
Available online www.jsaer.com 
 

Journal of Scientific and Engineering Research 

101 

Journal of Scientific and Engineering Research, 2024, 11(1):101-113 

 

    

 
Research Article 

ISSN: 2394-2630 

CODEN(USA): JSERBR  

    

 

Parametric Modelling of Anisotropic Plate Based on Elastic Strip 

Method of Homoginization 
 

Nelson Tombra Akari1, Captain Otto2, Thankgod Ode2 
 
1Department of Civil Engineering, Niger Delta University, Bayelsa State, Nigeria 
2Department of Civil Engineering, Rivers State University. Port Harcourt, Nigeria 

Abstract Analytical modelling of structural anisotropic plate, represented as sandwich plate with corrugated 

cores is presented herein. it entails derivation of analytical models for evaluating in-plane extensional shear 

stiffnesses, out of plane bending stiffnesses, bending moments and deflection for sandwich plates, under 

transverse loading and boundary conditions. The combination of classical laminate theory and axis rotation in a 

smeared structure was adopted to evaluate the mechanical properties and the finite series was implemented to 

determine the structural characteristics. The analytical models are considerably simpler and reliable for handling 

the mechanical and structural behavior of sandwich plates with corrugated cores, compared to the existing 

models, because it reliably reproduced the in-plane extensional shear stiffnesses, out of plane bending and 

twisting stiffnesses, bending moments and deflections of the corrugated sandwich plate with striking accuracy 

when compared with the more refined finite element methods. It is therefore recommended that the proposed 

model be used for modelling of sandwich plate with corrugated cores, particularly the Integrated Thermal 

protection system used for space vehicles, since it is relatively less rigorous with respect to plain strain models 

developed by other researchers. 
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1. Introduction  

Research groups all over the world, are working hard to crate novel materials for construction purposes. When 

compared to monolithic constructions of identical weight, sandwich plates with corrugated cores typically 

exhibit lower bending deflection, high critical buckling loads, high natural frequencies, and larger transverse 

load carrying capacity. This provides a significant advantage in structural utilization. Sandwich construction 

finds application in the transportation and industrial sectors because of these benefits. They are usually used in 

vibration attenuation and sound insulation systems, ship panels, bridge decks, aircraft, grillages, muffin wings, 

storage systems, and packaging sectors. Due to its geometry and material heterogeneity, there are a number of 

analytically challenging techniques for analysing sandwich plates with corrugated cores. Elastic concepts in 

plate analysis are associated with rigorous mathematics. The plastic theories of analysis result in larger sections 

of steel, timber, plastic, and nonferrous concrete as well as over-reinforced sections of reinforced concrete. Due 

to the intricate geometry, numerical modelling of the corrugated sandwich panels is typically expensive. To 

homogenize this clearly heterogeneous construction, a number of homogenization techniques have been 

developed; however, these have increased resource, computational, and time-based constraints. Igor et al. 

(2015), Arthur et al. (2012), Abbes et al. (2010), Talbei et al. (2009), Buannic et al. (2003), Naoki et al. (1995), 

and more works provide a review of several homogenization methods. Huimine et al. (2019), Jian et al. (2018), 

Young Jo et al. (2015), Bartolozzi et al. (2013, 2014), Zheng et al. (2014), Weng et al. (2011), Biancolini et al. 

(2005), Brassoulis et al. (1986), and other works provide further details on the equivalent plate approach. In the 
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same vein, some of the most authoritative works on the elastic method of plate analysis may be found in Orumu 

et al. (2022), Ozdemir (2018), Cheung et al. (1986), Timoshenko et al. (1959), and some other publications. For 

the plastic method of analysis, some reliable sources are Johnarry (1992), Kemp (1971), and Johansen (1962). 

The need for a simplified solution is recognized as a means to address the complexity of these methods and the 

high computational time and cost requirements that go along with them. Here, the plate bi-harmonic equation's 

finite series formulation is employed as an alternative model. The different stiffnesses to be applied in the finite 

series plate model are determined by combining the principles of smearing and parallel axis translation with the 

conventional classical laminate theory. 

