
Available online www.jsaer.com 

Journal of Scientific and Engineering Research  

284 

Journal of Scientific and Engineering Research, 2023, 10(6):284-289 

 

    

 
Research Article 

ISSN: 2394-2630 

CODEN(USA): JSERBR  

    

 

Streamlining Data Ingestion with Apache Kafka and Databricks 
 

Ravi Shankar Koppula 

 

Satsyil Corp, Herndon, VA, USA 

Ravikoppula100@gmail.com 

Abstract: In this research paper, we delve into the intricacies of streamlining data ingestion using Apache 

Kafka and Databricks. As organizations continue to generate massive amounts of data, the need for real-time 

data ingestion and processing has become paramount. Traditional batch processing methods are no longer 

sufficient to meet the demands for timely insights and decision-making. Apache Kafka, a distributed streaming 

platform, coupled with Databricks, a unified analytics platform, offers a robust solution for real-time data 

ingestion and analytics. This paper explores the architecture, key features, and integration of Apache Kafka with 

Databricks. We discuss best practices for optimizing data ingestion, including data serialization, compression, 

monitoring, and alerting. Through this examination, we aim to provide a comprehensive understanding of how 

to effectively manage and utilize continuous data streams, ensuring scalability, efficiency, and accuracy in data-

driven environments. 

 

Keywords: Apache Kafka, Databricks, Data Ingestion, Real-time Analytics, Streaming Data, Data Serialization, 

Data Compression, Unified Analytics Platform, Monitoring and Alerting, Big Data. 

Introduction 

Most organizations, big or small, generate data continuously. Organizations invest significantly in analytics to 

derive insights from this data and to make data-driven decisions. Most of this data is ingested as batch data and 

stored on the data lake using different ingestion mechanisms. Once it is on the data lake, multiple datasets are 

processed asynchronously or as daily aggregation, joined, or filtered to create a golden dataset which is referred 

to as the “single source of truth”. This is rather an outdated architecture considering that most organizations now 

report on data in real-time through KPIs, scorecards, and other visualizations. This has created the need for real-

time streaming data ingestion solutions with minimal latency [1]. Organizations need an architecture wherein 

data is ingested as a stream and all-consuming analytics are continuously rerun whenever there are updates 

instead of periodically rerunning them through batch jobs. 

A streaming architecture operates on the idea that at any time there will be one or more datasets referred to as 

continuously changing datasets, and at any time they can either be fixed snapshots of the dataset at a particular 

time or it is unknown how it can be fixed. Some classic examples of continuously changing datasets are funds 

available in an ATM, current temperature of a city, stock prices, flight information, etc. Streams of such 

continuously changing datasets can be generated by live sensors, data feeds, logs, and other changing data 

sources. Stream processing engines process these datasets over time and generate derived datasets. Like batch 

processing engines, this architecture is also comprised of an architecture where messages are ingested by a 

producer and transported to subscribers via a message broker. Streaming data ingestion is implemented on 

apache kafka along with stream analytics on databricks [2]. The architecture is visualized as follows: 

 

Overview of Data Ingestion 

The vast majority of data is generated by cells in linked databases, which results in a large amount of data 

commonly referred to as the “data deluge” [1]. Cell records include a wide variety of different “types” of 

information that have been produced in unusual lengths, as well as different levels of quality. It becomes nearly 



Koppula RS                                            Journal of Scientific and Engineering Research, 2023, 10(6):284-289 

Journal of Scientific and Engineering Research 

285 

impossible to keep clean, one entry unit of data that can be used as a basis for assessment in the data deluge 

period, as more data sources emerge and progress. For this examination and research, the linked datasets 

generated by Open Corporates will be scrutinized. Open Corporates publishes information about companies 

registered at the Companies House, which is the Registrar of Companies for England and Wales, Scotland, and 

Northern Ireland. These companies have a unique identifier called a company number. 

A small number of database entries in the linked dataset contain company number attributes that are malformed, 

resulting in incorrect data entry for that specific entry. Using a company registry as an example, an intelligent 

data pipeline can be extrapolated that ingests data into a data warehouse, sanity-checks them, and finally 

enriches the imperfect data with information from an external web service. The data enrichment strategy is 

developed based on a web service provided by the “Companies House” organization, which provides 

information about companies registered in the UK.  

 

Apache Kafka: Key Concepts 

In Kafka, consumers are applications that subscribe to one or more topics. A consumer group can consist of 

multiple applications, and each message sent to a topic will be consumed only once by these applications. A 

topic and a partition are uniquely identified by their name. Every message appended to a partition gets an 

incremental, unique offset, which is a monotonically increasing identifier that can be used to retrieve the 

message [2]. 

