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Abstract In 1970, Cesàro Sequence Spaces was introduced by Shiue. In 1981, Kızmaz defined difference 

sequence spaces for ℓ∞, c0 and c. Then, in 1983, Orhan introduced Cesàro Difference Sequence Spaces. Later, 

Et and Tripathy et. al. generalized the space introduced by Orhan for any 𝑚 ∈ ℕ. We will be interested in their 

generalizations such that some generalizations of the space introduced by Orhan were given by Et in 1996 and 

more by Tripathy and his friends in 2005 for each 𝑚 ∈ ℕ while they examined their duals and geometric 

properties. We investigate the corresponding function space of those Köthe-Toeplitz duals of some generalized 

Cesàro difference sequence spaces. In this study, first we recall that in 2004, Kaczor and Prus saw that there 

exists a large class of closed, bounded, convex subsets in ℓ1 with fixed point property for affine asymptotically 

nonexpansive mappings. In the present study, we aim to discuss the analogous results for the corresponding 

function spaces of the Köthe-Toeplitz duals of some generalized Cesàro difference sequence spaces. Thus, we 

consider the generalized Köthe-Toeplitz duals of some generalized Cesàro difference sequence spaces written 

by Υ𝑚 = {𝑎 = (𝑎𝑘)𝑘 ⊂ ℝ ∶     ‖𝑎‖𝛥 = ∑∞
𝑘=1 𝑘𝑚|𝑎𝑘| < ∞}  and its corresponding function space  

𝛴𝑚: = {
𝑓: [0,1] → ℝ
measurable

:  ‖𝑓‖ =   ∫
1

0

𝑡𝑚|𝑓(𝑡)|𝑑𝑡 < ∞  }  for each 𝑚 ∈ ℕ. 

Then, for any 𝑚 ∈ ℕ, we show that  there exists a very large class of closed, bounded, convex subsets in 𝛴𝑚 

with fixed point property for affine asymptotically nonexpansive mappings and so for affine nonexpansive 

mappings. 
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1. Introduction  

A Banach space (X, ‖. ‖) is called to have the fixed point property for non-expansive mappings (fpp-ne) when 

any non-expansive self mappings defined on arbitrary non-empty closed, bounded and convex subset of the 

Banach space has a fixed point. Researchers have considered categorizing Banach spaces with this property. 

Firstly, in 1965, Browder [2] found that Hilbert spaces have the property and Kirk [14] generalized it to 

reflexive Banach spaces with normal structure. Then, researchers have especially investigated nonreflexive 

classical Banach spaces and wondered if they can be renormable and falls in the same category with their 

equivalent norm while they fail to be members of the category with their usual norm but they were able to detect 
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some nonreflexive Banach spaces which have equivalent norms and they become to have the fixed point 

property with those renormings. The first example was given by Lin [15] for the Banach space of absolutely 

summable scalar sequences, ℓ1. Because of sharing many common properties, it is natural to ask if the same is 

possible for the Banach space of scalar sequences converging to 0, 𝑐0 as another well known classical non-

reflexive Banach space. As a second interesting example, but under affinity condition, was given in [17] by 

Maria and Hernandes Lineares whose space experimented was the Banach space of Lebesgue integrable 

functions on [0,1], 𝐿1[0,1] . It can be said that all these works are inspired by the work of Goebel and 

Kuczumow [11]. Goebel and Kuczumow showed that there exists very large class of non-weakly compact, 

closed, bounded and convex subsets of ℓ1 respect to weak* topology of ℓ1 with fixed point property for non-

expansive mappings. Later, Kaczor and Prus [12] investigated if similar result could be done for asymptotically 

nonexpansive mappings and they saw that there exists a large class of closed, bounded, convex subsets in ℓ1 

with fixed point property for affine asymptotically non-expansive mappings. Moreover, Everest, in his Ph.D. 

thesis [9], written under supervision of Chris Lennard, considered large classes in ℓ1 with fixed point property 

for affine asymptotically non-expansive mappings by generalizing Kaczor and Prus’ work. 

In this study, we aim to discuss the analogous results for the corresponding function spaces of the Köthe-

Toeplitz duals of some generalized Cesàro difference sequence spaces. Thus, we consider the generalized 

Köthe-Toeplitz duals of some generalized Cesàro difference sequence spaces written by Υ𝑚 = {𝑎 = (𝑎𝑘)𝑘 ⊂

ℝ ∶     ‖𝑎‖𝛥 = ∑∞
𝑘=1 𝑘𝑚|𝑎𝑘| < ∞}  and its corresponding function space  

𝛴𝑚: = {
𝑓: [0,1] → ℝ
measurable

:  ‖𝑓‖ =   ∫
1

0

𝑡𝑚|𝑓(𝑡)|𝑑𝑡 < ∞  }  for each 𝑚 ∈ ℕ. 

