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Abstract The problem of boundedness for a class of stochastic differential systems with infinite delay driven by
Lévy noise is considered in this article. Several sufficient conditions are derived to ensure that the solution is
mean square exponential ultimate boundedness by employing the generalized formula and the stochastic
analysis, in which there is no need to construct Lyapunov functions.
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1. Introduction

In recent years, the theory of stochastic differential equations has become an active area of investigation due to
their applications in many fields, see [1]. In systems analysis, stability and boundedness theory are two
important aspects to be studied. The stability for stochastic differential equations has been paid more attention
by more authors and we here only mention [2-7]. In fact , there is usually no equilibrium point for stochastic
differential systems under conditions of random disturbances. Therefore, the discussion of boundeness is far
more meaningful than the discussion of stability for stochastic differential systems. Brownian motion is often
used to model random factors that occur in a system. Up to known, a number of important results have been
obtained for stochastic differential equations driven by Brownian motion, see [8]. However, the study of Lévy
noise-driven stochastic differential equation theory is still limited compared to the study of Brown motion-
driven stochastic differential equation theory. The study of bounded delay [9] has attracted a great deal of
attention from academics. Infinite delay are a further extension of bounded delay, making them more general.
Therefore, the study of infinite delay is even more meaningful.

Based on the above discussion, by applying the Ito’s formula, we discuss the globally exponentially ultimately
bounded in mean square of stochastic differential systems with infinite delay with Lévy white noise, the
sufficient condition of the globally exponentially ultimately bounded in mean square of the system are derived.
Finally, an example is given to verify the effectiveness of the results.

2. Preliminaries

In the section, we start with some useful notation in this paper. Let N = {1,2,...}, and R, = [0,0). Let
w(t) = (w1(),..., wy, () be an m-dimensional Brownian motion defined on a complete probability space
(2, F,P)with a filtration {F,};»,. For t >0, denote by CZ ((—o0,0],R%) the family of F,-measurable
C((—o0,0], R%)-valued random variables{satisfying E||{||2. < oo, where C((—o0, 0], R%)denotes the family of
continuous functions ¢ : (—oo, 0] = R%with the norm [|]|_e = SUP_ces<oll{(S)Il, and |||| is the Euclidean
norm on R%. Let CZ(R% X R,; R, )be the family of all R,-valued functions V (x, t)defined on R% x R, which
are once differentiable in t € R, and continuously twice differentiable in x € R<.
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In this paper, we consider the following infinite delay stochastic differential equation driven by L évy white
noise:

(dx(t) = H(t,x(0), [, Q(t,5,x(s)) ds)dt + G(t,x(t), [, Q(t, 5, x(s)) ds)dw(t)

+ fiepec Hi (87, ¢, x(t)) £(dt, d¢) + Jicize H2 (€7, 6, x(0)) E(dt, dg) ,t = g (2-1)
x(ty + 6) = ¢(6) € 7, ((—o0,0],RY)

where the mappings H(.,.,.)and G(.,.,.)are Borel-measurable functions, which are defined on R, x R% x R¢
and taken values in R%and R%*™, respectively. H(.,.,.)and G(.,.,.)is (locally) Lipschitz continuous with
respect to the second and the third arguments on each compact subset of R, x R4 x R%.  Q(.,.,.):A X R% -
R(A:= {(t,s) E Rx R:t > s}) are matrix-valued continuous functions. Q(.,.,.) is (locally) Lipschitz
continuous with respect to the third argument on each compact subset of A x R*. H;:R, X R* x R% -
R*with i = 1,2, and the constant ¢ € (0, +) is the maximum allowable jump size. LetZ be the Poisson
random measure defined on R, x (R — {0}) with the compensator Z and the intensity measure v. In this paper,
we always assume that Zis independent of wand v is a Lévy measure which satisfies Z(dt, d¢): = Z(dt, dg) —

v(d¢)dt and fR_{O}(Ilcllz/\l)v(dg)<oo. Usually, the symbol (w,Z) is called a Lévy noise,

f”C“q Hy(t™, ¢ x(t)) £(dt, dg) is called “small jump” and fllcllzc Hy(t™,¢,x(t)) E(dt, dg) is called “large jump” .
Throughout this paper we assume that for any ¢ € Cfbto((—oo, 0], R%) , there exists at least one solution of

system (2-1). and E||x(t; to, {)||? is continuous.

The definition of the globally exponentially stability in mean square and the globally exponentially
ultimately bounded in mean square are given below.