 
Topics and Partitions 

Topics in Kafka are the high-level flow information entities (a stream of messages - events) where producers 

categorize the events they generate. Each Topic is identified by a name and, if not configured otherwise, events 

are written to it in a round-robin manner. Unlike other messaging systems, by default topics’ events are not 

removed when they are consumed. Kafka does not store events in RAM but in disk, accessible through an index, 

with a configurable retention policy (hours, days, or size). This allows a reprocessing of events generated in a 

past time. Also, this architecture provides a distributed log, where consumers can go through the log at their own 

pace when required. The absence of forwarding (as with message queues) allows consumers to consume the 

same event multiple times; hence it is entirely possible to forward the same event to multiple unmatched front-

end systems. All these features address a data-streaming architecture need, allowing the distributed processing 

of events made by different consumer systems [2]. 

Partitions provide load balancing and fault tolerance. Each Topic can be divided into several partitions and each 

partition can have several replicas. By having more partitions, the load of the log can be distributed among 

several Brokers. Each partition is totally ordered (within the partition, each event has an immutable sequence ID 

- offset) and replicated (a partition replication is a copy of the partition that is kept in an entirely different 

Broker). The consumer side is simpler: there is no message acknowledgment to the Producer. Once a message 

has been appended to the log, the system guarantees that it will be delivered to the consumers. Acknowledged 



Koppula RS                                            Journal of Scientific and Engineering Research, 2023, 10(6):284-289 

Journal of Scientific and Engineering Research 

286 

messages are not removed from the log. Brokers act as a peer-to-peer system, meaning that all start, stop, data 

forwarding, and log file storage operations are equally handled. 

Producers and Consumers 

In an Apache Kafka deployment, data is produced and consumed by external applications called producers and 

consumers. A producer publishes data to a Kafka topic; a consumer subscribes to the topic and reads from it. 

There can be many producers and consumers for a topic; they do not need to be aware of each other's existence. 

Producers and consumers can be an external application or another Kafka topic, allowing for complex 

topologies to be constructed. Producers and consumers can be implemented in many programming languages 

using the producer and consumer APIs provided with the Kafka distribution. When clients are written in 

languages other than Java, the client can take advantage of the performance and scalability of Kafka [3]. Data 

from Kafka topics is read, written, and transformed via connectors. Kafka Connect comes bundled with source 

connectors to pull data into Kafka from other systems, such as relational databases, and sink connectors that 

remove data from Kafka and push it to other systems. Kafka Connect makes deploying connectors very easy. 

Developers provide a file containing configuration properties. This file is then uploaded to a Connect worker (a 

stand-alone process that runs the connectors); the Connect worker will then start the connector in its own thread. 

Endpoints provided by the Connect worker can be used to monitor and control running connectors. Kafka 

Connect REST interface has been designed to provide good ways to integrate with other systems. For example, 

a connector can retrieve and write back data to the same RDBMS from which it ingests or writes to a NoSQL 

database to store data read from an RDBMS or other systems [4]. 

 

Databricks: Key Features 

A Unified Approach to Cloud Data Management is suggested with Databricks, the Data and AI Platform. All 

data, analytics and AI are managed on an open and unified platform, making it possible to integrate data from all 

sources, build and train AI algorithms at scale and share insights in real time. Databricks is provided on all 

major clouds and integrates with hundreds of third-party technologies, making it easy to put the platform at the 

heart of an organization’s data strategy. All data is integrated, analytics simplified and AI made accessible for 

everyone. The unified and open platform provides a better chance of success than fragmented alternatives where 

integration and open standards have low priority [1]. 

Databricks is a self-service platform for a wide range of use cases; including batch and streaming data ingestion 

data processing jobs, ETL workloads, running complex machine learning experiments, serving prediction scores 

in real-time and providing dashboards for BI tools. It enables organizations to use a consistent paradigm and 

simplify operations. Databricks allows viewing workloads and their dependencies in one place and managing 

performance with pool queues. The ability to isolate workloads on different clusters per job and instantly spin 

up new clusters on demand improves performance and resource allocation. 

Unified Analytics Platform 

The Databricks Unified Analytics Platform is a comprehensive and sophisticated relationship analytics 

environment-integrating administrative, development, and user interfaces with a resilient computational fabric. 