Then, for any 𝑚 ∈ ℕ, we show that  there exists a very large class of closed, bounded, convex subsets in 𝛴𝑚 

with fixed point property for affine asymptotically nonexpansive mappings and so for affine nonexpansive 

mappings. 

First we recall that the Cesàro sequence spaces 

ces𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ (
1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 )
𝑝

∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and 

ces∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

1

𝑛
∑ |𝑥𝑘|𝑛

𝑘=1 < ∞} 

were introduced by Shiue [21] in 1970, where 1 ≤ 𝑝 < ∞. It has been shown that ℓ𝑝 ⊂ ces𝑝for 1 < 𝑝 ≤ ∞. 

Moreover, it has been shown that Cesàro sequence spaces ces𝑝 for 1 < 𝑝 < ∞ are seperable reflexive Banach 

spaces. Furthermore, it was also proved by Cui [4], Cui-Hudzik-Li [5] and Cui-Meng-Pluciennik [6] that Cesàro 

sequence spaces ces𝑝 for 1 < 𝑝 < ∞  have the fixed point property. They prove this result using different 

methods. One method is to calculate Garcia-Falset coefficient. It is known that if Garcia-Falset coefficient is 

less than 2 for a Banach space, then it has the fixed point property for nonexpansive mappings [10]. Using this 

fact, since they calculate this coefficient for ces𝑝 as 21/𝑝 similary to what it is for ℓ𝑝, they point the result for 

the Cesàro sequence spaces. Another fact is that they see that the space has normal structure for 1 < 𝑝 < ∞. 

Then using the fact via Kirk [14] that reflexive Banach spaces with normal structure has the fixed point 

property, they easily deduce that the space has the fixed point property for 1 < 𝑝 < ∞. Their results on Cesàro 

sequence spaces as a survey can be seen in [3]. 

Later, in 1981, Kızmaz [13] introduced difference sequence spaces for ℓ∞, cand c0 where they are the Banach 

spaces of bounded, convergent and null sequences 𝑥 = (𝑥𝑛)𝑛, respectively. As it is seen below, his definitions 

for these spaces were given using difference operator applied to the sequence 𝑥, △ 𝑥 = (𝑥𝑘 − 𝑥𝑘+1)𝑘. 

ℓ∞(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ ℓ∞}, 

c(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ c}, 

c0(△) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △ 𝑥 ∈ c0}. 

Kızmaz investigated Köthe-Toeplitz Duals and some properties of these spaces. 

Furthermore, Cesàro sequence spaces 𝑋𝑝 of non-absolute type were defined by Ng and Lee [18] in 1977 as 

follows: 
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𝑋𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and 

𝑋∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ 𝑥𝑘

𝑛
𝑘=1 | < ∞}, 

where 1 ≤ 𝑝 < ∞. They prove that 𝑋𝑝  is linearly isomorphic and isometric to ℓ𝑝  for 1 ≤ 𝑝 ≤ ∞. Thus, one 

would easily deduce that they have similar properties in terms of the fixed point theory. That is, for 1 < 𝑝 < ∞ 

they have the fixed point property for nonexpansive mappings but for other two cases they fail. 

Later, in 1983, Orhan [19] introduced Cesàro Difference Sequence Spaces by the following definitions: 

𝐶𝑝 = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ △ 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and 

𝐶∞ = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ △ 𝑥𝑘

𝑛
𝑘=1 | < ∞}, 

where 1 ≤ 𝑝 < ∞ and △ 𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘+1 for each 𝑘 ∈ ℕ. He noted that their norms are given as below for any 

𝑥 = (𝑥𝑛)𝑛: 

‖𝑥‖𝑝
∗ = |𝑥1| + (∑ |

1

𝑛
∑△ 𝑥𝑘

𝑛

𝑘=1

|

𝑝∞

𝑛=1

)

1
𝑝⁄

and   ‖𝑥‖∞
∗ = |𝑥1| + sup

𝑛
|
1

𝑛
∑△ 𝑥𝑘

𝑛

𝑘=1

|, 

respectively. 

Orhan showed that there exists a linear bounded operator 𝑆: 𝐶𝑝 → 𝐶𝑝 for 1 ≤ 𝑝 ≤ ∞ such that Köthe-Toeplitz 

𝛽 −Duals of these spaces are given respectively as follows: 

𝑆(𝐶𝑝)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ𝑞} where 1 < 𝑝 < ∞ and 𝑞 =
𝑝

𝑝 − 1
, 

𝑆(𝐶1)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ∞} and 

𝑆(𝐶∞)𝛽 = {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑎𝑛)𝑛 ∈ ℓ1}. 

It might be better to use the notation 𝑋𝑝(△) instead of 𝐶𝑝 for 1 ≤ 𝑝 ≤ ∞ since we also recalled the difference 

sequence spaces and used similar type of notation. 