Definition 2.1 System (2-1) is said to be globally exponentially ultimately bounded in mean square if there
are positive constants . K and nsuch that for any initial value { € C}?to((—oo, 0], R%),

Ellx(t; to, OII* < Ke MEE|TN2 +1, ¢ 2 ¢
In order to better apply Ito’s formula, for a function U € C?(R, x R%; R,), define the operator
GU(t, x(t)): R, Xx R - R,

GU(t,x) = U(t,x) + U (t,x)H +%trace[GTUxx(t, x)G]
+ fipeclU @t x + Hy(t, 6, x(£)) = Ut x) —
Hy (t, 6, x(©))Ux (t, x)]v(ds)

+ [ oaelU 6 x + Hy (2,6, x())) = Ut 0)]v(ds).
Assumption 2.1. E||x(¢; to, O)II* is continuous.

1. Main result

To prove the globally exponentially ultimately bounded in mean square pf the system (2-1), suppose there
exist continuous functions h(t), g(t), h(t), §t):R - R, ¥(.,.):A— R,, and give the following
assumptions:

(T) x"H (¢, x,y) < —h@llx(OI? + gOllx@ONlly®Nl + 1), x,y € R?; (3-
1)
(T2) 6T (6, %, Y)G(t,x,y) < hOlx®I* + GOy +J (), xy€R?;
(3-2)
T Qs DI2 <y )NzI% (t,5) € 4,2 € R ; supyeg [* ¥(t,5)ds < oo ; (3-
3)
(T Jjyee X Ha(t, 5, 2(0)0(dg) 2 LxOII ; 3-
4)
(T5) Jygpee HTLCE 6, 2(8)) + x]Hy[(t, 6, 2(8)) + x]v(ds) < qllx(@®)]I? ; (3-
rr‘%
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(T6) Jjyae H2 [t 6, x (D) + X]H[(t, 6, x(8)) + x]v(dg) < rllx(D* ; (3?

(T,) Suppose there exist § > 0, such that K
—2h(t) +h(t)+gt) +q+r—21—[ "C”<Cv(dg) + f||g||zcv(do]

+(g@) + g [ vt e’ dg < -5, teR. (3-7)

Theorem 3.1. Assume(T;) — (T;)hold, then system (2-1) is globally exponentially ultimately bounded in
mean square.
Proof. Consider the functions

L(t):= Ellx(t;to, OII?, P(t):= Ke *CE|{|2, +1, t=t,, (3-8)
21
wheren = TH’ I = supse [1(O)]> ] = supese, |/ (O]

Next we claim that
L(t) S P(t), t=t,. (3-9)
If (3-9) is not true, then there must be a £ > t, such that L(£) > P(?).
Let t,: = inf{t > to: L(t) > P(t)}.
Using the continuity, we have
L(t) < P(t), tE [ty t,),L(t,) =P(t,),
and for somet,, € (t,,t. + %), k € N, such that L(t,) > P(t;). (3-10)
Let the function V(x, t) := e*||x(t)||?, (x,t) € R? X R,.
FiX A = supeepe, | 2R() — h(t) — g(©)| + 1, letx(t):=x(t;t0,{) . tER.
For any m > ||x,||, the stopping time is defined by w,,, = inf{t = to:m < ||x(®)|}.
Apply the Ito’s formula to e*||x(t)||?, we obtain
tAUm
MMt A < Al [ AR () ds
to

+2 ffo“‘m e?xT(s)H(s, x(s), [* Q(s,6,x(6)) d6) ds
+ [T et 6T (5, x(5), [, Q(5,6,%(6)) 46)

G(s,x(s), [°_ Q(s,0,x(0)) d8)ds
+ [ (x(9), )G (s, x(5), [, Q(s, 0, x(6)) dB)dw(s)

o eV G5 + Hi (7,6, x()),57) =
V(x(s7),s7) — Hi(s7, ¢, x(s))Ve(x(s7), s)]v(dg)ds
" eV ™) + Ha(s7 6, x()),57) =
V(x(s7),s)]v(ds)ds
™ eV @) + Hi(s™, 6, x()),57) =
V(x(s7),s7)]E(dt, do)
L eV (57 + Ha (57,6, %(5)),57) =
V(x(s7),s7)]&(dt, dg). (3-11)
where,
ftfof\um V. (x(s),s)G(s,x(s), f_soo Q(s,0,x(6))do) dw(s),
fttg/\um leli<cV F(7) + Hi(s7,6,x(5)),87) = V(x(s7),s7)]E(dt, dg),
ftto/\ﬂm lelzelV (7Y + Hy(s7,6,x(5)), s7) = V (x(s7), s7)]E(dt, dg) are three martingales.
Taking the expectation on both sides of (3-11), we have
tn

