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Abstract 

The revenue generated from both passenger and cargo transportation is the most important source of income for 

the train operators. The passenger transportation is a critical mission of the train industry for undertaking the 

public transportation. The suitable allocation of seats for a train is a crucial element that can affect the revenue 

from the passenger transportation since the allocation of seats directly relates to the ride rate of the train, thus 

influencing the profit coming from the operation of a train. However, the ride rate is affected by many factors, 

e.g. the train type, train schedule, stops, and the demand of passengers between two stops, etc. Hence, the problem 

of allocating seats for trains becomes a very complex optimization problem that is difficult to resolved by the 

traditional tools. However, few managers of trains or scholars have conducted sufficient research although the 

supervisor of trains did know that the allocation of trains’ seats is an extremely significant issue in their operation 

and management. In this study, the Self-Organizing Map (SOM) neural network and Symbiotic Organisms Search 

(SOS) optimization algorithm are used to develop an optimization procedure to resolve the problem regarding the 

allocation of a train’s seats. The effectiveness and efficiency of the proposed approach is verified by conducting 

a case study for trains operated by the Taiwan Railway Administration (TRA) of the Ministry of Transport in the 

Republic of China. The experimental results show that the procedure proposed in this study can yield the superior 

allocation of seats according to the different characteristics of passengers’ demands, thereby bringing the higher 

operating profits and reputation for the managers of trains. 

Keywords Allocation of seats, Self-Organizing Map (SOM), Symbiotic Organisms Search (SOS), Taiwan 

Railway Administration 

Introduction 

The transportation capability of trains is influenced by lots of factors, e.g. the total number of available trains, the 

formation of train types, the number of tracks in an operating range, the lengths of blocks, the block signaling 

methods, etc. The managers of trains will be faced with a great loss as well as their reputation in both passenger 

and cargo transportation when the transportation capability of trains cannot meet the demands of passengers and 

freight forwarders. In this situation, passengers must frequently compete for tickets especially for the festivals and 

popular destinations. Therefore, the manager of trains must attempt to optimize the allocation for the trains’ seats 

such that the revenue from passenger transportation can be maximized as well as reducing the loss of reputation. 

The allocation of trains’ seats can directly affect the occupancy rate of trains, that is influenced by many elements 

such as train types, days and time of operation, stops, passengers’ demand between stops, etc., thus yielding 

different operating profits for trains. Therefore, the problem of optimizing the allocation of seats has become a 

difficult problem that cannot be easily resolved by the traditional tools, e.g. linear programming. Even though the 

managers of trains realized that the seat allocation of a train is a critical topic in their operation and management, 

relatively few practitioners or researchers regarding trains’ operation have conducted in-depth and sufficient 
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study. For example, [1] investigates the problem for simultaneously optimizing the seat allocation and determining 

the overbooking levels for passengers of two different classes in an airplane by considering the airline seat 

allocation between high and low fares, as well as reflecting the situations with or without stochastic passengers’ 

cancellations. In addition, three elements, that have not been explored in the previous studies, including (1) the 

cost of lost sales, (2) the overbooking phenomenon, and (3) embedding the clarification of the concept of spill 

rate into the spill rate of passengers and flight rate. Based on to the analytical outcome, the results provided by 

this research are highly closer accord with the airline practice actually. [2] considers the demands for the classes 

are stochastically dependent to resolve the allocations of airline seats between two nested fare classes. They relax 

the assumption of statistical independence between demands in the well-known simple seat allocation formula of 

