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Abstract Modeling of potentially originating anomaly maps is important in geophysical studies. It is desired to 

model the geological structure under the ground by calculating parameters such as the upper depth, lower depth 

and width of the structure that causes the anomaly under the ground from the sections taken from the potential 

source anomaly maps. It is used to distinguish the density difference from the cross section taken from the 

anomaly maps and to find the depth of the object according to gravity according to the anomaly and its 

geometric structure, which we call the Forced Neural Network (FNN) while assuming the x and density of the 

object. In this algorithm, we use neurons to model the system. We apply back propagation algorithm to find the 

density difference. Then, a two-level quantization process is applied and this process continues until the mean 

square error of the system is small enough. In this proposed system, we can find the structure depth accurately. 

The depression area of the Manyas region, located in the northwest part of Turkey, was chosen as the study area. 
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Introduction  

In the solution of geophysical problems, it is an important issue to determine the parameters of the structures 

that cause the anomalies in the underground and to model them. The most important issue in geophysical 

modeling is to determine the dimensions of the geological structure. It is necessary to determine the depth of the 

upper surface, the depth of the lower surface, and the dimensions of the structure of the geological structures 

that create geophysical anomalies. We consider this as modeling the geological structure. Early publications 

such as [1] were concerned with calculating gradients of the gravitational field. [2] used the line integral 

approach to calculate the gravitational pull of two-dimensional masses. [3] studied the inversion approach on the 

gravity profile using Backus-Gilbert inversion techniques. [4] determined the underground density distribution 

using the iteration inversion technique. [5] used singular value separation (SDV) to solve problems in Gravity 

and Seismic prospecting methods and gave examples of their solution. [6] made an inverse solution using the 

Fourier Trasform method to find the density distribution in Gravity. [7 and 8] used numerical integration 

techniques to calculate the areas to be modeled. [9 and 10] They modeled the structures using the Forced Neural 

Network method in modeling the geological structures from the gravity anomaly maps. [11] They modeled two-

dimensional geological structures using the Genetic Algorithm method.  

In this study, the gravity anomaly map made by the Mineral Research and Exploration (MTA) institution in the 

Manyas depression area in the North West Anatolian region of Turkey was used. The geological structure in the 

Manyas depression area was modeled using the FNN method. The purpose of FNN is to estimate the physical 

parameters of embedded objects. 
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Forced Neural Network 

Back Propagation Algorithm 

The error signal at the output of neuron j  at iteration n  is defined by 

)()()( nyndne jjj −= , neuron j is an output node        (1) 

The instantaneous value of the error energy for neuron j  can be defined as 
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. Correspondingly, the 

instantaneous value )(nΕ  of the total error energy is obtained by summing )(
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 over all neurons in the output 

layer; these are the only “visible” neurons for which error signals can be calculated directly [9]. We may thus 

write, 
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where the set C  includes all the neurons in the output layer of the network [12]. Let N  denote the total 

number of patterns (examples) contained in the training set. The average squared error energy is obtained by 

summing )(nΕ  over all n  and then normalizing with respect to set size N , as shown by, 
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The instantaneous error energy )(nΕ , and therefore the average error energy avΕ , is a function of all the free 

parameters (i.e., synaptic weights and bias levels) of the network. For a given training set, avΕ  represents the 

cost function as a measure of learning performance. The objective of the learning process is to adjust the free 

parameters of the network to minimize avΕ . To do this minimization, we use an approximation similar in 

rationale to that used for the derivation of the LMS algorithm. We consider a simple method of training in which 

the weights are updated on a pattern-by-pattern basis until one epoch, that is, one complete presentation of the 

entire training set has been deal with 

)()()( nynnw ijij =          (4) 

Where )(nj is the local gradient [12]. Local gradient points are required changes in synaptic weights [9]. 

We obtain Back-Propagation (BP) formula for the local gradient )(nj  as: 

=
k

kjkjjj nwnnvn )()())(()( '   , neuron j  is hidden       (5) 

The factor ))((' nv jj  involved in the computation of the local gradient )(nj  in Eq.(5) depends solely on the 

activation function associated with hidden neuron j . The remaining factor involved in this computation, namely 

the summation over k , depends on two sets of terms. The first set of terms, the )(nk , requires knowledge of the 

error signals )(nek
, for all neurons that lie in the layer to the immediate right of  hidden neuron j , and that are 

directly connected to neuron j . The second set of terms, the )(nwkj
, consists of the synaptic weights associated 

with these connections [9 and 10].  

We may redefine the local gradient )(nj
 for hidden neuron j  as 
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Figure 1: Signal flow graph of a part of the adjoint system pertaining to Back-Propagation of error signals [9]. 

The induced local field )(nv j
 produced at the input of the activation function associated with neuron j  is 

therefore 


=

=
m

i

iijj nynwnv
0

)()()(          (8) 

where m  is the total number of inputs (excluding the bias) applied to neuron j  [12]. The synaptic weight 0jw  

(corresponding to the fixed input 10 +=y ) equals the bias 
jb  applied to neuron j . Hence the function signal 

)(ny j
 appearing at the output of neuron j  at iteration n  is  

))(()( nvny jjj =          (9) 

Next differentiating Eq.(9) with respect to )(nv j
, we get  
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where the use of prime (the right-hand side) signifies differentiation with respect to the argument [12, 9 and 10]. 