EeXehm|x (e A )12 < Ee*ol|x ()12 + E f A |1x(s)II%ds
to

+2E f;’wm e’ xT(s)H(s, x(s), f_soo Q(s,0,x(6)) df)ds
& D
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+E ftto/\um e?GT (s, x(s), f_soo Q(s,0,x(6))do)

G(s,x(s),fs Q(s,08,x(0))do) ds

tAUm
+Ef J.I | [V(x(s™) + Hi(s7,¢x(s)),s7)

to llgll<c

—V(x(s7),s7) —Hi(s7,6,x(s))Ve(x(s7),s)]v(dg)ds
+E ftto/\um JierzelV Ge(s™) + Hz(s7,6,x(5)), 57)

—V(x(s7),s7)]v(dg)ds. (3-12)
Substituting the conditions given by (3-1)-(3-6) into (3-12), we obtain

tAUm
Ee*Mm)|lx (£ A ) II* < Ee™o|lx(to) 1> + Ef 2e® |lx(s)l1*ds

to

2Ef““m Mh(s)||x(s)||2ds+Ef““m s g (s)|lx ()12 ds

+E i o250 ()., (5, O)I(@) I d6) ds

+2Ef““’" e®I(s)ds +E [["™ M R(s)x(s)I ds

+Ef“"’" 5 )7, ¥ (s 0@ dB)ds

+E f“"m 5] (s) ds

+Eft/\”m e’Sqllx(s)? ds+Eft/wm Asp|lx(s)||? ds

—ZEffo“”"‘ e™Ux(s)| ds

—E [ f e €I v(ds) ds

—E [ fse € X ()17 v(dg) ds. (3-13)
Letting m — ocoand using the Fubini theorem, we have

t
eMEllx(D)II* < e*Ellx(to)lI* + | AeMEllx(s)II* ds

to

+ i e* [=2h(s) + R(s) + g(s) + q + 7 — 2
_(f”q"<cv(d§‘) + fllqllzc U(dC))]E”x(S)HZdS
+f e®lg(s) + 3()) (I, ¥(s, 6) Ellx(9)2d6)ds
+ [} e?(21(s) +(s)) ds.
Let K;: = KE||||?«. Combining (3-10), we have
Ly
e Ellx(t.)1? < eXEllx(to)lI” + j 2e% (K, e~56~%0) + n)ds
t

]

+ [ e [<2h(s) + h(s) + g(s) + q +7 - 21
=y ee V(AS) + fj o v(dE)] (Kre ™06~ 4+ )ds
+ [ e [g(s) + GO, ¥(5,6) (Kye @~ + y)db]ds
+ ftto* e’(2I + ) ds
= M|l (to)I12 + [ 26 (Kye =67 + n)ds
+ ffo* e’ K e=96~t)[—2h(s) + h(s) + g(s) + q + 1 — 21
~ e ? (@) + f v (d6)) + (9(5) + 3(5))
2 v(s,0) €469 do]ds
+ ft*eﬂsn [=2h(s) + A(s) + g(s) + q + 7 — 21

0

_(f||c||<c v (dg) + f||g||2c v (dg)) + (g(s)
+3(s)) [° v(s,0) do]ds

;i T
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+2(21 + ) (e — e,
Combining (3-7), we obtain

t«
e M Ellx(t)I* < e E]lx(to)|I? +f Ae* (Kye™0Ct) 4 m)ds
to

+], t*(—(S)e“K e86~to)gs
ft* [—2h(s) + h(s) + g(s)]ds
+f* il (S) + G, ny(s 6)db]ds
+f* Balg+r =20 = [ v (dS) = [ e v (d9)]ds
+5(21 +]) (et — etto)
eMoE || x(to)lI? + ftto K et e=9s(3 — §)ds
+ [, % [=2h(s) + R(s) + g(s)Inds
+ I e* [g(s) + GO, nv(s,0)d0]ds

