ∈ ℕ, 𝑓𝑛 = 𝛾𝑛𝑒𝑛. 

Then,   

‖w − 𝑢‖(𝑚) = ‖∑

∞

𝑘=1

𝛼𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛿𝑘𝑓𝑘‖

(𝑚)

 

                        = ‖∑

∞

𝑘=1

𝛼𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛿𝑘𝑓𝑘‖

(𝑚)

 

                = ‖∑

∞

𝑘=1

(𝛼𝑘 − 𝛿𝑘)𝑓𝑘‖

(𝑚)

 

                      = ∑

∞

𝑘=1

|(𝛼𝑘 − 𝛿𝑘)
𝛾𝑘

𝑘𝑚−𝑟𝑣𝑘

|  . 

 

Hence,   

‖w − 𝑢‖(𝑚) ≥ ∑

∞

𝑘=1

𝑡  |𝛼𝑘 − 𝛿𝑘| 

                          ≥ 𝑡 |∑

∞

𝑘=1

(𝛼𝑘 − 𝛿𝑘)| 

                    = 𝑡 |1 − ∑

∞

𝑘=1

𝛿𝑘| 

= 𝑡𝜉. 
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Hence,  

‖w − 𝑢‖(𝑚) ≥ 𝑡𝜉 = ‖ℎ𝛽 − 𝑢‖
(𝑚)

 

and the equality is obtained if and only if (1 − 𝑡) ∑∞
𝑘=3 |𝛼𝑘 − 𝛿𝑘| = 0; that is, we have ‖w − 𝑢‖~

(𝑚) = 𝑡𝜉 if and 

only if 𝛼𝑘 = 𝛿𝑘 for every 𝑘 ≥ 3; or say, ‖w − 𝑢‖~
(𝑚) = 𝑡𝜉 if and only if w = ℎ𝛽 for some 𝛽 ∈ [0,1]. 

Then, there exists a continuous function 𝜌:  [0,1] → 𝐸(𝑚)  defined by 𝜌(𝛽) = ℎ𝛽  and Λ𝜌([0,1]) is a compact 

convex subset and so ‖w − 𝑢‖~
(𝑚) achieves its minimum value at w = ℎ𝛽 and for any h𝛽 ∈ Λ, we get   

𝑄(ℎ𝛽) = 𝑄(𝑢) + ‖ℎ𝛽 − 𝑢‖
~

(𝑚)
             

    ≤ 𝑄(𝑢) + ‖𝑇ℎ𝛽 − 𝑢‖
~

(𝑚)
 

                            = 𝑄(𝑇ℎ𝛽) = limsup
𝑛

‖𝑇ℎ𝛽 − 𝑢(𝑛)‖
~

(𝑚)
 

 then, like the inequality (1), we get   

𝑄(ℎ𝛽) ≤ limsup
𝑛

‖𝑇ℎ𝛽 − 𝑇(𝑢(𝑛))‖
~

(𝑚)
+ limsup

𝑛
‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖

~

(𝑚)
 

≤ limsup
𝑛

‖ℎ𝛽 − 𝑢(𝑛)‖
~

(𝑚)
+ limsup

𝑛
‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖

~

(𝑚)
 

≤ limsup
𝑛

‖ℎ𝛽 − 𝑢(𝑛)‖
~

(𝑚)
+ 0 = 𝑄(ℎ𝛽).                               

Hence, 𝑟(ℎ𝛽) ≤ 𝑄(𝑇ℎ𝛽) ≤ 𝑟(ℎ𝛽) and so 𝑄(𝑇ℎ𝛽) = 𝑄(ℎ𝛽). 

Therefore,  

𝑄(𝑢) + ‖𝑇ℎ𝛽 − 𝑢‖
~

(𝑚)
= 𝑄(𝑢) + ‖ℎ𝛽 − 𝑢‖

~

(𝑚)
. 