Littlewood. A much weaker monotonic association assumption is required in their proposed method. The problem 

of full passenger spillage and passenger upgrades from the discount class is used to validate their method, and 

adequate results are obtained. [3] proposes an approach for determining the optimal allocation of airline seats 

among itineraries in a network when the demands are stochastic through assigning some seats exclusively to each 

single- or multi-leg itinerary as in the fixed assignment, as well as allocating the remaining seats to groups of 

itineraries that is similar to the bucket control. Their study no only formulates the flexible assignment method, but 

also develops the rules for determining the optimal assignment in the situation with a single-fare-class network 

and further prove the superiority of their proposed approach for resolving problems with either fixed assignment 

or bucket control. The demonstration of their proposed approach is made by illustrating a numerical simulation to 

show the differences in the expected revenue among three approaches for controlling the seat inventory in the 

demand scenarios of four types. [4] considers an optimization problem to determine the most appropriate booking 

policies when an airplane has multiple fare classes, which utilize the same seating pool together on one leg of an 

airline flight and the seats are booked in a nested fashion. In addition, the lower fare classes are booked before the 

classes with higher fares. They characterize a fixed-limit booking policy that can maximize the expected revenue 

through using a simple set of conditions on the subdifferential of the expected revenue function. Both the discrete 

and continuous demand cases can be appropriate to their conditions. Furthermore, they simplify these conditions 

into a set that is related to the probability distributions of demand for the different fare classes corresponding to 

their respective fares. Notably, a solution can be guaranteed to obtain in the latter conditions while the demand’s 

joint probability distribution is continuous. Next, the optimality of the fixed-limit policy over all admissible 

policies can be proved by characterizing the problem into a series of monotone optimal stopping problems. The 

authors also compare their acquired optimal solutions to the approximate solutions provided in the study of [5] 

based on the expected marginal seat revenue (EMSR) method. [6] proposes a multiobjective model to plan the 

optimal allocation of train seats on an intercity rail line which serves passengers with multiple pairs of origin-

destination. Maximizing the total passenger revenue for the train operator, as well as minimizing the total 

discomfort level of passengers are simultaneously considered in their study. They apply the fuzzy mathematical 

programming to generate a plan for the best-compromise allocation of train seats under a given set of traveler’s 

demands, train’s capacity, and stop-schedules. According to the plan, the allocations of reserved and non-reserved 

seats at each origin station for all subsequent destination stations for each running train that is operated during a 

specified operating period can be determined. A Taiwan high-speed rail system under construction is taken as an 

empirical case study to demonstrate the effectiveness of their propose model. In addition, their model can be 

applied to any combination with various setting of traveler’s demands and stop-schedules with different capacities 

of train seats. [7] proposes a semi-dynamic pricing and seat allocation model to improve the shortcoming of static 

pricing approach such that the tickets are offered at a limited number of price levels determined in advanced, as 

well as the ticket price is only allowed to switch over time monotonically, i.e. in an increasing order. They intend 

to maximize the revenue by determining the number of seats which can be sold at different discount fares. The 

flexibility of a certain degree for pricing is allowed in their study while compromising the maximization of the 

potential revenue yielded by the dynamic pricing approach. Based on the experimental results of numerical 

examples, their proposed approach can generate near-optimal revenue for the cases that allow dynamic and reverse 

price changes. Furthermore, the heuristic method can perform well in general. [8] proposes a model for allocating 

airline seats by exploring the problem that can provide multiple fare classes, as well as can replenish for the lower 

fare classes while the number of the pre-allocated seats exceeds the demands for classes with the higher fare and 

the lower fare classes will be opened again with a certain discount of ticket prices before the airplane departures. 

Otherwise, the discount of ticket prices will not be allowed and the replenishment is prohibited from the viewpoint 

of revenue management when the demands of classes with high fares are large enough. In their study, the 

cancellation of customers’ reservations is allowed to make their proposed model formulation be much closer to 

the airlines practice. The revenue with the replenishment policy can be expected to be greater than the one obtained 

without the replenishment or with a simple optimal booking policy under some conditions. In addition, the 

analytical properties of the revenue function and optimal policy are confirmed by illustrating several numerical 

examples in their research. [9] studies a model to investigate a case where two flights between two cities in a day 
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are provided, as well as the booking requests for the class of each fare are arrived randomly. The authors consider 

three types of booking requests including (1) the type only for the first flight, (2) the type only for the second 

flight, and (3) the flexible type suitable for taking either flight. The airline must decide whether to accept the 

booking when the customer’s request has come, as well as determine which flight to accommodate the customer 

when the booking of the third type is accepted. They apply four monotone switching curves to reveal the structure 

of optimal booking policies. In addition, their basic model is also extended to discuss a case with multiple-flight. 

