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1. Introduction  

By  H U , we will denote the class of analytic functions in the open unit disk  : 1U z z    of the 

complex plane . Let A  be the class of the functions  f H U  given by series expansions   
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              (1.1) 

The subclass of A , which are univalent functions in U  is denoted by S  in the literature. The class S was 

introduced by Köebe [1] first time and has become the core ingredient of advanced research in this field. After a 

short time, in 1916 Bieberbach [2] published a paper in which the coefficient hypothesis was proposed. This 

hypothesis states that if f S  and has the series form (1.1), then na n  for each 2.n  There are many 

articles in the literature regarding to this  hypothesis (see [3-14]).   

It is well known that the starlike and convex function classes in the open unit disk U  are defined analytically as 

follows and denoted by 
*S  and C , respectively 
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. 

Let’s  ,f g H U , then it is said that f  is subordinate to g  and denoted by f g , if there exists a 

Schwartz function  , such that     .f z g z  

In the past few years, numerous subclasses of the class S  have been introduced as special choices of the classes 
*S  and C  (see for example [4,  8-21]).  

 

2. Materials and Methods 

In this section, we will give some definitions and basic information. 

Now, let's we define new subclass of univalent functions defined in the open unit disk U . 

Definition 2.1. For  0,1   and 
1

2
   the function f S  is said to be in the class  sinh , ,   if the 

following condition is satisfied 
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. 

In the special values of the parameters   and   from the Definition 2.1, we have the following classes of 

univalent functions. 

Definition 2.2. For 
1

2
   the function f S  is said to be in the class  *

sinhS  , if the following condition is 

satisfied 

  
 

1 sinh ,  
z f z

z z U
f z




  . 

Definition 2.3. For 
1

2
   the function f S  is said to be in the class  sinhC  , if the following condition is 

satisfied 

  

 
1 sinh ,  

zf z

z z U
f z


 
    


. 

Definition 2.4. For  0,1   the function f S  is said to be in the class  sinh  , if the following condition 

is satisfied 

 
  
 

  
 

1 1 sinh ,  
z f z zf z

z z U
f z f z

 

 
   


. 

Let   be the class of analytic functions in U  satisfied the conditions  0 1p   and   Re 0,p z  .z U  

From these conditions, we have 

  2 3

1 2 3
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1 1 ,  n

n

n

p z p z p z p z p z z U




                       (2.1)                  

for p .  

The class   defined above is known as the class Caratheodory functions [22] in the literature.  

Now, let us give some necessary lemmas for the proof of our main results.   

Lemma 2.1 ([23). Let the function p  belong to the class  . Then,  

2np   for each n , 2n k n kp p p    for  ,  ,   and 0,1n k n k    . 

The equalities hold for the function  

 
1

1

z
p z

z





. 

Lemma 2.2 ([23]) Let the an analytic function p  be of the form (2.1), then 

 2 2

2 1 12 4p p p x   , 

      23 2 2 2 2

3 1 1 1 1 1 14 2 4 4 2 4 1p p p p x p p x p x y         

for some ,x y  with 1 and 1x y  . 

In this paper, we give some coefficient estimates and solve Fekete-Szegö problem for the class  sinh ,   . 

Additionally, the results obtained in our study are compared with the results available in the literature. 
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3. Results & Discussion 

In this section, we give some coefficient estimates for the functions belonging to the class  sinh ,    and solve 

Fekete-Szegö problem for this class. 

Theorem 3.1. Let the function f  given by series expansions (1.1) belong to the class    sinh ,   . Then, we 

have the following estimates  
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  (3.1) 

Proof. Let  sinh ,f    , then exists a Schwartz function :U U  , such that 

 
  
 

  

 
 1 1 sinh
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z
f z f z





  

 
      


, z U .    (3.2) 

Let’s the function p P  defined as follows: 
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 .   (3.3) 

It follows from that 
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.  (3.4) 

If we perform the necessary operations in the left side of the equalities (3.2), take into account the expressions 

(3.4) and use the series expansion of the sinh  function, we obtain the following equality 
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   (3.5) 

Comparing the coefficients of the same degree terms on the right and left sides of the equalities (3.5), we obtain 

the following equalities 

  
1

2
2 2 1 1

p
a

 


 
,        

2
2 2 2 1

3 23 1 1 2 2 4 1 1 3
2 4

p p
a a            .  (3.6) 

Applying Lemma 2.1 to the first equality of (3.6), we obtain the first estimate of (3.1). 

From the second equality of the equalities (3.6), we obtain  

  

  

   

22
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. 

Then, using the Lemma 2.2, we can write 
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    (3.7) 

for some x  with 1x  .  

Applying triangle inequality to the last equality, we get 
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,    (3.8) 

where x   and 1t p . 

From the inequality (3.8), can written 
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.  (3.9) 

Then, if we maximize the function 
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if       
2 222 4 1 1 3 2 1 1          . 

With this, the proof of the second estimate of the theorem is provided. 

Thus, the proof of the theorem is completed. 

In the cases 0  , 1   and 1   from the Theorem 3.1, we obtain the following results. 

Corollary 3.1. If  *

sinhf S  , then   
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Corollary 3.2. If  sinhf C  , then   
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 Corollary 3.3. If  sinhf   , then   
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. 

Now, we give the following theorem on the solution of the Fekete-Szegö problem for the class  sinh ,   . 

 Theorem 3.2. Let  sinh ,f     and    , then 
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(3.10) 

Proof. Let  sinh ,f     and   , then from the first equality of the equalities (3.6) and (3.7), we can 

write 
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for some x  with 1x  .   

Applying triangle inequality to the equality (3.11), we obtain 
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(3.12) 

By maximizing the function  : 0,2   defined as follows 
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Thus, the proof of theorem is completed. 

Taking 0  , 1   and 1   in the Theorem 3.2, we obtain the following results. 

Corollary 3.4. If  *

sinhS   and   , then 
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Corollary 3.5. If  sinhf C   and   , then 
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Corollary 3.6. If  sinhf    and   , then 
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Also, taking 0   and 1   in the Theorem 3.2, we obtain the following results. 

Corollary 3.7. If  sinh ,f    , then 

   

      

  

   

      

2 22

2

3

2 2

2 22

1              

2 4 1 1 3 2 1 1 ,

1
2 4 1 1 3

3 1 1 2    
2 1 1

2 4 1 1 3 2 1 1 .

if

a
if

    

  
 

 

    




     


   
  

 


     

 

Corollary 3.8. If  sinh ,f    , then 
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. 

Remark 3.1. We note that Corollary 3.7 confirms the second result of Theorem 3.1. 

In the case   , we can prove the following theorem similarly to the proof of the Theorem 3.2.  

Theorem 3.3. Let  sinh ,f     and   . Then, 
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