Thus, ‖𝑇ℎ𝛽 − 𝑢‖
~

(𝑚)
= ‖ℎ𝛽 − 𝑢‖

~

(𝑚)
 and so 𝑇ℎ𝛽 ∈ Λ but this shows 𝑇(Λ) ⊆ Λ and using Schauder’s fixed point 

theorem [27] easily we get the result 𝑇 has a fixed point since 𝑇 is continuous; thus, ℎ𝛽 is the unique minimizer 

of ‖w − 𝑢‖~
(𝑚)    ∶ 𝑤 ∈ 𝐸(𝑚) and 𝑇ℎ𝛽 = ℎ𝛽. 

Therefore, 𝐸(𝑚) has the fixed point property for nonexpansive mappings.  

Theorem 2.3 Fix 𝑚 ∈ ℕ , 𝑟 ∈ ℝ  and 𝑡 ∈ (0,1) . Let (𝑓𝑛)𝑛∈ℕ  be a sequence defined by 𝑓1: = 𝑡  𝑣1  𝑒1 , 𝑓2: =

𝑡 2𝑚−𝑟  𝑣2  𝑒2, 𝑓3: = 𝑡 3𝑚−𝑟 𝑣3  𝑒3, and 𝑓𝑛: = 𝑛𝑚−𝑟𝑣𝑛𝑒𝑛 for all integers 𝑛 ≥ 4 where the sequence (𝑒𝑛)𝑛∈ℕ is the 

canonical basis of both 𝑐0 and ℓ1. Then, consider the cbc subset 𝐸(𝑚) = 𝐸𝑡
(𝑚) of 𝑊1

𝑚 by  

𝐸(𝑚) ≔ {∑

∞

𝑛=1

𝛼𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝛼𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛼𝑛 = 1}  . 

Then, 𝐸(𝑚) has the fixed point property for ‖  .  ‖~
(𝑚)-nonexpansive mappings.  

Proof. Fix 𝑚 ∈ ℕ, 𝑟 ∈ ℝ and 𝑡 ∈ (0,1). Let 𝑇: 𝐸(𝑚) → 𝐸(𝑚) be a ‖  .  ‖~
(𝑚)-nonexpansive mapping. Then, there 

exists a sequence so called aproximate fixed point sequence (𝑢(𝑛))
𝑛∈ℕ

∈ 𝐸(𝑚) such that ‖𝑇𝑢(𝑛) − 𝑢(𝑛)‖
~

(𝑚)
→
𝑛

0. 

Due to isometric isomorphism, 𝑊1
𝑚  shares common geometric properties with ℓ1  and so both 𝑊1

𝑚  and its 

predual have similar fixed point theory properties to ℓ1 and 𝑐0, respectively. Thus, considering that on bounded 

subsets the weak star topology on ℓ1  is equivalent to the coardinate-wise convergence topology and 𝑐0  is 

separable, in 𝑊1
𝑚, the unit closed ball is weak*-sequentially compact due to Banach-Alaoğlu theorem. Then, we 

can say that we may denote the weak* closure of the set 𝐸(m) by  

𝐶(𝑚): = 𝐸(𝑚)
𝑤∗

= {∑

∞

n=1

𝛼𝑛𝑓𝑛:  𝑒𝑎𝑐ℎ  𝛼𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛼𝑛 ≤ 1} 

and without loss of generality, we may pass to a subsequence if necessary and get a weak* limit 𝑢 ∈ 𝐶(m) of 

𝑢(𝑛). Then, by Lemma 2.1, we have a function 𝑟: 𝑊1
𝑚 → [0, ∞) defined by  

 𝑄(𝑤) = limsup
𝑛

‖𝑢(𝑛) − 𝑤‖
~

(𝑚)
  ,    ∀𝑤 ∈ 𝑊1

𝑚 

such that for every 𝑤 ∈ 𝑊1
𝑚,  

 𝑄(𝑤) = 𝑄(𝑢) + ‖𝑢 − 𝑤‖~
(𝑚). 

 Case 1. 𝑢 ∈ 𝐸(𝑚). 

