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Abstract: In this paper, we defined a new subclass of starlike and convex univalent functions and examined some
geometric properties this function class. For this definition class, we gave some coefficient estimates and solve
Fekete-Sezoge problem.

Keywords: Starlike function, convex function, univalent function, pseudo-starlike function, pseudo-convex
function

1. Introduction
By H (U ) we will denote the class of analytic functions in the open unit disk U = {Z eC: |Z| <1} of the

complex plane C. Let A be the class of the functions f € H (U) given by series expansions

f(z)=z+a,z°+a.2®+a,2*+--+a z"+---=z+ > az" a eC 1.1
2 3 4 n n n

The subclass of A, which are univalent functions in U is denoted by S in the literature. The class S was
introduced by Koebe [1] first time and has become the core ingredient of advanced research in this field. After a
short time, in 1916 Bieberbach [2] published a paper in which the coefficient hypothesis was proposed. This

hypothesis states that if f € S and has the series form (1.1), then |an| <n for each N> 2. There are many

articles in the literature regarding to this hypothesis (see [3-14]).
It is well known that the starlike and convex function classes in the open unit disk U are defined analytically as

follows and denoted by S and C, respectively

. (N £'(z))
S = feS:ReZ—(Z)>O,ZeU and C = feS:ReM>O,ZeU
f(2) t'(2)
Let's f,ge H(U), then it is said that f is subordinate to g and denoted by f < @, if there exists a

Schwartz function @ , such that f (Z) =g (a)(Z))

In the past few years, numerous subclasses of the class S have been introduced as special choices of the classes
S"and C (see for example [4, 8-21]).

2. Materials and Methods
In this section, we will give some definitions and basic information.
Now, let's we define new subclass of univalent functions defined in the open unit disk U .

1
Definition 2.1. For ﬁE[O,l] and A >E the function f €S is said to be in the class Y, (,B,/l), if the

following condition is satisfied
ﬁﬂk
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p

’
z(f'(z))l [(Zf (Z))}
f(2) f'(2)
In the special values of the parameters  and A from the Definition 2.1, we have the following classes of
univalent functions.

<1+sinhz, zeU.

(1-75) +p

Definition 2.2. For 4 > 3 the function f €S is said to be in the class S,

(ﬂ,), if the following condition is

satisfied

<1+sinhz, zeU.

1
Definition 2.3. For A4 > E the function f €S is said to be in the class Csmh (l) if the following condition is

satisfied
A

[( zf '(z))'}
()
Definition 2.4. For 3 € [0,1] the function f €S issaid to be inthe class Y, (ﬂ) if the following condition
is satisfied

<1+sinhz, zeU .

7 f'(z))
(1(2), (2 (2)

f(z) t'(2)
Let P be the class of analytic functions in U satisfied the conditions P (0) =1 and Re( p(Z)) >0, zeU.
From these conditions, we have

<1+sinhz, zeU .

()

p(z)=1+pz+ p,z2 + pz° +---=1+ > p,2", zeU @.1)
n=1
for peP.

The class P defined above is known as the class Caratheodory functions [22] in the literature.
Now, let us give some necessary lemmas for the proof of our main results.

Lemma 2.1 ([23). Let the function p belong to the class P. Then,
|pn|£ 2 foreach ne N, |pn—vpkpn_k|£2 forn, keN, n>k and ve[O,l].

The equalities hold for the function
_1+z

p(z)=—.
Lemma 2.2 ([23]) Let the an analytic function P be of th%a;ofm (2.1), then
2p, = p; +(4-p7 )x,
ap, =p; +2(4-p;7 ) px—(4- pf) pX* +2(4- pf)(l—|x|2)y
for some X,y € C with x| <land |y|<1.

In this paper, we give some coefficient estimates and solve Fekete-Szegd problem for the class K, ( ﬂ ) ﬂ).
Additionally, the results obtained in our study are compared with the results available in the literature.
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3. Results & Discussion

In this section, we give some coefficient estimates for the functions belonging to the class ¥y, (,B, /1) and solve
Fekete-Szego problem for this class.

Theorem 3.1. Let the function f given by series expansions (1.1) belong to the class Y, (,3, /1) . Then, we
have the following estimates

|a2|SW1(1+ﬂ) and

1 if

247 —42+1)(1+38) < (24-1) (1+ )’

247 — 424 +1/(1+3p) . (3.0)
(22-1)° (1+ )’

247 —42+1)(1+38) 2 (24-1) (1+ ).