 

2. Governing Equations 

2.1 Theoretical Frame Work  

For the sandwich plate with corrugated cores shown in Figure 1, the mechanical properties such as the in-plane 

extensional shear stiffnesses and the out of bending and twisting stiffness from the lamina coordinate axis 

translation to the problem coordinate axis(𝐴𝑖𝑗
∗ , 𝐵𝑖𝑗

∗ , 𝐷𝑖𝑗
∗ ) can be obtained using structural smearing and the 

classical laminate theory approach.  

 

2.2 Constitutive Equations  

The sandwich composite plate with corrugated core depicted in Figure 1, with width in the longitudinal and 

transverse direction (a) and (b) respectively and core spacing (2p), can be modelled into an equivalent plate, 

acted upon by in plane and out plane actions that can be reduced to a unit cell shown in the extreme right corner 

of Figure 2. 

 
Figure 1: Sandwich plate with corrugated core. 
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Figure 2: Cross section showing the sandwich construction modelled into a unit cell 

 

2.2.1 Structural Smearing of The Sandwich Plate with Corrugated Cores 

Structural smearing is an axisymmetric finite element structural analysis technique employed to evaluate the 

mechanical properties of sandwich plate with corrugated cores in the longitudinal, transverse, diagonal and 

twisting directions. Using the structural smearing analogy, the equivalent in-plane extensional stiffness of the 

sandwich plate with corrugated will be, the sum of the In-plane Extensional Stiffness of the individual face 

plates and the corrugated cores.  

Thus 

[𝐴𝑆∗
11]𝑒𝑞𝑢𝑖..  ≈  [𝐴11]𝐹𝑎𝑐𝑒𝑠 +  𝑛 

[𝐴11]
𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠..

𝑎
     (1) 

[𝐴𝑆∗
12]𝑒𝑞𝑢𝑖..  ≈  [𝐴12]𝐹𝑎𝑐𝑒𝑠        (2) 

[𝐴𝑆∗
66𝐽]

𝑒𝑞𝑢𝑖..
 ≈  [𝐴66]𝐹𝑎𝑐𝑒𝑠       (3) 

[𝐴𝑆∗
22]𝑒𝑞𝑢𝑖..  ≈  [𝐴22]𝐹𝑎𝑐𝑒𝑠+ 

[𝐴22]
𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠..

2𝑓
      (4) 

Where [𝐴𝑆∗
𝐼𝐽]

𝑒𝑞𝑢𝑖..
 , [𝐴𝑖𝑗]

𝐹𝑎𝑐𝑒𝑠
 , [𝐴𝑖𝑗]

𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠..
 , [𝐴𝑖𝑗]

 𝑠𝑖𝑛𝑔𝑙𝑒 𝑐𝑜𝑟𝑒𝑠
 and nc are the equivalent in-plane extensional 

shear stiffness matrix of the sandwich plate with corrugated core, equivalent in-plane extensional shear stiffness 

matrix of face plates, equivalent in-plane extensional shear stiffness matrix of the corrugated core, in-plane 

extensional shear stiffness matrix of single core laminate in the problem coordinate axis and the number of 

corrugated cores in the sandwich construction 

Similarly, the bending Stiffness of the sandwich plate with corrugated cores is equivalent to the sum of the 

bending Stiffness of the individual face plates and the corrugated cores. 

Thus 

[𝐷𝑆∗
11]𝑒𝑞𝑢𝑖.. ≈  [𝐷11]𝐹𝑎𝑐𝑒𝑠 +  

[𝐷11]
𝑐𝑜𝑟𝑟𝑢𝑔𝑎𝑡𝑒𝑑 𝑐𝑜𝑟𝑒𝑠

𝑎
     (5) 

[𝐷𝑆∗
12]𝑒𝑞𝑢𝑖.. ≈  [𝐷12]𝐹𝑎𝑐𝑒𝑠        (6) 

[𝐷𝑆∗
66𝐽]

𝑒𝑞𝑢𝑖..
 ≈  [𝐷66]𝐹𝑎𝑐𝑒𝑠       (7) 

[𝐷𝑆∗
22]𝑒𝑞𝑢𝑖..  ≈  [𝐷22]𝐹𝑎𝑐𝑒𝑠+ 

[𝐷22]
𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠..