We note that Orhan also proved that 𝑋𝑝 ⊂ 𝑋𝑝(△)  for 1 ≤ 𝑝 ≤ ∞ strictly. Also, one can clearly see that 𝑋𝑝(△) 

is linearly isomorphic and isometric to ℓ𝑝 for 1 ≤ 𝑝 ≤ ∞. Thus, one would easily deduce that they have similar 

properties in terms of the fixed point theory. That is, for 1 < 𝑝 < ∞ they have the fixed point property for 

nonexpansive mappings but for other two cases they fail. 

Note also that Köthe-Toeplitz Dual for 𝑝 = ∞ case in Orhan’s study and ℓ∞ case in Kızmaz study coincides.  

Furthermore, Et and Çolak [8] generalized the spaces introduced in Kızmaz’s work [13] in the following way 

for 𝑚 ∈ ℕ. 

ℓ∞(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ ℓ∞}, 

c(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ c}, 

c0(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| △𝑚 𝑥 ∈ c0} 

where △ 𝑥 = (△ 𝑥𝑘) = (𝑥𝑘 − 𝑥𝑘+1)𝑘 , △0 𝑥 = (𝑥𝑘)𝑘, △𝑚 𝑥 = (△𝑚 𝑥𝑘) = (△𝑚−1 𝑥𝑘 −△𝑚−1 𝑥𝑘+1)𝑘 and 

△𝑚 𝑥𝑘 = ∑ (−1)𝑖(𝑚
𝑖

)𝑚
𝑖=0 𝑥𝑘+𝑖  for each 𝑘 ∈ ℕ. 

Also, Et [7] and Tripathy et. al. [22] generalized the space introduced by Orhan in the following way for 𝑚 ∈ ℕ. 

𝑋𝑝(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| (∑ |
1

𝑛
∑ △𝑚 𝑥𝑘

𝑛
𝑘=1 |

𝑝
∞
𝑛=1 )

1
𝑝⁄

< ∞} 

and 

𝑋∞(△𝑚) = {𝑥 = (𝑥𝑛)𝑛 ⊂ ℝ| sup
𝑛

|
1

𝑛
∑ △𝑚 𝑥𝑘

𝑛
𝑘=1 | < ∞}, 

Then, it is seen that that Köthe-Toeplitz Dual for 𝑝 = ∞ case in Et’s study [7] and ℓ∞ case in Et and Çolak 

study [8] coincides such that Köthe-Toeplitz Dual was given as below for any 𝑚 ∈ ℕ. 
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𝛶𝑚 ≔ {𝑎 = (𝑎𝑛)𝑛 ⊂ ℝ|(𝑛𝑚𝑎𝑛)𝑛 ∈ ℓ1} = {𝑎 = (𝑎𝑘)𝑘 ⊂ ℝ ∶   ‖𝑎‖ = ∑ 𝑘𝑚|𝑎𝑘|

∞

𝑘=1

< ∞}. 

Note that Υ𝑚 ⊂ ℓ1 for any 𝑚 ∈ ℕ. 

One can see that corresponding function space for these duals can be given as below: 

Σ𝑚 ≔ {
𝑓: [0,1] → ℝ
measurable

: ‖𝑓‖ =  ∫ 𝑡𝑚|𝑓(𝑡)|𝑑𝑡

1

0

< ∞ }. 

Note that 𝐿1[0,1] ⊂ Σ𝑚 and Υ𝑚 is the space when counting measure is used for Σ𝑚 . 

As we have already stated, in this study, we study the function spaces 𝛴𝑚 for any 𝑚 ∈ ℕ. 

 

Now we provide some preliminaries before giving our main results.  

Definition 1.1. Let (𝑋, ∥⋅∥) be a Banach space and 𝐶 is a non-empty closed, bounded, convex subset. 

1.  If 𝑇: 𝐶 → 𝐶  is a mapping such that for all 𝜆 ∈ [0,1]  and for all 𝑥, 𝑦 ∈ 𝐶 , 𝑇((1 − 𝜆)𝑥 + 𝜆 𝑦) = (1 −

𝜆)𝑇(𝑥) + 𝜆 𝑇(𝑦) then 𝑇 is said to be an  affine mapping. 

2. If  𝑇: 𝐶 → 𝐶 is a mapping such that  ∥ 𝑇(𝑥) − 𝑇(𝑦) ∥≤∥ 𝑥 − 𝑦 ∥ ,    𝑓𝑜𝑟  𝑎𝑙𝑙  𝑥, 𝑦 ∈ 𝐶 then 𝑇 is said to be a  

nonexpansive mapping. 