The derivation of their model, as well as the dynamics of the proposed optimal booking policies are demonstrated 

by using a numerical example. [10] investigates the revenue management problem of a single-leg airline where 

the arrivals follow the Poisson distribution in continuous time. Instead of using the traditional Hamilton-Jacobi-

Bellman equation, they apply a probabilistic approach, that does not rely on the smoothness of the value function, 

to build the value function as well as study its properties through using a continuous-time discrete-event dynamic 

programming operator. The analysis of the differentiability for the value function can be achieved through their 

proposed approach. In addition, they prove that the differentiability might break down when the arrival intensities 

are discontinuous, thus researchers should have much more caution when using the arguments based on the 

differentiability of the value function and the Hamilton-Jacobi-Bellman equation. [11] develops two stochastic 

programming models to formulate the single-stage and multi-stage decision making problem by considering 

passengers’ choice behavior. In their study, the seats are allocated for maximizing the passenger rail revenue 

through determining the optimal allocation quantity of seats for each cabin class in each train service. In addition, 

they resolve the easier equivalent deterministic mathematical programs that are transformed from the stochastic 

models. A variety of seat allocation polices derived from the optimal solutions for the seat allocation models are 

also provided. Their proposed policies are validated by making several simulation tests, and appropriate results 

are obtained. [12] apply the equivalence charging transformation [13] and marginal revenue transformation [14] 

to obtain an equivalent readily-solved independent demand model through transforming the joint seat allocation 

and overbooking problem for fare families fare structures. In their study, the dynamic programming (DP) model 

with high dimensions is converted into its equivalent DP model of low dimensions, that can be directly resolved 

and implemented by the existing revenue management and inventory systems. In addition, the factors that were 

frequently ignored in the previous studies, e.g. the demand level, the effects of mixing classes, the cost from the 

booking class specific refund and from the rates of booking class specific cancellation, are considered into their 

proposed DP model. According to the simulation results by comparing the solution for the joint seat-allocation 

and overbooking problem with current industry practice and document, a significant revenue gain of 1%-3% can 

be obtained. [15] proposes an optimization method to resolve the train seat inventory control problem that 

considers the multiple trains and multiple levels of seats simultaneously with the aim of maximizing the total 

revenue of rail industry through formulating an integer linear programming model. They employ the MATLAB 

with CPLEX solver to yield the approximate optimal solutions, and two examples including a simple railway 

corridor and Wuhan-Guangzhou high-speed railway corridor are used to verify the effectiveness and performance 

of their proposed approach. In addition, the impact on the revenue while changing the model parameters is also 

analyzed by conducting the sensitivity analysis experiments. [16] considers a problem that maintains a uniform 

load on carriages by the systematic distribution of passengers with flexible tickets to explore the possibility of 

minimizing the boarding/alighting time. The flexible tickets might be season or anytime tickets that cannot provide 

seat information when passengers reserve seats. Furthermore, some other information, e.g. the passenger final 

destination, uniform load of luggage areas, and group travelers, is considered in their proposed model. The 

performance of the proposed method is evaluated by designing a discrete event simulation. Three algorithms with 

various test scenarios are also compared, and the experimental results indicate that their proposed method is 

superior based on minimizing the boarding/alighting time and increasing the success rate of acquiring group of 

seats for group of passengers. [17] proposes a nonlinear programming model for simultaneously optimizing the 

pricing and seat allocation in high-speed rail (HSR) networks, which are the complementary strategies for the 

revenue management (RM) in the railway industry and are typically considered independently in most previous 

studies. In their proposed method, the multistage and discriminatory pricing strategies are also applied to attract 

more passengers thus improving total revenue. A solution algorithm for large-scale joint optimization of the HSR 

pricing and seat allocation is designed in their study by employing the Davidon-Fletcher-Powell approach. 