2𝑓
      (8) 

Where [𝐷𝑆∗
𝐼𝐽]

𝑒𝑞𝑢𝑖..
, [𝐷𝑖𝑗]

𝐹𝑎𝑐𝑒𝑠
 , [𝐷𝑖𝑗]

𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠..
, [𝐷𝑖𝑗]

𝑐𝑜𝑟𝑒𝑠
 and nc are the equivalent out of plane bending and 

twisting stiffness matrix of the sandwich plate with corrugated core, equivalent out of plane bending and 

twisting stiffness matrix of face plates, equivalent out of plane bending and twisting stiffness matrix of the 

corrugated core, out of plane bending and twisting stiffness matrix of single core laminate in the problem 

coordinate axis and the number of corrugated cores in the sandwich construction. 

By integrating the contribution of the corrugated core into equations 1,2,3,4, 5, 6, 7 and 8 employing the parallel 

theory of axis rotation, the in-plane extensional stiffness becomes; 

[𝐴𝑆∗
11]𝑒𝑞𝑢𝑖.. ≈ [𝐴11]𝐹𝑎𝑐𝑒𝑠 +  𝑛 

𝑠𝑐[𝐴′′
𝐼𝐽]

𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠

𝑎
     (9) 

[𝐴𝑆∗
12]𝑒𝑞𝑢𝑖.. ≈  [𝐴66]𝐹𝑎𝑐𝑒𝑠        (10) 

[𝐴𝑆∗
66𝐽]

𝑒𝑞𝑢𝑖..
 ≈ [𝐴66]𝐹𝑎𝑐𝑒𝑠       (11) 

[𝐴𝑆∗
22]𝑒𝑞𝑢𝑖..  ≈  [𝐴22]𝐹𝑎𝑐𝑒𝑠+ 

𝑠𝑐[𝐴′′
𝐼𝐽]

𝑐𝑜𝑟𝑟.𝑐𝑜𝑟𝑒𝑠

2𝑓
      (12) 
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And the out of plane bending and twisting stiffness becomes; 

[𝐷𝑆∗
11]𝑒𝑞𝑢𝑖.. ≈  [𝐷11]𝐹𝑎𝑐𝑒𝑠 +  

(
𝑠𝑐

3

12
𝜑 [𝐴′′

𝐼𝐽]+𝑆𝑐[𝐷′′
𝐼𝐽])

𝑐𝑜𝑟𝑟.𝑐𝑖𝑟𝑒𝑠

𝑎
    (13) 

[𝐷𝑆∗
12]𝑒𝑞𝑢𝑖.. ≈ [𝐷12]𝐹𝑎𝑐𝑒𝑠        (14) 

[𝐷𝑆∗
66𝐽]

𝑒𝑞𝑢𝑖..
 ≈  [𝐷66]𝐹𝑎𝑐𝑒𝑠       (15) 

[𝐷𝑆∗
22]𝑒𝑞𝑢𝑖.. [𝐷22]𝐹𝑎𝑐𝑒𝑠+ 

(
𝑠𝑐

3

12
𝜑 [𝐴′′

𝐼𝐽]+𝑆𝑐[𝐷′′
𝐼𝐽])

𝑐𝑜𝑟𝑟.𝑐𝑖𝑟𝑒𝑠

2𝑓
     (16) 

[

𝐴11
∗ 𝐴12

∗ 𝐴16
∗

𝐴12
∗ 𝐴22

∗ 𝐴26
′

𝐴16
∗ 𝐴26

∗ 𝐴66
∗

] [

𝐷11
∗ 𝐷12

∗ 𝐷16
∗

𝐷12
∗ 𝐷22

∗ 𝐷26
∗

𝐷16
∗ 𝐷26

∗ 𝐷66
∗

]      (17) 

Equations 9,10,11.12 and 13 ,14, 15, 16. are used to evaluate the equivalent in-plane extensional shear 

stiffnesses and the out of bending and twisting stiffness in the problem coordinate system for a unit cell in 

Figure 1. 