Also, if for every nonexpansive mapping 𝑇: 𝐶 → 𝐶, there exists 𝑧 ∈ 𝐶 with 𝑇(𝑧) = 𝑧, then 𝐶 is said to have the  

fixed point property for nonexpansive mappings [fpp(ne)]. 

3.  If  𝑇: 𝐶 → 𝐶 is a mapping such that there exists a sequence of scalars (𝑘𝑛)𝑛∈𝑁 decreasingly approach  to  1   

and   ∥ 𝑇𝑛(𝑥) − 𝑇𝑛(𝑦) ∥≤ 𝑘𝑛 ∥ 𝑥 − 𝑦 ∥ ,    𝑓𝑜𝑟  𝑎𝑙𝑙  𝑥, 𝑦 ∈ 𝐶  and for all 𝑛 ∈ ℕ  then 𝑇  is said to be an 

asymptotically nonexpansive mapping. 

Also, if for every asymptotically nonexpansive mapping 𝑇: 𝐶 → 𝐶, there exists 𝑧 ∈ 𝐶 with 𝑇(𝑧) = 𝑧, then 𝐶 is 

said to have the  fixed point property for asymptotically nonexpansive mappings [fpp(ane)]. 

Remark 1.1. In 1979, Goebel and Kuczumow [11] showed there exists a large class of closed, bounded and 

convex subsets of ℓ1  using a key lemma they obtained. Their lemma says that if {𝑥𝑛} is a sequence in ℓ1 

converging to 𝑥 in weak-star topology, then for any 𝑦 ∈ ℓ1,  

 𝑟(𝑦) = 𝑟(𝑥) + ‖𝑦 − 𝑥‖1  𝑤ℎ𝑒𝑟𝑒  𝑟(𝑦) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑥𝑛 − 𝑦‖1  . 

We will call this fact ∴. 

The analogue of this lemma for L1[0,1] is observed via the result in Brezis and Lieb [1]. Note that Hernández-

Linares pointed this fact in his Ph.D. thesis [16], written under supervision of Maria Japon Pineda. Now we 

provide the lemma which is deduced by their results and will be key for our results in this section.  

Lemma 1.1. Let {𝑓𝑛}𝑛∈ℕ be a sequence of real valued measurable functions which are uniformly bounded in 

𝐿1[0,1]. Assume that 𝑓𝑛  converges to an 𝑓 ∈ 𝐿1[0,1] pointwise almost everywhere (a.e.). Then for any 𝑔 ∈

𝐿1[0,1],  

 𝑆(𝑔) = 𝑆(𝑓) + ‖𝑓 − 𝑔‖1  𝑤ℎ𝑒𝑟𝑒  𝑆(𝑔) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑓𝑛 − 𝑔‖1  . 

Since the corresponding function space of a Köthe-Toeplitz Dual of a Cesàro Difference Sequence Space which 

contains Lebesgue space 𝐿1[0,1] and in fact it is isometrically isomorphic to 𝐿1[0,1], for any 𝑚 ∈ ℕ, for the 

corresponding function spaces Σ𝑚 the following lemma can be given as straight and quick result.   

Lemma 1.2. Fix 𝑚 ∈ ℕ. Let {𝑓𝑛}𝑛∈ℕ be a sequence of real valued measurable functions which are uniformly 

bounded in Σ𝑚. Assume that 𝑓𝑛 converges to an 𝑓 ∈ Σ𝑚 pointwise almost everywhere (a.e.). Then for any 𝑔 ∈

Σ𝑚,  

 𝑆(𝑔) = 𝑆(𝑓) + ‖𝑓 − 𝑔‖  𝑤ℎ𝑒𝑟𝑒  𝑆(𝑔) = 𝑙𝑖𝑚𝑠𝑢𝑝
𝑛

‖𝑓𝑛 − 𝑔‖. 

 

2. Main Result 

In this section, we work on Kaczor and Prus analogy for a Banach space containing Lebesgue space 𝐿1[0,1]. 

The space we consider is the corresponding function spaces 𝛴𝑚  for the Köthe-Toeplitz Dual of a Cesàro 

difference sequence space 𝑋∞(△𝑚) for any 𝑚 ∈ ℕ. We show that there exists a very large class of closed, 

bounded and convex subsets of the space with the fixed point property for affine asymptoticallys non-expansive 
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mappings and so for affine nonexpansive mappings. Note that in his Master’s thesis [20], in 2022, Oymak 

studied the case 𝑚 = 1 and also cases 𝑚 = 2 with 𝑚 = 3 have been recently submitted by the same authors of 

this article. 

Now, for any 𝑚 ∈ ℕ, let us first consider the following classes of closed, bounded and convex subsets for 

Banach spaces 𝛴𝑚  by the following examples. We should note here that we will be using similar ideas to those 

in in the section 2 of Ph.D. thesis of Everest [9], written under supervision of Chris Lennard,  where Everest 

firstly provides Goebel and Kuczumow’s proofs in detailed. 