Furthermore, the uncertain impacts regarding the model inputs on the outputs is analyzed by using the sensitivity 

analysis. A trade study is made to illustrate the advantages of their proposed joint RM strategy by comparing to 

different RM strategies. The demonstration results of a large-scale instance in the real HSR network proves that 

their proposed model and solution algorithm can indeed yield useful decision support for the daily operation and 

management of railway companies. [18] develops a probabilistic nonlinear programming model for a high-speed 

railway passenger service network where there are multi trains that have different stop schedule plans, as well as 

the train composition is flexible to relaxe the assumption of fixed capacity in the classical revenue management. 

The authors apply the ILGO CPLEX to solve an equivalent linear programming, that is transformed from their 
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proposed model to accelerate the solving process. In addition, both of stochastic demand and passenger choice 

behavior are considered at the same time when making decisions regarding the seat inventory control and train 

composition. From the numerical experimental results, the policy under flexible train composition is proven to be 

better than that under fixed train composition. Furthermore, the demand intensity, fare classes as well as elasticity 

of demand can significantly affect the policy through making the sensitive analysis. Their proposed model can 

assist the railway operator to form the decision-making basis for both of the discount sales and ticket allocation 

under flexible train composition. [19] converts the train seat scheduling problem into a parallel machine 

scheduling problem that is further redefined considering the scheduling perspective by considering the issues of 

negative customer satisfaction and revenue management due to the improper scheduling of passengers or dwell 

time of trains. They then develop a mathematical model and a heuristic algorithm for their mentioned problems. 

Based on their demonstration, their proposed algorithm can provide a feasible plan for scheduling in a reasonable 

time scale by simultaneously considering the dwell times and a proper scheduling plan. The comparison obtains 

adequate outcomes and proves the superiority of their approach. [20] investigates the problem of train 

overcrowding control in ticket allocation of high-speed railway (HSR) trains. The authors first build an 

optimization model of ticket allocation aiming to maximize the revenue where multiple trains and multiple stops 

are considered. Then, they estimate the number of passengers under the risk coefficient represented by the 

probability, thus obtaining the total number of passengers that arrive at any station on each train based on the 

concepts of the travel extension and risk coefficients. In addition, a constraint for preventing the number of 

passengers on the train from exceeding the capacity of a train is also introduced in their ticket allocation 

optimization model. The particle swarm optimization (PSO) algorithm is finally utilized to resolve the 

mathematical model. Based on numerical verifications of China HSR, the practical feasibility of their research 

has been illustrated by controlling the number of passengers on the train so as not to exceed the capacity of trains. 

Hence, the balance between revenue maximization and passenger riding experiences can be achieved at the same 

time. The comparison with those methods of ticket allocation for only maximizing the revenue in the literatures, 

their study can provide a new way of solving the problem of train overcrowding for the railway operation 

department, thus effectively improving the safety of train operation. 

From the above literature review, various kind of heuristic optimization algorithms had been successfully applied 

to resolve problems of allocating seats for a train. However, the day and time regarding the operation of a certain 

train, that is a crucial factor influencing the distributions of passenger’s demands thus affecting the policy for 

allocating seats of a train, had not been considered thoroughly. Therefore, this study aims to proposed a systematic 

approach based on the self-organizing map (SOM) and symbiotic organisms search (SOS) to simultaneously 

maximize the revenue of a train’s operation, as well as minimizing the reputation’s loss due to the discontent with 

passengers’ demands of seats. The problem of seat allocation is first constructed and formulated as a mathematical 

model. Next, the SOM technique is utilized to divide the daily demands of passengers during a week into several 

clusters according to the characteristics of demands for each train’s operation. The SOS algorithm is finally 

applied to resolve the constructed optimization model for the passengers’ demands grouped in each cluster for a 

train’s operation. The remaining sections are organized as follows. Section 2 presents the optimization model of 

seat allocation considered in our study. The clustering and optimization methods including the SOM and SOS are 

briefly introduced in Section 3. Section 4 depicts our proposed approach for resolving the optimization problem 

regarding a train’s seats. In Section 5, the effectiveness and efficiency of the proposed approach is verified by 

making a case study on the trains operated by the Taiwan Railway Administration (TRA) of the Ministry of 

Transport in the Republic of China. Finally, the conclusions are provided in Section 6. 