 

Forced Neural Network for Gravity Anomaly  

It is very important to find out the geophysical section respect to the gravity from the gravity anomaly. Here we 

assumed that the structure is cylindrical and the gravity anomaly function is shown below. 
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We use 
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  as an input of the neuron and there should be (H x X) inputs and these inputs 

are constant for every A(xref), and the neuron can be modeled as below [9 and 10]. 
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Figure 2: Forced Neural Network (FNN) design for gravity anomaly [9] 

Here the weights of the neuron are assigned as I,j for each pixel and linear function is assumed as an 

activation function. After using the back propagation I,j  are updated and the output of the neuron gives the 

gravity anomaly. Hence the density differences are found. But the results of this system are not sufficient 

because it finds scattered objects, therefore x is restricted and the outputs are fixed to the known one  or zero 

and thresh hold value b is set to zero.  

Forced neural network means that after sufficient epoch is applied fixed values are assigned to the output of the 

neuron according to the density difference, and this process is continued until the mean square error of the 

quantized output gets sufficiently minimum value [9 and 10]. 

 

Geology of Manyas Lake Area  

Geomorphology:  Manyas lake is in the north of Manyas town and 10 mt altitude of sea level.  It is 12 km width 

and 18 km length, about 200 squared km area. It is very shallow and the water tastes very soft.  The base and 

around is composed of neogen lime-stones, neogen and pre-neogen hills form an interesting topology [13]. 

Geology: Manyas Lake is generally surrounded by neogen limestones and alluvions layers. In recent years, there 

occurred metamorphic shiest and marvels related to Paleozoic period.  Jura and upper cretasine lime-stones are 

also observed [13]. 

Techtonic:  Manyas Region takes place at Gönen–Bursa depressions (Figure 3). This structure is surrounded by 

West Anatolian in the south and by Mudanya mountains on the north neogen region. Many faults is formed 

around the lake and they are related to north Anatolian fault system.  Marmara is formed at the Pliocene period 

but Manyas is younger and assumed to be formed at Quaternary [13]. 
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Figure 3: Geology map of manyas regional (MTA). 

Gravity anomaly map of Manyas depression area 

Negative anomaly closure observed on the Bouguer anomaly map (Figure 4) of the Manyas depression area 

determines the location of the mentioned depression on the southern shore of the lake. The contour formed with 

the lowest gravity value also reflects the deepest part of the depression.  

 

Figure 4: Bouguer anomaly map of Manyas region (MTA) 
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The closure of the gravity anomaly contours in the south of the lake indicates that the depression may have a 

bowl-shaped sediment-filled structure. A residual anomaly map was obtained from the Bouguer anomaly map 

(Figure 5). On the residual anomaly map, only the negative anomaly value limited to the zero contour is drawn. 

It was determined in the south of the lake of the Manyas depression area. The increase in gravity towards north 

and south shows large values. The area where the anomaly is located has a topography close to the lake level. 

When the anomaly increases in the north and south are examined, it is clearly seen that they are in the form of 

typical fault anomalies. 

When the residual anomaly map is examined, it is seen that the anomaly closure depression in the south of the 

lake has a bowl-shaped structure. AB section was taken from the residual anomaly map. Obtained anomaly 

section is given in figure 6a. By applying the FNN method to the anomaly map given in Figure 6a, the 

geological structure given in Figure 6b was obtained. 

 

 

Figure 5: Regional anomaly map of Manyas region 
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Figure 6: Manyas depression area a) AB section obtained from the residual anomaly map b) Geological 

structure obtained by applying the FNN method 

 

Conclusion 

In the evaluation of gravity anomaly data in geophysical studies, it is important to calculate the gravity 

anomalies created by geological structures with models. If a homogeneous density is not available and the shape 

of the structure that creates the anomaly cannot be determined geometrically, it may be more difficult to reach 

the model structure from gravity anomalies. For this reason, when analyzing gravity anomalies with 

mathematical models during the calculations, the geological models are assumed to be of constant density until 

today. In gravimetric studies, two new methods have been introduced that can appropriately express the 

mathematical relationship between the anomaly model, which will enable the calculation of gravity anomalies 

formed by three-dimensional geological structures of any shape. A new algorithm, Forced Neural Networks 

(FNN) presented in this paper clearly shows that the gravity field at any point due to a solid body having 

uniform volume density can be computed as the field due to a fictitious distribution of surface mass-density on 

the same body.  
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The determining of the depth of a buried body from the gravity anomaly has been transformed into the problem 

of solving a forced neural network. The advantage of the proposed algorithm over the classical inversion 

techniques is that any initial estimate for the depth parameter works well. 

One of the possible faults in the south of the lake shown on the geological map is confirmed and it is assumed 

that the second possible fault will cross the north of the lake. The depression was formed between these two 

faults, at 3000 m. It can be said that it is found in accordance with the calculated model structure with depth. 
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