+ 21+]+/1r)+[q+r—21—f“§“<cv(dg)—fllclpcv(dc)]n

( /1t Ato)

e MoE||x(to)|I2 +ft*1< St g(=8)s (7 — 5)ds+f nle’s ds
ltoEllx(tO)HZ + KleSto[e(A Ste _ e(l E)to] 4+ n[e“* _ elto]
e (ENISN1Z 0 = KEISII% o) + KEIIG||2 oo™t e =0t
+T][€At* _ elto]
< KE”(llz—ooeM*e_S(t*_tO) +ne’1t
Since, E|lx(t)|? < Kye %t + 5, which conflicts with (3-10).
So L(t) = Ellx(t; to, OII* < P(t) = Ke PCE|C|20 + 1. t 2 t.
Therefore, system (2-1) is globally exponentially ultimately bounded in mean square.
Corollary 3.1 IfI(s) =J(s) = 0, and (T;) — (T,) hold, then system (2-1) is the globally exponentially
stability in mean square.
Remark 3.1. Although some similar methods for discussing the boundedness of stochastic systems driven
by Lévy noise have been provided in [10], the results in [10] are invalid for system (2-1) since it is a system

with infinite time delay. Even for the case Q(.,.,.) = 0, our conditions are looser than those in [10] since our
conditions are non-autonomous.

II/\

2. lllustrative example

The present section gives an illustrative example for our results.
Example 4.1. Consider the following infinite delay stochastic differential equation with Lévy white noise,

1
where c¢=1, H(t,x,y)=-7x+y+— I ”2 G(t,x,y)=x +y Q(t,s,2) = ez Vg, Hy(t,¢,x) = x¢ —

x, H,(t,¢,x) = 2x¢ —x, and the Lévy measure obeys v(d¢) =

1+|I<II2
Clearly,
XTH(t%,y) = 27 (=7x + y +75) = =7l + llxlllyl + 1
GT(tx, )Gt xy) = (x+ )" (x +y) < 2llx@®* + 2lly©I*;
- t
et s, DII* = e“Olzl|*s supeer |, V(t S) ds = 1;
figiea ¥ H (66, 2(©) v(dS) = fig oy 6 (6 = ) 1 = =S @I
f HY [(t, ¢, x(®)) + x]Hy [(t, 6, x(1)) + x]v(ds)
llsli<1
- T = 2T l12.
= fe1ar 009) () 3 = 5 Il
q"\‘i
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f“ | H3 [(t, 6, x(8)) + x]H, [(t, 6, x(1)) + x]v(ds)
¢llz1

_ T dg
= 20 (%) (236)

= (8 —2m)llx|l*.

Then we obtain
h®) =7, g©)=1, I(t)=1, h(t)=2, §) =2, J(t) =0, lz—g, q==", r=8-2m

- 1 -
Fix 6 = >+ Wwecan verify

—2h(t) + ﬁ(t) +g()+q+r—-21—] v(dg) + f v(dg)]
llgll<1 liliz1

t
s
+(g(®) + g(t))f v(t,0)e’¢Dde = —-14+2+1+ ——+8-lmtm-m

1
+3 1 e@ ez P dp = -1 ->m+6=5-2r=-285<—-6=—-,

Hence, (T,) holds.
Therefore, according to Theorem 3.1, this stochastic differential equation is globally exponentially ultimately

bounded in mean square.

References

[1]. Y. Wei, Dynamics of stochastic differential systems driven by non-Gauss processes, South China
University of Technology, 2018.

[2]. W. Cao, Stability of several classes of stochastic differential systems based on the vector Lyapunov
function method, Hunan Normal University, 2021.

[3]. P.H.A.Ngoc, L.T.Hieu, Exponential stability of integro-differential equations and applications, Appl.
Math. Lett. 117 (2021) 107127.

[4]. Y. Sun, Stability analysis and simultaneous control of neutral stochastic differential systems, Donghua
University, 2020.

[5]. X. Fu, Stability analysis of several classes of pulsed stochastic differential systems, Nanjing Normal
University, 2019.

[6]. N. Li, Stability study of stochastic differential systems with mixed pulses, Anhui Polytechnic
University, 2018.

[7].  X. Wang, Stochastic stability of stochastic differential systems with update processes, Zhengzhou
University, 2016.

[8]. G. Li, Q. Yang, Stabilization of nonlinear stochastic delay differential equations driven by G-Brown
motion, Applied Mathematics and Mechanics, 2021, 42(08):841-851.

[9]. D. He, L. Xu, Boundedness analysis of stochastic delay differential equations with Lévy noise, Applied
Mathematics and Computation.421 (2022) 126902.

[10]. D. He, Boundedness theorems of stochastic differential systems with Lévy noise, Appl. Math. Lett. 106
(2020) 106358

f%@? Journal of Scientific and Engineering Research