Here, we first consider some sample sets that represent the broad set classes we mentioned, and then we give a 

relevant theorem for each of these sets. 

Example 2.1. Fix 𝑚 ∈ ℕ and 𝑏 ∈ (0,1). Define a sequence (𝑓𝑛)𝑛∈ℕ by setting 𝑓1: = 𝑏 𝑒1  and 𝑓𝑛: = 𝑒𝑛  for all 

integers 𝑛 ≥ 2 where the sequence (𝑒𝑛)𝑛∈ℕ is given by the formula 𝑒𝑛: = (𝑛 + 1)𝑡𝑛−𝑚 , ∀𝑛 ∈ ℕ. Next, we can 

define a closed, bounded, convex subset 𝐸(𝑚) of  Σ𝑚 by  

𝐸(𝑚): = {∑

∞

𝑛=1

𝛽𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝑡𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛽𝑛 = 1}  . 

Example 2.2. Fix 𝑚 ∈ ℕ and 𝑏 ∈ (0,1). Define a sequence (𝑓𝑛)𝑛∈ℕ by setting 𝑓1: = 𝑏 𝑒1  and 𝑓𝑛: = 𝑒𝑛  for all 

integers 𝑛 ≥ 2  where the sequence (𝑒𝑛)𝑛∈ℕ  is given by the formula 𝑒𝑛: =
𝑛𝑒𝑛𝑡

𝑡𝑚(𝑒𝑛−1)
 , ∀𝑛 ∈ ℕ. Next, we can 

define a closed, bounded, convex subset 𝐸(𝑚) of  Σ𝑚 by  

𝐸(𝑚): = {∑

∞

𝑛=1

𝛽𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝛽𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛽𝑛 = 1}  . 

Example 2.3. Fix 𝑚 ∈ ℕ and 𝑏 ∈ (0,1). Define a sequence (𝑓𝑛)𝑛∈ℕ by setting 𝑓1: = 𝑏 𝑒1  and 𝑓𝑛: = 𝑒𝑛  for all 

integers 𝑛 ≥ 2  where the sequence (𝑒𝑛)𝑛∈ℕ is given by the formula 𝑒𝑛: =
𝑛𝑒𝑛𝑡

𝑡𝑚(𝑒𝑛−1)
𝜒

[0,
1

𝑛
]
  , ∀𝑛 ∈ ℕ, where 𝜒  is 

the characteristics funtion. Next, we can define a closed, bounded, convex subset 𝐸(𝑚) of  Σ𝑚 by  

𝐸(𝑚): = {∑

∞

𝑛=1

𝛽𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝛽𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛽𝑛 = 1}  . 

Example 2.4. Fix 𝑚 ∈ ℕ and 𝑏 ∈ (0,1). Define a sequence (𝑓𝑛)𝑛∈ℕ by setting 𝑓1: = 𝑏 𝑒1  and 𝑓𝑛: = 𝑒𝑛  for all 

integers 𝑛 ≥ 2  where the sequence (𝑒𝑛)𝑛∈ℕ is given by the formula 𝑒𝑛: =
4𝑛

𝜋𝑡𝑚(1+𝑛2𝑡2)
𝜒

[0,
1

𝑛
]
 ,  ∀𝑛 ∈ ℕ, where 𝜒  

is the characteristics funtion. Next, we can define a closed, bounded, convex subset 𝐸(𝑚) of  Σ𝑚 by  

𝐸(𝑚): = {∑

∞

𝑛=1

𝛽𝑛𝑓𝑛:  ∀𝑛 ∈ ℕ, 𝛽𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

𝛽𝑛 = 1}  . 

Theorem 2.1. For 𝑚 ∈ ℕ and 𝑏 ∈ (0,1), then each of the sets 𝐸(𝑚) defined as in the examples above has the 

fixed point property for affine asymptotically nonexpansive mappings. 

Proof.  Fix 𝑚 ∈ ℕ  and 𝑏 ∈ (0,1) . Let 𝑇: 𝐸(𝑚) → 𝐸(𝑚)  be an affine asymptotically nonexpansive mapping. 

Then, since 𝑇 is affine, by Lemma 1.1.2 in the Ph.D. thesis of Everest [9] written under supervision of Lennard, 

there exists a sequence (𝑓(𝑛))
𝑛∈ℕ

∈ 𝐸(𝑚) such that ‖𝑇𝑓(𝑛) − 𝑓(𝑛)‖
𝑛
→ 0. Without loss of generality, passing to a 

subsequence if necessary, there exists 𝑓 ∈ 𝐸(𝑚)  such that 𝑓(𝑛) converges to 𝑓  in weak∗  topology. Then, by 

Goebel Kuczumow analog fact, Lemma 1.2 given in the last part of the previous section, we can define a 

function 𝑠: Σ𝑚  → [0, ∞) by  

 𝑠(𝑓) = limsup
𝑛

‖𝑓(𝑛) − 𝑔‖    , ∀𝑔 ∈ Σ𝑚 

and so 

 𝑠(𝑔) = 𝑠(𝑔) + ‖𝑓 − 𝑔‖  , ∀𝑔 ∈ Σ𝑚  . 