For balance laminate with symmetric laminas about its mid plane, the left-hand side of equations 9,10,11.12 and 

13 ,14, 15, 16. becomes equations 18 and 19. 

[

𝐴11
𝑠∗ 𝐴12

𝑆∗ 0

𝐴12
𝑆∗ 𝐴22

𝑆∗ 0
0 0 𝐴66

∗

]        (18) 

[

𝐷11
𝑠∗ 𝐷12

𝑠∗ 0

𝐷12
𝑠∗ 𝐷22

𝑠∗ 0

0 0 𝐷66
∗

]        (19) 

2.2.2 Classical Laminate Theory (CLT) 

The CLT is the most commonly used approach to analyze the behavior of laminated composite.  

2.2.2.1 In-Plane Extensional Shear Stiffness Core Laminate in Problem Coordinate Axis. 

From the classical laminate theory, the in-plane extensional shear stiffness and the out of plane bending and 

twisting stiffness in the problem coordinate axis for the face sheet, in the problem coordinate axis for core 

laminates stated in equations 9, 12, 13 and 16 are defined in equations 20 and 21 respectively. 

|𝐴𝑖𝑗
"|

𝑐
= ∑ [�̅�𝑖𝑗]

k

n
k=1 𝑡𝑘        (20) 

|𝐷𝑖𝑗
"|

𝑐𝑖𝑗
=  ∑ �̅�𝑖𝑗 (

𝑡𝑘
3

12
+ 𝑡𝑘Ž2)𝑛

𝑘=1        (21) 

2.2.2.2 In-Plane Extensional Shear Stiffness and Out of Plane Bending stiffness for Face Sheet Laminate 

in Problem Coordinate Axis. 

From the classical laminate theory, the in-plane extensional shear stiffness and out of plane bending and twisting 

stiffness in the problem coordinate axis for the face sheet laminates stated in equations 9, 10,11,12, 13,14,15 and 

16 are defined in equations 22 and 23 respectively. 

[𝐴𝑖𝑗]
𝐹𝐴𝐶𝐸𝑆

=∑ |�̅�𝑥−𝑦|
𝑘

(𝑧𝑘  −  𝑧𝑘−1)𝑛
𝑘=1       (22) 

[𝐷𝑖𝑗]
𝐹𝐴𝐶𝐸𝑆

 = ∑ |�̅�𝑥−𝑦|
𝑘

(𝑧𝑘
3 – 𝑧𝑘−1

3 )𝑛
𝑘=1 /3      (23) 

Where the subscript ij in both sub-sections 2.2.2.1 and 2.2.2.2 symbolizes 11,22,12 and 66, being stiffnesses in 

the longitudinal, transverse, diagonal and twisting directions respectively. 

2.2.2.3 Stiffness Matrix in Problem Coordinate Axis. 

From the classical laminate theory, stiffness matrix in problem coordinate axis stated in equations 22 and 23 are 

defined as 

�̅�11 = ¢1 + ¢2 cos 2𝜃 + ¢3 cos 4𝜃       (24) 

�̅�12 = ¢4 − ¢3 cos 4θ        (25) 

�̅�22 =  ¢1 − ¢2 cos 2θ + ¢3 cos 4θ       (26) 

�̅�66 = ¢5 − ¢3cos 4θ        (27) 

Where the ¢’s are the linear combination of material stiffnesses presented in equation 28 

¢1 =
(3 𝑄11+3 𝑄22+2 𝑄12+4 𝑄66)

8
,¢2 =

( 𝑄11− 𝑄22)

8
,¢3 
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=
( 𝑄11+ 𝑄22−2 𝑄12−4 𝑄66)

8
 ¢4 =

( 𝑄11+ 𝑄22+6 𝑄12−4 𝑄66)

8
,¢5 

=
( 𝑄11+ 𝑄22−2 𝑄12+4 𝑄66)

8
        (28) 

2.2.2.4 Stiffness Matrix in Material Coordinate Axis 

From the classical laminate theory, stiffness matrix in material coordinate axis stated in equations 28 is defined 

29 

 𝑄11 =
𝐸1

1−𝑣12𝑣21
 𝑄22 =

𝐸2

1−𝑣12𝑣21
 𝑄12 =

𝐸2𝑣12

1−𝑣12𝑣21
𝑄66 = 𝐺12    (29) 

2.3 The Finite Strip Method 

The finite strip method is a technique used in synergy with classical laminate theory and structural smearing to 

determine the structural characteristics of sandwich plate with corrugated cores.  