 

Methodologies 

Self-Organizing Map 

The self-organizing map (SOM) [21] is an unsupervised and competitive learning neural network that can map 

the data with a higher-dimensional space into the transferred data having a lower-dimensional space (typically 

one or two dimensions). The output result of SOM is capable of preserving the critical topological relationships 

existed in the original input data, named a feature map. Typically, the SOM consists of two layers: input layer and   

Kohonen layer as shown in Figure 1. Notably, the input layer is fully connected to the Kohonen layer that has two 

dimensions, and each neuron in the Kohonen layer does not connect to each other. In the Kohonen layer, a neuron 

represents a cluster, whose weight vector stands for an exemplar in the original input patterns associated with only 

this cluster. In the self-organizing process of SOM, a winner is chosen by selecting a neuron that can match most 

closely to the input pattern by evaluating the distance between its weight vector and the input data. According to 

the activation zone for each neuron, the winner along with its neighboring neurons can be determined as well as 

can update their corresponding weights. By following the architecture and algorithm for implementing the SOM 

neural network, the original input data then can be clustered into a certain number of groups in the Kohonen layer. 
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Assuming that a problem has the input patterns with a set of 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑖 , … , 𝑥𝑛) of continuous values in n 

dimensions, and there are m clustered neurons are distributed in the feature map. Next, the weight vector 

corresponding to the neuron j in the Kohonen layer is depicted by 𝑤 = (𝑤1𝑗 , 𝑤2𝑗 , … , 𝑤𝑖𝑗 , … , 𝑤𝑛𝑗), as well as the 

ℎ𝑗′𝑗 (where j’ and j are the subscripts of neurons in the Kohonen layer) represents the neighborhood function that 

is utilized to control the process of relaxing. The competitive and weight adjustment processes of SOM in the 

training steps can be summarized as follows [22-23]: 

Step 0: Initialize the weights 𝑥𝑗 , neighborhood functions ℎ𝑗′𝑗 , radius for the topological neighborhood R, and 

learning rate α. 

Step 1: Execute Steps 2 to 8 if the stopping criteria have not been fulfilled. 

Step 2: Implement Steps 3-5 for each input vector x. 

Step 3: For each cluster neuron j, compute the distance between the neuron and input vector: 

𝐷(𝑗) = ||𝑥 − 𝑤𝑗||. 

Step 4: Find index c that can minimize D(c) in all cluster neurons. 

Step 5: For all neurons j that lies within the topological neighborhood of the radius R centered on neuron c, update 

the weights associated with neuron j: 

𝑤𝑗(𝑡 + 1) = 𝑤𝑗(𝑡) + 𝛼ℎ𝑐𝑗(𝑡)[𝑥 − 𝑤𝑗(𝑡)] 
where, t is an index for discrete-time. 

Step 6: Update the learning rate α and neighborhood function ℎ𝑗′𝑗. 

Step 7: Reduce the radius for the topological neighborhood R based on the time pre-determined. 

Step 8: Test the stopping criteria. 

Notably, the learning rate α and radius for the topological neighborhood R will decrease in the clustering process 

of SOM. Specifically, the neighborhood function  ℎ𝑗′𝑗 that decreases monotonically in time is a smoothing kernel 

function defined over the lattice. There are general two types of ℎ𝑗′𝑗  can be chosen [23]. The first choice of 

neighborhood function is simpler that is a neighborhood set of array points around the winner c defined as 

ℎ𝑐𝑗(𝑡) = {
1 if neuron 𝑗 lies within a radius 𝑅 of the winning neuron 𝑐
0 otherwise

 (1) 

The second generally applied function is the smoother Gaussian neighborhood function that centers on the 

winning neuron c defined as follows   

ℎ𝑐𝑗(𝑡) = 𝑒𝑥𝑝 (−
||𝑥𝑐−𝑥𝑗||2

2𝜎2(𝑡)
) (2) 

where 𝑥𝑐 and 𝑥𝑗 are the vectors corresponding to neurons c and j, respectively, in the Kohonen layer; the parameter 

σ(t), that is used to define the width of the kernel, is a monotonically decreasing function of time. In addition, the 

exact shape of the neighborhoods does not sensitively influence the performance of SOM actually. For the purpose 

of implementing efficiently, the rectangular and hexagonal neighborhoods are suggested in [23]. 