Now define  the weak* closure of the set 𝐸(𝑚) as it is seen below. 

𝑊: = 𝐸(𝑚)
𝑤∗

= {∑

∞

n=1

β𝑛𝑓𝑛:  𝑒𝑎𝑐ℎ  𝛽𝑛 ≥ 0  𝑎𝑛𝑑  ∑

∞

𝑛=1

β𝑛 ≤ 1} 
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Since 𝑇  is asymptotically nonexpansive mapping, there exists a decreasing sequence (𝑘𝑛)𝑛∈ℕ ∈ [1, ∞)  

converging to 1 such that ∀𝑓, 𝑔 ∈ Σ𝑚 and ∀𝑛 ∈ ℕ, 

‖𝑇n𝑓 − 𝑇n𝑔‖ ≤ 𝑘𝑛‖𝑓 − 𝑔‖. 

Case 1:𝑓 ∈ 𝐸(𝑚) 

Fix 𝑞 ∈ ℕ and take 𝑘0 = 1. Then, we have 𝑠(𝑇𝑞𝑓) = 𝑆(𝑓) + ‖𝑇𝑞𝑓 − 𝑓‖ and 

𝑠(𝑇𝑞𝑓) = limsup
𝑛

‖𝑇𝑞𝑓 − 𝑓(𝑛)‖ ≤ limsup
𝑛

‖𝑇𝑞𝑓 − 𝑇𝑞(𝑓(𝑛))‖ + limsup
𝑛

‖𝑇𝑞(𝑓(𝑛)) − 𝑓(𝑛)‖          (2.1) 

≤ limsup
𝑛

𝑘𝑞‖𝑓 − 𝑓(𝑛)‖ + limsup
𝑛

∑

q

𝑗=1

‖𝑇𝑗(𝑓(𝑛)) − 𝑇𝑗−1(𝑓(𝑛))‖                                    

≤ 𝑘𝑞limsup
𝑛

‖𝑓 − 𝑓(𝑛)‖ + limsup
𝑛

∑

q

𝑗=1

𝑘𝑗−1‖𝑇(𝑓(𝑛)) − 𝑓(𝑛)‖                                          

= 𝑘𝑞𝑆(𝑓).                                                                                                                                       

Therefore, ‖𝑇𝑞𝑓 − 𝑓‖ ≤ 𝑆(𝑓)(𝑘𝑞 − 1) and so by taking limit as 𝑞 → ∞, we have lim
𝑞

‖𝑇𝑞𝑓 − 𝑓‖ = 0 but then 

since lim
𝑞

‖𝑇𝑞+1𝑓 − 𝑇𝑓‖ ≤ lim
𝑞

‖𝑇𝑞𝑓 − 𝑓‖,  lim
𝑞

‖𝑇𝑞+1𝑓 − 𝑇𝑓‖ = 0 and so 𝑇𝑞𝑓 converges both 𝑇𝑓 and 𝑓; thus, 

𝑇𝑓 = 𝑓 by the uniqueness of the limits. 

Case 2: 𝑓 ∈ 𝑊\𝐸(𝑚). 

Then, 𝑓 is of the form ∑∞
𝑛=1 𝛾𝑛𝑓𝑛  such that  ∑∞

𝑛=1 𝛾𝑛 < 1  𝑎𝑛𝑑  𝛾𝑛 ≥ 0, ∀𝑛 ∈ ℕ. 

Define 𝛿: = 1 − ∑∞
𝑛=1 𝛾𝑛    and next define  

ℎ: = (𝛾1 + 𝛿)𝑓1 + ∑

∞

𝑛=2

𝛾𝑛𝑓𝑛. 

Then,  ‖ℎ − 𝑓‖ = ‖𝑏𝛿𝑒1‖ = b𝛿. 

Now fix 𝑔 ∈ 𝐸(𝑚) of the form ∑∞
𝑛=1 β𝑛𝑓𝑛 such that ∑∞

𝑛=1 β𝑛   = 1 with β𝑛 ≥ 0, ∀𝑛 ∈ ℕ. We may also write 

each fk with coefficients γk for each k ∈ ℕ where 𝜉1: = b  v1, and 𝜉n: = n−1vn for all integers n ≥ 2 such that 

for each n ∈ ℕ, fn = 𝜉nen. 