This method considers each term in Bi-harmonic equation separately with its amplitude 𝐴𝑥𝐴𝑦 , 𝐴𝑥𝑦𝑎𝑛𝑑𝐴𝑦𝑥as 

been equal to each other, for compatibility. It also assumes that, the load from the strip length multiplied by the 

perpendicular to the strip reaching the plate boundaries, are actually the load carried by each strip. 

From the finite strip method, the load fractions in the short 𝑠𝑡𝑖𝑝 𝑓𝑥, long strip 𝑓𝑦, and diagonal strip strips 𝑓𝑥𝑦 are 

given by 

𝑓𝑥 =
𝑛4𝐷11

(𝑛4𝐷11+𝐷22+2𝑛2
𝑥𝑦𝐷𝑥𝑦)

        (30) 

𝑓𝑦 =
𝐷22

(𝑛4𝐷11+𝐷22+2𝑛2
𝑥𝑦𝐷𝑥𝑦)

        (31) 

𝑓𝑥𝑦 =
(1−𝑛4𝐷11+𝑛4𝐷22)

(𝑛4𝐷11+𝐷22+2𝑛2
𝑥𝑦𝐷𝑥𝑦)

       (32) 

Substituting equations 13- 16, for 𝐷11, 𝐷22, 𝐷12 and 𝐷66 , into equations 30 to 32 yields; 

𝑓𝑥 =
𝑛4[𝐷𝑆∗

11]
𝑒𝑞𝑢𝑖𝑣.

(𝑛4[𝐷𝑆∗
11]

𝑒𝑞𝑢𝑖𝑣.
+ [𝐷𝑆∗

22]
𝑒𝑞𝑢𝑖𝑣.

+2𝑛2
𝑥𝑦([𝐷𝑆∗

12] +2 [𝐷𝑆∗
66]

𝑒𝑞𝑢𝑖𝑣.
).)

     (33) 

=
𝑛4[𝐷𝑆∗

22]
𝑒𝑞𝑢𝑖𝑣.

(𝑛4[𝐷𝑆∗
11]

𝑒𝑞𝑢𝑖𝑣.
+ [𝐷𝑆∗

22]
𝑒𝑞𝑢𝑖𝑣.

+2𝑛2
𝑥𝑦 ([𝐷𝑆∗

12] +2 [𝐷𝑆∗
66]

𝑒𝑞𝑢𝑖𝑣.
).)

     (34) 

𝑓𝑥𝑦 =
[1−𝑛4𝐷11+𝑛4𝐷22]

𝑒𝑞𝑢𝑖𝑣.

(𝑛4[𝐷𝑆∗
11]

𝑒𝑞𝑢𝑖𝑣.
+ [𝐷𝑆∗

22]
𝑒𝑞𝑢𝑖𝑣.

+2𝑛2
𝑥𝑦 ([𝐷𝑆∗

12] +2 [𝐷𝑆∗
66]

𝑒𝑞𝑢𝑖𝑣.
).)

     (35) 

Also from the finite strip method, the bending moments 𝑀𝑥 , 𝑀𝑦 and the twisting moments 𝑀𝑥𝑦  as well as 

deflections ∆𝑠 are given by 

𝑀𝑥 = 𝑓𝑥𝑚𝑥 + 𝑣𝑓𝑦𝑚𝑦        (36) 

𝑀𝑦 = 𝑣𝑓𝑥𝑚𝑥+𝑓𝑦𝑚𝑦        (37) 

𝑀𝑥𝑦 = 𝑓𝑥𝑦𝑚𝑥𝑦         (38) 

∆𝑠 = 𝑓𝑥𝑦)         (39) 

𝑊ℎ𝑒𝑟𝑒 𝑚𝑥, 𝑚𝑦 , 𝑚𝑥𝑦𝑎𝑛𝑑 ∆ are the primitive moment in the short span, long span, diagonal strip and primitive 

deflection respectively of the sandwich plate. 

short span, long span, diagonal strip and primitive deflection respectively of the sandwich plate. 