 

 
Figure 1: Topology of a typical SOM with two layers. 

 

Symbiotic Organisms Search 

[24] proposes the symbiotic organisms search (SOS), that is a robust and powerful metaheuristic algorithm, to 

resolve the numerical optimization and engineering design problems. The SOS algorithm simulates the reliance-

based relationship, known as symbiosis, to illustrate that the organisms rarely live solitarily due to their reliance 

on other species for the purpose of sustenance and even survival. Similar to the other population-based algorithms, 

e.g. artificial bee colony (ABC), particle swarm optimization (PSO) and genetic algorithm (GA), the SOS 
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iteratively utilizes a population of candidate solutions in the process for seeking the optimal global solution 

through gradually moving to the promising areas in the search space. In SOS, the initial population is called the 

ecosystem, that is usually generated randomly in the search space, thus forming a group of organisms. Each 

organism is then associated with a certain fitness value to reflect the degree of adaptation when this candidate 

solution solves the objective function of the optimization problem. In addition, the next generation in SOS is 

regulated by emulating the biological interaction between two organisms in the ecosystem. Three phases, 

including the mutualism, commensalism, and parasitism phases, are introduced in SOS to mirror the biological 

interaction model in the real world, and each phase has an interaction with its own character. In the mutualism 

phase, the interaction can benefit each other. However, the commensalism phase only benefits one side and does 

not impact the other side. Finally, the interaction will benefit one side and actively harm the other side in the 

parasitism phase. Notably, each organism can randomly interact with the other organism in all phases regarding 

the biological interaction model. The interaction process repeats until the termination criteria can be met. The 

SOS algorithm can be outlined as Figure 2 and the tree phases in SOS are further described as follows: 

1. Mutualism phase 

The ith member in an ecosystem is represented by 𝑥𝑖 that can randomly select another organism (member) 𝑥𝑗 

from this ecosystem to interact. According to the aim for increasing the mutual survival advantage in the 

ecosystem, the organisms 𝑥𝑖 and 𝑥𝑗 engage with each other in their mutualistic relationship. Therefore, the 

new candidate solutions for 𝑥𝑖 and 𝑥𝑗 then can be obtainted according to the mutualistic symbiosis between 

these two organisms, and are modeled by 

𝑥𝑖_𝑛𝑒𝑤 = 𝑥𝑖 + 𝑟𝑎𝑛𝑑(0,1) × (𝑥𝑏𝑒𝑠𝑡 − 𝑉𝑒𝑐𝑡𝑜𝑟𝑚𝑢𝑡𝑢𝑎𝑙 × 𝐵𝐹1) (3) 
𝑥𝑗_𝑛𝑒𝑤 = 𝑥𝑗 + 𝑟𝑎𝑛𝑑(0,1) × (𝑥𝑏𝑒𝑠𝑡 − 𝑉𝑒𝑐𝑡𝑜𝑟𝑚𝑢𝑡𝑢𝑎𝑙 × 𝐵𝐹2) (4) 

𝑉𝑒𝑐𝑡𝑜𝑟𝑚𝑢𝑡𝑢𝑎𝑙 =
𝑥𝑖+𝑥𝑗

2
 (5) 

where 𝑟𝑎𝑛𝑑(0,1) is a vector consisting of random numbers. Furthermore, the benefit factors (𝐵𝐹1 and 𝐵𝐹2), 

are randomly determined as either 1 or 2, to reflect that some mutualism relationships might give a larger 

beneficial advantage for one organism than another organism in the nature world. The levels of benefits for 

organisms are represented by the benefit factors. Next, the 𝑉𝑒𝑐𝑡𝑜𝑟𝑚𝑢𝑡𝑢𝑎𝑙  shown in Equation (5) represents the 

relationship characteristic between organisms 𝑥𝑖 and 𝑥𝑗. Therefore, the later parts in Equations (3) and (4), i.e. 