Then, 

‖g − 𝑓‖ = ‖∑

∞

𝑘=1

β𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛾𝑘𝑓𝑘‖ = ‖∑

∞

𝑘=1

β𝑘𝑓𝑘 − ∑

∞

𝑘=1

𝛾𝑘𝑓𝑘‖                                       

= ‖∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)𝑓𝑘‖                                                                                

        = ∫
1

0

𝑡𝑚 |∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)𝑓𝑘| 𝑑𝑚 =  ∫
1

0

|∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)𝑡𝑚𝑓𝑘| 𝑑𝑚                  

≥ |∫
1

0

∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)𝑡𝑚𝑓𝑘𝑑𝑚|                                                                  

   ≥ b |∑

∞

𝑘=1

(β𝑘 − 𝛾𝑘)|                                                                                       

     = b |1 − ∑

∞

𝑘=1

𝛾𝑘|                                                                                               

    = b𝛿                                                                                                                   

Hence, 

 

‖g − 𝑓‖ ≥ 𝑏𝛿 = ‖ℎ − 𝑓‖. 

Next, we have the following. 

𝑠(ℎ) = 𝑠(𝑓) + ‖ℎ − 𝑓‖ ≤ 𝑠(𝑓) + ‖𝑇𝑞ℎ − 𝑓‖ = 𝑠(𝑇𝑞ℎ) but this follows 
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 = limsup
𝑛

‖𝑇𝑞ℎ − 𝑓(𝑛)‖ then similarly to the inequality (2.1) 

 ≤ limsup
𝑛

‖𝑇𝑞ℎ − 𝑇𝑞(𝑓(𝑛))‖ + limsup
𝑛

‖𝑓(𝑛) − 𝑇𝑞(𝑓(𝑛))‖ 

≤ 𝑘𝑞limsup
𝑛

‖ℎ − 𝑓(𝑛)‖ + limsup
𝑛

∑

q

𝑗=1

‖𝑇𝑗(𝑓(𝑛)) − 𝑇𝑗−1(𝑓(𝑛))‖                                                     

≤ 𝑘𝑞limsup
𝑛

‖ℎ − 𝑓(𝑛)‖ + limsup
𝑛

∑

q

𝑗=1

𝑘𝑗−1‖𝑇(𝑓(𝑛)) − 𝑓(𝑛)‖                                                           

            ≤ 𝑘𝑞limsup
𝑛

‖ℎ − 𝑓(𝑛)‖ + 0                                                                                                                                   

= 𝑘𝑞𝑠(ℎ).                                                                                                                                                      

Hence, 𝑠(ℎ) ≤ 𝑠(𝑇𝑞ℎ) ≤ 𝑘𝑞𝑠(ℎ) and so taking limit as 𝑞 → ∞, we have lim
𝑞

 𝑠(𝑇𝑞ℎ) = 𝑠(ℎ) ; that is, 

lim
𝑞

 𝑠(𝑓) + ‖𝑇𝑞ℎ − 𝑓‖  = lim
𝑞

 𝑠(𝑓) + ‖ℎ − 𝑓‖ which means lim
𝑞

‖𝑇𝑞ℎ − 𝑓‖  = ‖ℎ − 𝑓‖    (2.2) 