 

3. Parametric Model 

Based on the classical laminate theory in smeared and the finite series approach. 

• Obtain the in-plane material stiffness from equation 29 

• obtain the transformed stiffness matrix �̅�11, �̅�22, �̅�12, �̅�66, �̅�16, and �̅�26 from equation 28 

• Obtain the in-plane extensional shear stiffness and out of plane bending stiffness for face Sheet 

laminate in problem coordinate axis using equations 22 and 23 respectively.  

• Obtain the in-plane extensional shear stiffness core laminate in problem coordinate axis using 

equations 20 and 21. 

• Obtain the equivalent in-plane extensional stiffness by substituting equation 20 and sc = 
𝑑𝑐

sin 𝜑 
 into 

equations 9,10,11 and 12 respectively. 

•  Obtain the equivalent out of bending and twisting stiffness by substituting equation 21 and sc  
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• Obtain the strip coefficient by substituting values from equations 13,14,15 and 16 into equations 33,34 

and 35respectively. 

Obtain the bending and twisting moments as well as deflection by substituting values from the strip coefficient 

into equations 36 to 39. 

 

3.1 Algorithm of Solution for the Parametric Model of the Sandwich Plate with Corrugated Cores. 

 
Figure 3: Algorithm of the Sandwich Plate with Corrugated Core 

 

4. Results using Numerical Example 

A. Considering the sandwich construction shown in Figure 4, determine, the effect of the variation of the fac 

thickness tt and web thickness tw on the plate stiffness, given that:d= 10.5mm, θ= 45, dc = 9.5mm, 2p = 14, tw= 

1mm, tb= 1mm, f= 0, E=69 × 103 N/mm2 with tt = tb 
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Figure 4: Unit Cell for Sandwich Construction to Sought for Stiffness, Deflection and Bending Moments 

In 2011, Magnucki et al, successfully solved this problem and used the finite element model as well as 

laboratory experiments to verify their results. This problem is repeated here and solved by the equivalent plate 

model of homogenization. The strength of the sandwich construction with crosswise corrugated core was 

considered. The geometry of the cross section, flexural stiffness, bending moments and deflection of beam were 

also found. The results of the evaluation using the equivalent model, Magnucki et al (2011) and the finite 

element method and laboratory experimentations is presented in Tables 1 to 2 and graphically in Figures 5 to 11. 

Table 1: Computed Stiffness Coefficients for Sandwich Panel 

 

Table 1, shows that the results from the proposed model deviates from that of Magnucki et al 2011, Finite 

Element Method and laboratory experiment, with percentage differences of about 0.02, 0.7 and 0.5 respectively 

for the crosswise corrugated core for tt = 1mm and tw = 0.3mm. This result shows good agreement of the model 

Magnucki et al (2011), FEM and laboratory experiments. It also shows the important role played by the facings.  

Table 2: Computed Stiffness Coefficients, Moment and Deflections for Magnucki Sandwich Panel. 

𝒕𝒘(𝒎𝒎) 𝒕𝒕(𝒎𝒎) 
Stiffness Analytical  

N/mm2/mm 

Moment in 

𝑴𝑿 

(𝑵. 𝒎𝒎) 

Moment in 

𝑴𝒀 

𝑵. 𝒎m 

Moment in 

𝑴𝑿𝒀 

𝑵. 𝒎𝒎 

Deflection 

∆𝒔 

𝒎𝒎 

0.3 1.00 0.018701601 0.062337526 0.018701601 0.000919729 2.41895 10−8 

0.3 1.50 0.028717706 0.062391590 0.018717706 0.000613685 1.1030910−8 

0.3 2.00 0.018725769 0.062418657 0.018725769 0.000460463 6.20487 10−9 

0.4 1.00 0.018701601 0.062337526 0.018701601 0.000919729 2.41895 10−8 

0.5 1.00 0.018701601 0.062337526 0.018701601 0.000919729 2.41895 10−8 

 

Table 2, shows that, the moments in the longitudinal and transverse directions, increases with increase in core 

thickness and moments in the twisting direction decreases with increase in core thickness, while the deflections 

increase with decreasing thickness of core. This also shows the important role played by the core thickness. 

ttmm 

tw 

mm 

Ixx 

mm4/mm 
Stiff.ExactN/mm2/mm 

Stiff.Analytical 

KN/m2/mm 

Stiff. 