It is designed to leverage existing big data sources or ingest new sources of big data for use within Spark, while 

also supporting the publishing of new big data sources resulting from the analytics efforts of Spark [1]. All the 

workload and data interfaces are unified, providing a common platform for spark on cloud or bare metal, and all 

other big data solutions. The Unified Analytics Platform’s simple interface describes what tables get processed 

and the operations to perform on them, while the execution model automatically deploys and configures all 

replicas of the tables-complex streaming queries or transformations. 



Koppula RS                                            Journal of Scientific and Engineering Research, 2023, 10(6):284-289 

Journal of Scientific and Engineering Research 

287 

 
Ingestion is a critical aspect of most data management systems, and its importance is magnified for big data 

systems. A comprehensive approach to universal ingestion for big data management systems is a uni-component 

big data management system. It should enable a system to easily grow its big data size, data source complexity, 

number of users, data processing computational load, and knowledge complex and scale. Most importantly, it 

should do so without great complexity. A uni-component big data management system automatically, 

seamlessly, and efficiently handles all these expanding aspects. With this approach, the ingestion capabilities of 

existing and newly developing systems are analyzed against the different metrics comprising universal 

ingestion. 

Integration with Apache Kafka 

The robust integration capabilities of Databricks with Apache Kafka present a powerful opportunity for 

businesses to streamline the process of data ingestion from a variety of sources, including clickstream events, 

IoT sensors, and enterprise applications [1]. This integration smooths the handoff of data from source systems to 

Databricks, with an option for built-in schema evolution, ensuring that the data conforms to an expected 

structure for analytics. The outcome is accelerated time to insight. Apache Kafka is a widely used message 

broker system devised to stream events from production systems, acting as a central hub where messages are 

held until they are consumed [2]. This decouples message producers from consumers, allowing them to be 

developed independently. Besides being a robust platform for building data pipelines, Kafka is also commonly 

used as a platform for building enterprise event notification frameworks, exposing an API to publish/subscribe 

topic-based events around which services can be built. 

 

Best Practices for Streamlining Data Ingestion 

Streamlining data ingestion process can help reduce latency and increase efficiency in a data-driven 

organization. By implementing various optimization techniques, it is crucial to continuously improve the data 

ingestion process for enhanced performance and scalability. Fine-tuning the process will not only maximize the 

utilization of available resources and technologies but also enable seamless integration of data from multiple 

sources. This comprehensive approach ensures a smoother, more robust data flow, maximizing the potential for 

valuable insights and informed decision-making. 

Consider using Avro/ProtoBuf/Thrift as serialization formats when ingesting data into Kafka to keep the size of 

data records reasonable. json is also highly recommended if you are planning to keep the data in the JSON 

format. An interesting observation is that the data records' size does not exhibit a linear growth pattern with the 

number of fields, especially in the case of json. Surprisingly, even with less than 100 fields, the data record size 

becomes a regretful 48~50 KiB, not expanding much further even when adding more fields. When it comes to 

data compression, the gz format is suggested if you are utilizing Kafka-Connect-HDFS as the sink connector. 

On the other hand, if you are employing Kafka-Connect-Spark to avoid test failures on Databricks, snappy 

might prove to be a wise choice. Its efficient compression capabilities are well-suited for such scenarios. [5]  



Koppula RS                                            Journal of Scientific and Engineering Research, 2023, 10(6):284-289 

Journal of Scientific and Engineering Research 

288 

Data Serialization and Compression 

Effective data serialization is crucial in the context of data ingestion pipelines with datastores because it ensures 

smooth processing and prevents parsing exceptions when binary data is streamed over the network. By properly 

serializing the data, it can be efficiently converted into a format that can be easily ingested by the receiving side, 

even if it expects text instead of binary. This is particularly important in scenarios where real-time data 

processing is required, as fast and accurate conversion of data is essential for timely analysis and decision-

making. Another important aspect of data processing is data compression, which can greatly reduce the 

bandwidth usage on the network. By compressing the data before transmission, the size of the data can be 

minimized, leading to faster transfer times and reduced resource usage. This is especially beneficial when 

dealing with large datasets or when network bandwidth is limited. In addition, efficient data compression 

enables more efficient storage utilization, as compressed data requires less space on disk or in memory. In the 

case of Kafka consumer throughput, the choice of message key and value can play a significant role. By using 

relevant message keys such as user ID, session ID, or device serial number, the consumer can more efficiently 

process and filter the incoming messages based on these keys. This can greatly improve the overall throughput 

and performance of the Kafka consumer, enabling faster and more efficient data ingestion. Additionally, careful 

consideration should be given to the serialization and compression techniques used in conjunction with the 

chosen message keys, to ensure optimal performance in terms of both speed and resource usage. In conclusion, 

effective data serialization and data compression are essential components of data ingestion pipelines. They not 

only ensure smooth data transfer and prevent parsing exceptions but also optimize network bandwidth usage and 

storage utilization. Additionally, the choice of message keys in Kafka consumer throughput can greatly impact 

the overall performance and efficiency of the system. Therefore, it is crucial to consider these aspects when 

designing and implementing data ingestion processes. By taking a holistic approach and considering all these 

factors, organizations can achieve faster and more efficient data ingestion, leading to improved data processing 

capabilities and better business insights. [2]  