Moreover, for any 𝑔 ∈ 𝐸(𝑚) , 

‖g − ℎ‖ = ‖∑

∞

𝑘=1

β𝑘𝑓𝑘 − (𝛾1 + 𝛿)𝑓1 − ∑

∞

𝑛=2

𝛾𝑛𝑓𝑛‖ = ‖∑

∞

𝑘=2

(β𝑘 − 𝛾𝑘)𝑓𝑘 + (β1 − 𝛾1 − 𝛿)𝑓1‖                                        

≤ ‖∑

∞

𝑘=2

(β𝑘 − 𝛾𝑘)𝑓𝑘‖ + ‖(β1 − 𝛾1 − 𝛿)𝑓1‖ = ∫
1

0

𝑡𝑚 |∑

∞

𝑘=2

(β𝑘 − 𝛾𝑘)𝑓𝑘| 𝑑𝑚 + ∫
1

0

𝑡𝑚|(β1 − 𝛾1 − 𝛿)𝑓1|𝑑𝑚 

≤ ∑

∞

𝑘=2

∫
1

0

𝑡𝑚|(β𝑘 − 𝛾𝑘)𝑓𝑘|𝑑𝑚 + ∫
1

0

𝑡𝑚|(β1 − 𝛾1 − 𝛿)𝑓1|𝑑𝑚 = ∑

∞

𝑘=2

|β𝑘 − 𝛾𝑘| + 𝑏|β1 − 𝛾1 − 𝛿|                   

= ∑

∞

𝑘=2

|β𝑘 − 𝛾𝑘| + 𝑏 |β1 + ∑

∞

𝑘=2

β𝑘 − ∑

∞

𝑘=2

β𝑘 − 𝛾1 − 1 + ∑

∞

𝑘=1

𝛾𝑘|                                                                           

= ∑

∞

𝑘=2

|β𝑘 − 𝛾𝑘| + 𝑏 |∑

∞

𝑘=2

𝛾𝑘 − ∑

∞

𝑘=2

β𝑘|                                                                                                                        

≤ ∑

∞

𝑘=2

|β𝑘 − 𝛾𝑘| + b ∑

∞

𝑘=2

|β𝑘 − 𝛾𝑘| = (1 + b) ∑

∞

𝑘=2

|β𝑘 − 𝛾𝑘| =
1 + 𝑏

1 − 𝑏
(1 − b) ∑

∞

𝑘=2

|β𝑘 − 𝛾𝑘|                        

=
1 + 𝑏

1 − 𝑏
[𝑏𝛿 − 𝑏𝛿 + (1 − b) ∑

∞

𝑘=2

|β𝑘 − 𝛾𝑘|] =
1 + 𝑏

1 − 𝑏
[𝑏(1 − (1 − 𝛿)) − 𝑏𝛿 + (1 − b) ∑

∞

𝑘=2

|β𝑘 − 𝛾𝑘|]    

=
1 + 𝑏

1 − 𝑏
[𝑏(1 − (1 − 𝛿)) + (1 − b) ∑

∞

𝑘=2

|β𝑘 − 𝛾𝑘| − 𝑏𝛿]                                                                                      

=
1 + 𝑏

1 − 𝑏
[𝑏 (∑

∞

𝑘=1

β𝑘 − ∑

∞

𝑘=1

𝛾𝑘) + (1 − b) ∑

∞

𝑘=2

|β𝑘 − 𝛾𝑘| − 𝑏𝛿]                                                                            

≤
1 + 𝑏

1 − 𝑏
[𝑏 ∑

∞

𝑘=1

|β𝑘 − 𝛾𝑘| + (1 − b) ∑

∞

𝑘=2

|β𝑘 − 𝛾𝑘| − 𝑏𝛿].                                                                                     

Hence, 

‖g − ℎ‖ ≤
1 + 𝑏

1 − 𝑏
[𝑏|β1 − 𝛾1|   + ∑

∞

𝑘=2

|β𝑘 − 𝛾𝑘| − 𝑏𝛿] =
1 + 𝑏

1 − 𝑏
[‖g − 𝑓‖  − ‖ℎ − 𝑓‖]. 

Now, fix 𝜀 > 0 and recall that 𝑏 ∈ (0,1). Then, we can choose 𝜇(𝜀): =
1−𝑏

1+𝑏
𝜀 ∈ (0, ∞) such that for any 𝑔 =

∑∞
𝑘=1 β𝑘𝑓𝑘 ∈ 𝐸(𝑚),  

|‖g − 𝑓‖  − ‖ℎ − 𝑓‖| ≤ ‖g − 𝑓‖  − ‖ℎ − 𝑓‖ < 𝜇. 

Then, ‖g − ℎ‖ <
1+𝑏

1−𝑏
𝜇 = 𝜀. 

So for every 𝜀 > 0 , there exists 𝜇 = 𝜇(𝜀)  such that if |‖g − 𝑓‖  − ‖ℎ − 𝑓‖|  < 𝜇  then ‖g − ℎ‖ < 𝜀  so this 
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implies for any sequence (𝑠𝑛)𝑛  in 𝐸(𝑚)  with lim
𝑛

  ‖𝑠𝑛 − 𝑓‖ = ‖h − 𝑓‖  implies lim
𝑛

  ‖𝑠𝑛 − ℎ‖ = 0.  But then 

since in (2.2) we obtained lim
𝑞

  ‖𝑇𝑞ℎ − 𝑓‖ = ‖ℎ − 𝑓‖, we have lim
𝑞

  ‖𝑇𝑞ℎ − ℎ‖ = 0. 

Furthermore, 

‖ℎ − 𝑇ℎ‖ ≤ lim
𝑞

  ‖𝑇𝑞ℎ − ℎ‖ + lim
𝑞

  ‖𝑇𝑞ℎ − 𝑇ℎ‖ ≤ 𝑘1lim
𝑞

  ‖𝑇𝑞−1ℎ − ℎ‖ = 0 

Hence, 𝑇ℎ = ℎ and so 𝐸(𝑚) has fpp(ane) as desired.  

From Theorem 2.1, the following Corollary is straightforward since every nonexpansive mappings is also an 

asymptotically nonexpansive mapping. 

Corollary 2.2. For 𝑚 ∈ ℕ and 𝑏 ∈ (0,1), each of the sets 𝐸(𝑚) defined as in the examples above has the fixed 

point property for affine nonexpansive mappings. 
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