1
&< G2

Proof. Let f € g (3,4, then exists a Schwartz function @:U —U , such that

) [

1- + =1+sinhw(z),z€U. 3.2
Let’s the function P € P defined as follows:
1+ w(2) X . e
)=——2L=1+p,z z +..=1 2", zeU. 3.3
p(2) () LrRITPZ RIS +nZ:;pn c (33)
It follows from that
z)-1
w(2)=28+1 % Z[pz—%} +—[p3 PP, — ﬂ] Z.,zeU. (34)

If we perform the necessary operations in the left side of the equalities (3.2), take into account the expressions
(3.4) and use the series expansion of the SINh function, we obtain the following equality

(1-B){1+a, (24-1) 2+((32-1)a +(24° 42 +1)aZ ) 2* +-|

+B{1+23,(22-1)2+(3(32-1)a, +(84° ~164+4)af ) 2" +-- (3.5)

2
4P, [P P 22+, zeU.
2 2 4

Comparing the coefficients of the same degree terms on the right and left sides of the equalities (3.5), we obtain

the following equalities
2

_ Py _ ) . P
= )1 ) (34-1)(1+28)a, +(24* ~44+1)(1+3B)a; R (36)

Applying Lemma 2.1 to the first equality of (3.6), we obtain the first estimate of (3.1).
From the second equality of the equalities (3.6), we obtain

1 p2 p_f_(2/12—4l+1)(1+3ﬂ)
(3A-1)(1+28)| 2 4 4(24-17(1+ )

Then, using the Lemma 2.2, we can write

2

Py

a; =

ryi%
IR
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1 Pplz (247 -42+1)(1+3p) 2]

= X 3.7
STEene2s)| 4 s @esy 0
for some X € C with |X| <1
Applying triangle inequality to the last equality, we get
1 4-t2 |24 -42+1(1+38) ,
|a;| < + . —t (3.8)
(34-1)(1+25)| 4 4(24-1) (1+B)
where §=|X| and t=|p1|.
From the inequality (3.8), can written
222 42 +1(1+38) - (24 -1)" (1+ BY’
|ay| < L | I ﬂz ( 2) (1+4) t?+1}, te[0,2]. (3.9)
(34-1)(1+2p) 4(24-1) (1+ B)
Then, if we maximize the function
247 =42 +1(1+38)-(24-1) (1+ B)’
(0] i ) o ) NG RSP
4(22-1)"(1+ )
it can easily be seen that y (t) <1, if ‘222—4/1+1‘(1+3,B)£(22,—1)2 (1+ﬂ)2 and
247 —42+1(1+3p)
z(t)é‘ 21‘ :
(22-1)"(1+ )
if [24°-44+1/(1+38) = (24-1)" (1+ B)’.
With this, the proof of the second estimate of the theorem is provided.
Thus, the proof of the theorem is completed.
Inthe cases =0, =1 and A =1 from the Theorem 3.1, we obtain the following results.
Corollary 3.1. If f € S;nh (l),then
1 it [247-44+1<(22-1)’,
1
a,|< and |4 < ———1 [24% — 44 +1]
2 22-1 s 31-1 Q if [22°-44+1>(22-1)".
(2/1—1)
Corollary 3.2. 1f f €Cg, (1), then
1 it [22°-44+1<(22-1),
) <5 ano fag < 227 -42+1 :
2(24-1) 3(34-1) | it 242 -42+12(22-1)".
(22-1)

Corollary 3.3.1f f € y,, (/). then

8y < andfay< -t
714 B 2(1+2p)

Now, we give the following theorem on the solution of the Fekete-Szegd problem for the class ¥ (,3, /1) :

Theorem3.2. Let f € x4, (B.4) and e C | then

,
A

s
“Z)

,)
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1 if
(247 - 42+1)(1+38)+ (32 -1)(1+28) 1| < (22-1)° (1+ B,

(247 -42+1)(1+38)+ (32 -1)(1+28) 4
(22-1)° (1+ Y’
(247 - 42+1)(1+38)+ (32 -1)(1+28) 1 2 (22-1)° (1+ B)".