Then, 𝑟(𝑇𝑢) = 𝑟(𝑢) + ‖𝑇𝑢 − 𝑢‖~
(𝑚) and   
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 𝑄(𝑇𝑢) = limsup
𝑛

‖𝑇𝑢 − 𝑢(𝑛)‖
~

(𝑚)
≤ limsup

𝑛
‖𝑇𝑢 − 𝑇(𝑢(𝑛))‖

~

(𝑚)
+ limsup

𝑛
‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖

~

(𝑚)
 

                              ≤ limsup
𝑛

‖𝑢 − 𝑢(𝑛)‖
~

(𝑚)
+ 0 = 𝑄(𝑢).                                                                 (2) 

Thus, 𝑄(𝑇𝑢) = 𝑄(𝑢) + ‖𝑇𝑢 − 𝑢‖~
(𝑚) ≤ 𝑟(𝑢) and so ‖𝑇𝑢 − 𝑢‖~

(𝑚) = 0. Therefore, 𝑇𝑢 = 𝑢. 

 Case 2. 𝑢 ∈ 𝐶(𝑚)\𝐸(𝑚). 

Then, we may find scalars satisfying 𝑢 = ∑∞
𝑛=1 𝛿𝑛𝑓𝑛    such  that    ∑∞

𝑛=1 𝛿𝑛 < 1    𝑎𝑛𝑑    𝛿𝑛 ≥ 0, ∀𝑛 ∈ ℕ. 

Define 𝜉: = 1 − ∑∞
𝑛=1 𝛿𝑛 and for 𝛽 ∈ [

−𝛿1

𝜉
,

𝛿2

𝜉
+ 1], define  

h𝛽: = (𝛿1 +
𝛽

2
𝜉) 𝑓1 + (𝛿2 +

𝛽

2
𝜉) 𝑓2 + (𝛿3 + (1 − 𝛽)𝜉)𝑓3 + ∑

∞

𝑛=4

𝛿𝑛𝑓𝑛. 

Then,  

‖ℎ𝛽 − 𝑢‖
~

(𝑚)
= ‖

𝛽

2
𝑡𝜉𝑣1𝑒1 +

𝛽

2
𝑡𝜉2𝑚−𝑟𝑣2𝑒2 + (1 − 𝛽)𝜉𝑡 3𝑚−𝑟 𝑣3𝑒3‖

~

(𝑚)

 

= 𝑡 |
𝛽

2
| 𝜉 + 𝑡 |

𝛽

2
| 𝜉 + 𝑡|1 − 𝛽|𝜉. 

‖ℎ𝛽 − 𝑢‖
~

(𝑚)
 is minimized for 𝛽 ∈ [0,1] and its minimum value would be 𝑡𝜉. 

Now fix 𝑤 ∈ 𝐸(𝑚). Then, we may find scalars satisfying 𝑤 = ∑∞
𝑛=1 𝛼𝑛𝑓𝑛 such that ∑∞

𝑛=1 𝛼𝑛     = 1 with 𝛼𝑛 ≥

0,    ∀𝑛 ∈ ℕ. We may also write each 𝑓𝑘 with coefficients 𝛾𝑘 for each 𝑘 ∈ ℕ where 𝛾1: = 𝑡  𝑣1, 𝛾2: = 𝑡2𝑚−𝑟  𝑣2, 

𝛾3: = 𝑡3𝑚−𝑟  𝑣3, and 𝛾𝑛: = 𝑛𝑚−𝑟𝑣𝑛 for all integers 𝑛 ≥ 4 such that for each 𝑛 ∈ ℕ, 𝑓𝑛 = 𝛾𝑛𝑒𝑛. 

Then,   

‖w − 𝑢‖(𝑚) = ‖∑

∞

𝑘=1

𝛼𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛿𝑘𝑓𝑘‖

(𝑚)

 

= ‖∑

∞

𝑘=1

𝛼𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛿𝑘𝑓𝑘‖

(𝑚)

     

= ‖∑

∞

𝑘=1

(𝛼𝑘 − 𝛿𝑘)𝑓𝑘‖

(𝑚)

             

= ∑

∞

𝑘=1

|(𝛼𝑘 − 𝛿𝑘)
𝛾𝑘

𝑘𝑚−𝑟𝑣𝑘

|        

≥ ∑

∞

𝑘=1

𝑡  |𝛼𝑘 − 𝛿𝑘|                       

≥ 𝑡 |∑

∞

𝑘=1

(𝛼𝑘 − 𝛿𝑘)|                    

= 𝑡 |1 − ∑

∞

𝑘=1

𝛿𝑘|                          

= 𝑡𝜉.                                                       

