
Available online www.jsaer.com

Journal of Scientific and Engineering Research

 146

Journal of Scientific and Engineering Research, 2023, 10(8):146-149

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Automating PDF Report Generation Using Python and FastAPI:

A Seamless Integration with Elastic Content for Real-Time Data

Reporting

Pankaj Dureja

Pankaj.Dureja@gmail.com

Abstract: This research explores the automation of PDF report generation using Python, with data sourced from

Elastic Content via a Python FastAPI interface. The study demonstrates how integrating Python libraries like

FPDF with FastAPI allows for real-time, dynamic report creation, enhancing data-driven decision-making. The

implemented solution shows potential for scalability and adaptability across various industries, particularly

those needing regular, automated report generation.

Keywords: Python, PDF Report Automation, Elastic Content, FastAPI, Data Integration, FPDF, API-Driven

Reporting.

1. Introduction

In an era where data-driven decisions are pivotal, generating comprehensive reports efficiently has become

increasingly important. Traditional methods of report creation often involve manual efforts that are time-

consuming and prone to errors. With the advent of APIs and Python's extensive library ecosystem, it's now

possible to automate the entire process of report generation. This research focuses on automating the generation

of PDF reports by leveraging data stored in Elastic Content, accessed through Python's FastAPI. This approach

not only streamlines the process but also ensures that the reports are up-to-date and accurate, reflecting real-time

data.

2. Problem Statement

Manual report generation, especially in large-scale organizations, often leads to inefficiencies, including time

delays, human errors, and resource wastage. The existing methods do not scale well with increasing data

volumes and complexity. Additionally, the lack of integration between data sources and reporting tools further

complicates the process, making it challenging to produce timely and accurate reports. This research addresses

the need for an automated solution that can generate PDF reports by seamlessly integrating with data stored in

Elastic Content and accessed via FastAPI.

3. Solution Implemented

The implemented solution involves the use of Python's FPDF libraries to generate PDF reports. FastAPI serves

as the interface to access and query data from Elastic Content. The solution is designed to be modular and

scalable, allowing for easy customization of report formats and content. The process begins with querying the

Elastic Content database via FastAPI, processing the retrieved data in Python, and then using a PDF generation

library to create the report. This automated process ensures that reports are generated dynamically, based on the

most recent data available in Elastic Content.

Dureja P Journal of Scientific and Engineering Research, 2023, 10(8):146-149

Journal of Scientific and Engineering Research

147

1. Data Retrieval with FastAPI: FastAPI is used to create an API that queries Elastic Content, retrieving the

necessary data for the report. FastAPI's asynchronous capabilities make it well-suited for handling multiple data

requests efficiently. FastAPI Router Endpoint for On-Demand Report Generation from the User Interface.

Below is a sample implementation:

2. Processing Data in Python: Once the data is retrieved from Elastic Content, it is processed in Python. This

processing might include data cleaning, filtering, aggregation, and formatting, depending on the report's

requirements.

3. PDF Report Generation with Python Libraries: The processed data is then passed to a Python library such

as FPDF to generate the PDF report. These libraries provide extensive capabilities for designing and formatting

reports, including adding text, tables, charts, and images. Sample Python Program.

Dureja P Journal of Scientific and Engineering Research, 2023, 10(8):146-149

Journal of Scientific and Engineering Research

148

4. Automated Workflow: The entire workflow, from data retrieval to report generation, is automated, allowing

reports to be generated on-demand or scheduled at regular intervals.

Report Name Generated Highlighted in Blue color.

Report Output Generated Using the FPDF Python Library via FastAPI Endpoint.

4. Potential Extended Use Cases

The approach demonstrated in this research can be extended to various other use cases, such as:

• Automating financial statements or audit reports generation.

• Generating real-time dashboards in PDF format for business intelligence.

Dureja P Journal of Scientific and Engineering Research, 2023, 10(8):146-149

Journal of Scientific and Engineering Research

149

• Creating customized reports for different stakeholders in an organization.

• Integrating with other data sources like SQL databases, REST APIs, or cloud storage to broaden the

scope of data inputs.

• Enhancing the reporting process in sectors like healthcare, finance, and logistics where timely and

accurate data reporting is crucial.

5. Impact

The automation of PDF report generation significantly reduces the time and effort required to produce reports. It

eliminates the risk of human error, ensuring the consistency and accuracy of the reports. Additionally, by

utilizing Elastic Content as the data source, organizations can ensure that their reports are always based on the

latest available data, improving decision-making processes. This approach also provides a scalable solution that

can grow with the organization’s needs.

6. Scope

This research is focused on the automation of PDF report generation using Python and FastAPI, with Elastic

Content as the primary data source. While the study primarily targets industries requiring regular report

generation, the solution can be adapted and extended to various other sectors and use cases, as outlined in the

potential extended use cases section. The scope also includes exploring the limitations of the current

implementation and suggesting areas for future improvement.

7. Conclusion

The integration of Python with FastAPI and Elastic Content presents a powerful solution for automating the

generation of PDF reports. This approach offers a robust, scalable, and efficient method for producing accurate

and up-to-date reports, addressing many of the challenges associated with manual report generation. The

research concludes that such automation can significantly enhance organizational efficiency, reduce errors, and

provide real-time insights, making it a valuable tool for data-driven decision-making.

References

[1]. FastAPI Documentation, Available at https://fastapi.tiangolo.com/

[2]. Python PDF generation library, Available at https://pyfpdf.readthedocs.io/en/latest/

[3]. Automate the boring stuff, working with pdf and word documents, Available at

https://automatetheboringstuff.com/2e/chapter15/

[4]. Python Elasticsearch Client, Available at https://elasticsearch-

py.readthedocs.io/en/v8.15.0/quickstart.html#getting-documents

[5]. Python Elasticsearch Client - 2, Available at

https://www.elastic.co/guide/en/elasticsearch/client/python-api/current/index.html