Magnucki 

N/mm2/mm 

Stiff.FEM 

N/mm2/mm 
StiffExp.Nmm2/mm 

%Dif. 

exact 
%Dif.FEM 

% 

DifExp 

1.00  0.30 48.07 331,701.19 331.77 331.22 334.16 330. -0.02 -0.7 -0.5 

1.50  0.30 71.03 490,114.09 497.66 530.08 533.47  -1.5   

2.00 0.30 94.36 651,114.09 663.55 763.42 676.16  -1.9   

1.00 0.40 48.88 337,272.69 331.77 339.75 343.35  -0.02   

1.00 0.50 49.63 342,453.57 331.77 348.61 352.61  -0.02   
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Figure 5: Comparison of Analytical, Magnucki et al (2011), Numerical and Experimental Results for the 

Crosswise Corrugated Core (Thickness of the Corrugated Core tw=0.3mm) 

 
Figure 6: Comparison of Analytical, Magnucki et al (2011), Numerical and Experimental Results for the 

Crosswise Corrugated Core (Thickness of the Faces tt =1mm). 

 
Figure 7: Analytical Moments 𝑀𝑥 Vs.Thickness of Facings for the Crosswise Corrugated Core (Thickness of 

the Webtb =1mm). 

 
Figure 8: Analytical Moments 𝑀𝑦Vs.Thickness of Facings for the Crosswise Corrugated Core (with Thickness 

ofWebtb =1mm). 

622500

623000

623500

624000

624500

0 1 1.5 2

A
n

al
yt

ic
al

 M
o

m
e

n
t 

M
y Moment My

Moment My



Akari NT et al                                        Journal of Scientific and Engineering Research, 2024, 11(1):101-113 

Journal of Scientific and Engineering Research 

109 

 
Figure 9: Analytical Moments 𝑀𝑥𝑦Vs.Thickness of Facings for the Crosswise Corrugated Core (with Thickness 

ofWebtb =1mm). 

 
Figure 10: Analytical Deflection Vs. Thickness of Facings for the Crosswise Corrugated Core(With Thickness 

of Web tb =1mm). 

 
Figure 11: Analytical Moment Mx, My and Mxy Vs. Thickness of Core for the Crosswise Corrugated Core (with 

Thickness of Face tt =1mm). 

Figure 5 shows that flexural Stiffness of the sandwich construction increases with increase in the thickness of the 

facing for the equivalent plate model, Magnucki et al 2011 and the Finite Element method. Figure 6 shows that, the 

increase in the thickness of core, affects the flexural stiffness of the sandwich construction. Figure 7 and Figure 8, 

shows that, the moments in longitudinal and transverse directions increases with increase in the facings thickness. In 

Figure 9 and Figure 10, the moments in the twisting directions and the deflections in the sandwich plate, decreases 

with increasing facings thickness. Figure 11, shows that the moments in the plates are not significantly affected by the 

thickness of the web. 
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B: The Effect of Varying the Depth of Core and Pitch on The Orthotropic Properties of The Sandwich 

Constructions. 

Considering the sandwich plate, simply supported on all four side, under the action of a uniformly distributed 

load q= 1N/m2 on its upper face with a stacking sequence [0 90⁄ ]𝑠, determine, the effect of Varying depth of 

Core (dc) and pitch (2P) on the maximum deflections. given that l=b=0.64mm, tt = tw = tb= 1mm, E1= 138x103 

N/mm2, E2= 9x103 N/mm2, G= 6.9 x103 N/mm2, v=0.3, Ɵ = 75o  

This problem was also solved by Rajesh (2014) using minimum potential energy and Martinez (2007) using 

shear deformation plate theory. The problem. is also sought here using the plate model. For effective 

comparison 4Pt+
 2(𝑑−𝑡)𝑡

sin ∅
= 478 is used to obtain varying geometric properties shown in Table 3 

Table 3: Varying Values of dc and 2P  

dc 2P Dc 2p 

29.86  160 69.96 200 

49.86 160 69.96 180 

69.86 160 69.96 160 

89.86 160 69.96 140 

109.86 160 69.96 120 

 

The results obtained from the proposed model are presented in Table 4 and Table 5. The graphical 

representation of the results is found in Figure 12 and 13. 