Hence,  

‖w − 𝑢‖(𝑚) ≥ 𝑡𝜉 = ‖ℎ𝛽 − 𝑢‖
(𝑚)

 

 and the equality is obtained if and only if (1 − 𝑡) ∑∞
𝑘=4 |𝛼𝑘 − 𝛿𝑘| = 0; that is, we have ‖w − 𝑢‖~

(𝑚) = 𝑡𝜉 if and 

only if 𝛼𝑘 = 𝛿𝑘 for every 𝑘 ≥ 3; or say, ‖w − 𝑢‖~
(𝑚) = 𝑡𝜉 if and only if w = ℎ𝛽 for some 𝛽 ∈ [0,1]. 

Then, there exists a continuous function 𝜌:  [0,1] → 𝐸(𝑚)  defined by 𝜌(𝛽) = ℎ𝛽  and Λ𝜌([0,1]) is a compact 

convex subset and so ‖w − 𝑢‖~
(𝑚) achieves its minimum value at w = ℎ𝛽 and for any h𝛽 ∈ Λ, we get   

 𝑄(ℎ𝛽) = 𝑄(𝑢) + ‖ℎ𝛽 − 𝑢‖
~

(𝑚)
 

 ≤ 𝑄(𝑢) + ‖𝑇ℎ𝛽 − 𝑢‖
~

(𝑚)
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 = 𝑄(𝑇ℎ𝛽) = limsup
𝑛

‖𝑇ℎ𝛽 − 𝑢(𝑛)‖
~

(𝑚)
 

 then same as the inequality (2), we get   

𝑄(ℎ𝛽) ≤ limsup
𝑛

‖𝑇ℎ𝛽 − 𝑇(𝑢(𝑛))‖
~

(𝑚)
+ limsup

𝑛
‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖

~

(𝑚)
 

≤ limsup
𝑛

‖ℎ𝛽 − 𝑢(𝑛)‖
~

(𝑚)
+ limsup

𝑛
‖𝑢(𝑛) − 𝑇(𝑢(𝑛))‖

~

(𝑚)
 

≤ limsup
𝑛

‖ℎ𝛽 − 𝑢(𝑛)‖
~

(𝑚)
+ 0 = 𝑄(ℎ𝛽).                               

Hence, 𝑟(ℎ𝛽) ≤ 𝑄(𝑇ℎ𝛽) ≤ 𝑟(ℎ𝛽) and so 𝑄(𝑇ℎ𝛽) = 𝑄(ℎ𝛽). 

Therefore,  

𝑄(𝑢) + ‖𝑇ℎ𝛽 − 𝑢‖
~

(𝑚)
= 𝑄(𝑢) + ‖ℎ𝛽 − 𝑢‖

~

(𝑚)
. 

Thus, ‖𝑇ℎ𝛽 − 𝑢‖
~

(𝑚)
= ‖ℎ𝛽 − 𝑢‖

~

(𝑚)
 and so 𝑇ℎ𝛽 ∈ Λ but this shows 𝑇(Λ) ⊆ Λ and using Schauder’s fixed point 

theorem [27] we can easily we get the result 𝑇 has a fixed point since 𝑇 is continuous. Thus, ℎ𝛽 is the unique 

minimizer of ‖w − 𝑢‖~
(𝑚)    ∶ 𝑤 ∈ 𝐸(𝑚) and 𝑇ℎ𝛽 = ℎ𝛽. 

Therefore, 𝐸(𝑚) has the fixed point property for nonexpansive mappings. 

 

3. Conclusion 

As it has been mentioned in earlier sections of the study, investigating and looking for large classes of closed, 

bounded and convex subsets in Banach spaces alike the Banach spaces of absolutely summable scalars are 

center of interests for many fixed point theorists. One can investigate to get larger classes for more general 

spaces than those in the present study and due to isometry, that would not be hard by following the ideas of 

Goebel and Kuczumows. However, trying to generalize their ideas and looking for different examples of the sets 

and spaces would be valuable studies.  
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