(3.10)
Proof. Let f € yg, (ﬂ,i) and u € C, then from the first equality of the equalities (3.6) and (3.7), we can

oo -] < (32-1)(1+25) if

write

1 {4,012 (247 -42+1)(1438)+ (32 -1)(1+ 28) u

31-1)(1+28)| 4 X 4(2/1_1)2 (1+,3)2 P, }(3.11)

as—ﬂa§=(

for some X € C with |X| <1
Applying triangle inequality to the equality (3.11), we obtain

. {4? ‘(2/12_4/1+l)(l+3,6)+(3/1—1)(1+Zﬂ),u‘tz}

‘as_“az‘g(sz—l)(uzﬂ) 7 ¢t 4(22-1)" (1+ B)

& 6[0,1],
where & = |X| and t = | p1|. From here easily can written
1 \(2/12—4,1+1)(1+3ﬂ)+(3,1—1)(1+25);4—(2,1—1)2(1+/5')2t2 .
31-1)(1+28) 4(22-1)" (1+ Y’ I

\aa—uai\ﬁ(

te [0, 2].
(3.12)
By maximizing the function ¢ [O, 2] — R defined as follows

\(2/12 ~42+1)(1+38)+(32-1)(1+ 2/3);4 —(24-1)° (1+ )’
4(24-1)° (1+B)
we can easily see that (1) <1 if [(24° ~42+1)(1+35) + (34 -1)(1+ 28) | < (22 -1)° (1+ B’

and

t?+1, te[0,2],

o(t)=

(242 —42+1)(1+38)+ (32 -1)(1+28) |
(22-1)" (1+B)’

o(t)<

(247 -42+1)(1+3B) + (34 -1)(1+28) | 2 (22 -1)" (1+ B)".

Thus, the proof of theorem is completed.
Taking f# =0, f=1and A =1 inthe Theorem 3.2, we obtain the following results.

Corollary 3.4. If S;, (4) and 1z € C, then

‘
)

)

2P
=
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1 if
247 — 42 +1+(34-1) | <(22-1)’,
247 42 +1+(32-1) 4
(22-1)°
247 — 42 +1+(32-1) 2 (22-1)’.

‘as /uz‘

31-1 if

Corollary 35. If T €Cyy (4) and e C, then
1 if
[4(24° - 42 +1)+3(32-1) 4 < 4(22-1)’,
la, - waf| < 4(24° - 42+1)+3(32-1) 4
4(22-1)

[4(222 42 +1)+3(32-1) > 4(22-1)".
Corollary 36.1f f € y,, (8) and 1 € C, then

1 it [1+38-2(1+28)u<(1+ ),

-l 5037 ‘Hsﬂ(ﬁg;m) At prap-2@ezp) > pf

Also, taking £ =0 and g =1 in the Theorem 3.2, we obtain the following results.
Corollary 3.7. 1f f € y, (B, 4), then

1
3(32-1) | if

1 if
(247 -42+1)(1+38)| < (24-1)° (1+ B)’,
(242 -42+1)(1+3p)| ;
(22-1)° (1+ B)
(242 -42+1)(1+38)|= (22 -1)° (1+ B)’.

Iaslé(

31-1)(1+28)

Corollary 38. If f € x4, (5, 4), then

1 if

(242 - 42+1)(1+38)+ (32 -1)(1+28)| < (24-1)’ (1+ B),

(247 -42+1)(1+38)+(32-1)(1+2B)
(24-1)" (1+B)’

(242 —42+1)(1+38)+ (32 -1)(1+28)| > (24 -1)’ (1+ B)".

Remark 3.1. We note that Corollary 3.7 confirms the second result of Theorem 3.1.
Inthe case 1 € R, we can prove the following theorem similarly to the proof of the Theorem 3.2.

Theorem 3.3. Let f € 7, (B, 4) and x e R. Then,

la,-a

1
< (32-1)(1+25) if

/)

=)
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1 if
(22-1) (1+ B)" +(24° - 42 +1)(1+3pB)

' (31-1)(L+ 25) SHE
(24-1)" (1+ B) —(24° - 42 +1)(1+3B)
31-1 (34-1)(1+28)

(242 -42+1)(1+38)+(32-1)(1+28) 1 ;

(22-1)° (1+B)

(22-1)" (1+ B)" +(24° - 42 +1)(1+3B)

) (32-1)(1+2) Suspor
» (22-1)° (1+ B)" —(24° —42+1)(1+38)

(32-1)(1+25)

& — wal|<
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