Apache Avro and Protocol Buffers are recommended data serialization formats because they work natively with 

Kafka and both provide a Java API that supports (de)serialization for binary data. Avro works well with 

complex nested data structures on top of already defined primitives. Avro schemas are specified using JSON 

notation and compatible with DDL notation in Hive [5]. 

Monitoring and Alerting 

When implementing monitoring and alerting mechanisms, the following best practices should be considered: 

monitoring key metrics such as the number of ingested records, processing time, and failure count, establishing 

thresholds for alerts to prevent alert fatigue, periodically reviewing and updating alert configurations, 

aggregating alerts to reduce noise, correlating alerts to identify root causes, and implementing runbooks that 

provide prescribed solution paths for issues.[6][1] 

 

Conclusion 

In the evolving landscape of big data, efficient data ingestion and real-time processing are critical for deriving 

timely insights and making informed decisions. This paper has explored the synergistic integration of Apache 

Kafka and Databricks, two powerful platforms that together facilitate streamlined data ingestion and advanced 

analytics. Apache Kafka, with its robust distributed streaming capabilities, and Databricks, with its unified 

analytics environment, provide a comprehensive solution for managing continuous data streams. We have 

detailed the key concepts of Apache Kafka, emphasizing its role in real-time data streaming and its architectural 

components, such as producers, consumers, topics, and partitions. Similarly, the discussion on Databricks 

highlighted its features, including its ability to seamlessly integrate with various data sources and analytics tools, 

thereby enhancing the overall data processing workflow. 

Best practices for optimizing data ingestion were thoroughly examined, focusing on data serialization, 

compression, and the importance of implementing effective monitoring and alerting mechanisms. These 

practices ensure that the data ingestion process is efficient, scalable, and resilient, capable of handling the 

dynamic nature of big data environments. The combination of Apache Kafka and Databricks offers a robust 

framework that supports the ingestion, processing, and analysis of real-time data. This integrated approach not 

only enhances the performance and scalability of data-driven applications but also provides a flexible and 



Koppula RS                                            Journal of Scientific and Engineering Research, 2023, 10(6):284-289 

Journal of Scientific and Engineering Research 

289 

efficient means of managing continuous data streams. As organizations continue to generate and rely on vast 

amounts of data, the adoption of such advanced data ingestion and analytics solutions will be crucial for 

maintaining a competitive edge and achieving operational excellence. 

By leveraging the capabilities of Apache Kafka and Databricks, businesses can effectively manage their data 

pipelines, ensuring that data is ingested and processed in real-time, thereby facilitating faster decision-making 

and enabling more agile and responsive business operations. The insights gained from this study underscore the 

importance of adopting modern data architectures and practices to meet the growing demands of the digital age. 

  

References 

[1]. X. Wang and M. J. Carey, "An IDEA: An Ingestion Framework for Data Enrichment in AsterixDB," 

2019.  

[2]. C. Martín, P. Langendoerfer, P. Soltani Zarrin, M. Díaz et al., "Kafka-ML: Connecting the data stream 

with ML/AI frameworks," 2022.  

[3]. B. Lawlor, R. Lynch, M. Mac Aogáin, and P. Walsh, "Field of genes: using Apache Kafka as a 

bioinformatic data repository," 2018. ncbi.nlm.nih.gov 

[4]. S. Singh Sandha, M. Kachuee, and S. Darabi, "Complex Event Processing of Health Data in Real-time 

to Predict Heart Failure Risk and Stress," 2017.  

[5]. O. C. Marcu, A. Costan, G. Antoniu, M. S. Pérez-Hernández et al., "Towards a Unified Storage and 

Ingestion Architecture for Stream Processing," 2017.  

[6]. A. Akanbi and M. Masinde, "A Distributed Stream Processing Middleware Framework for Real-Time 

Analysis of Heterogeneous Data on Big Data Platform: Case of Environmental Monitoring," 2020. 

ncbi.nlm.nih.gov 