Table 4: The Influence of Depth of Core on Flexural Behavior of Corrugates 

dc 

mm 
2P m 

D11 

Nm. 

105 

D22 

Nm. 

105 

D12 

Nm. 

105 

D66 

Nm. 

105 

Δs 

 

10-08 

mx 

Nm. 

10-5 

my 

Nm. 

10-5 

mxy 

Nm. 

10-5 

29.86 160 2.064 2.281 0.0842 0.2800 1.743 2201 2322 1901 

49.86 160 2.487 2.281 0.0842 0.2800 5.480 2382 2274 1783 

69.86 160 2.938 2.282 0.0842 0.2800 1.129 2525 2228 1672 

89.86 160 3.429 2.284 0.0842 0.2800 0.346 2714 2185 1566 

109.86 160 3.975 2.286 0.0842 0.2800 0.134 2872 2143 1462 

 

 
Figure 12: Bending Stiffness D11, D22, D12 D66Vs..Depth of Core 

Figure 12: shows that the Flexural longitudinal Stiffness D11 increases with increase in depth of core dc whereas 

the transverse flexural stiffness D22, the diagonal stiffness D12 and the twisting stiffness D66 are not influence 

by the depth of core 
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Table 5: The Influence of Pitch on the Flexural Behaviour of Corrugates 

dc 

mm 

2P 

Mm 

D11 

Nm. 

105 

D22 

Nm. 

105 

D12 

Nm. 

105 

D66 

Nm. 

105 

Δs 

 

10-08 

mx 

Nm. 

10-5 

my 

Nm. 

10-5 

mxy 

Nm. 

10-5 

69.86 120 2.664 2.283 0.0842 0.2800 1.339 2541 2256 1737 

69.86 140 2.787 2.283 0.0842 0.2800 1.221 2497 2243 1707 

69.86 160 2.938 2.282 0.0842 0.2800 1.129 2552 2228 1672 

69.86 180 3.134 2.282 0.0842 0.2800 1.085 2619 2210 1628 

69.86 200 3.395 2.282 0.0842 0.2800 0.098 2704 2187 1573 

 

 
Figure 13: Bending and Twisting Moment Vs. Depth of Core. 

Figure 13 shows that the bending moment in the longitudinal direction increases with increase in depth of core. 

While the bending moment in the transverse direction and in the twisting direction, decreases with increase in 

the depth of core. 

 
Figure 14: Bending and Twisting Stiffness Vs. Pitch of Facings 

Figure 14 show that the Flexural longitudinal Stiffness D11 increases with increase in Pitch of facings2p, 

whereas the transverse flexural stiffness D22, the diagonal stiffness D12 and the twisting stiffness D66 are not 

influence by the pitch of facings. 
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Figure 15: Bending and Twisting Moments Vs. Pitch of Facings. 

Figure 15 shows that the bending moment in the X direction, increases with increase in the pitch of facings, 

while the bending moment in the Y direction and in the twisting direction, decreases with increase in the pitch 

of facings 

 

5. Conclusion 

The complexity of models of composite structural systems, resulting from homogenization approaches, based on 

the various micromechanics technics, shear deformable theory, minimum potential energy and Euler Bernoulli 

solutions are recognized. The results from the equivalent plate model of homogenization using the synergy in 

the classical laminate theory and the finite series expressions agree very closely with various plane plain strain 

method of analysis and the more refined finite element method for the determination of the mechanical and 

structural properties of sandwich plate with corrugated cores. The results are valid for the linear elastic 

behaviour under static loads in any materials. 
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