(𝑥𝑏𝑒𝑠𝑡 − 𝑉𝑒𝑐𝑡𝑜𝑟𝑚𝑢𝑡𝑢𝑎𝑙 × 𝐵𝐹1) and (𝑥𝑏𝑒𝑠𝑡 − 𝑉𝑒𝑐𝑡𝑜𝑟𝑚𝑢𝑡𝑢𝑎𝑙 × 𝐵𝐹2), describe the mutualistic effort for aiming 

the goal of increasing their survival advantages. In addition, the highest degree of adaptation among all 

organisms to the nature is represented by the vector 𝑥𝑏𝑒𝑠𝑡, that serves as the target point for increasing the 

fitness for both organisms 𝑥𝑖 and 𝑥𝑗. Finally, an organism can be updated only when its new fitness is better 

than its vale of fitness in the previous execution iteration. 

 

2. Commensalism phase 

To simulate the mutualism phase, an organism 𝑥𝑗 is randomly selected from the ecosystem to interact with 𝑥𝑖. 

The organism 𝑥𝑖 attempts to benefit during the interaction process, but the organism 𝑥𝑗 itself neither benefits 

nor suffers from the relationship in this circumstance. Hence, the new candidate solution for 𝑥𝑖  can be 

calculated based on the commensal symbiosis between organisms 𝑥𝑖 and 𝑥𝑗, and is formulated by 

𝑥𝑖_𝑛𝑒𝑤 = 𝑥𝑖 + 𝑟𝑎𝑛𝑑(−1,1) × (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑗) (6) 
where 𝑟𝑎𝑛𝑑(−1,1)  is a random number between -1 and 1. The part (𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑗)  is used to reflect the 

beneficial advantage obtained from 𝑥𝑗 to assist 𝑥𝑖 to increase its survival advantage in an ecosystem to the 

organism based on the largest degree of adaptation in the current organism, represented by the 𝑥𝑏𝑒𝑠𝑡. 

 

3. Parasitism phase 

In the SOS algorithm, an artificial parasite, named 𝑉𝑒𝑐𝑡𝑟𝑜𝑟Parasite, is created for providing a role that is similar 

to the anopheles mosquito for an organism 𝑥𝑗 in the plasmodium parasite. By duplicating an organism 𝑥𝑖, and 

modifying the randomly selected dimensions using a random number, the 𝑉𝑒𝑐𝑡𝑟𝑜𝑟Parasite in the search space 

can be created. Next, an organism 𝑥𝑗 is randomly selected from the ecosystem and treats as a host for the 

parasite vector. Then, the 𝑉𝑒𝑐𝑡𝑟𝑜𝑟Parasite  tries to replace 𝑥𝑗  in the ecosystem. The 𝑉𝑒𝑐𝑡𝑟𝑜𝑟Parasite  can kill 

organism 𝑥𝑗  and substitute for its position in the ecosystem if the fitness value regarding the 𝑉𝑒𝑐𝑡𝑟𝑜𝑟Parasite 

is superior. However, the 𝑉𝑒𝑐𝑡𝑟𝑜𝑟Parasite will have immunity from the parasite and no longer survive in the 

ecosystem when the 𝑥𝑗 has a better fitness value. 
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Figure 2: SOS flowchart. 

 

Model of Allocating Seats 

The mathematical model for simultaneously optimizing the total revenue from the passenger transportation and 

the loss of reputation for a certain train operation can be formulated as: 

Maximize 

 𝑇𝑅 = ∑ ∑ 𝑚𝑖𝑛 (𝑆𝑖,𝑗 , 𝐷𝑖,𝑗) × 𝑃𝑖,𝑗
𝑡𝑠𝑝𝑛
𝑗=𝑖+1

𝑡𝑠𝑝𝑛−1
𝑖=1 − 𝑅𝐶 × ∑ ∑ 𝑚𝑎𝑥(𝐷𝑖,𝑗 − 𝑆𝑖,𝑗 , 0)

𝑡𝑠𝑝𝑛
𝑗=𝑖+1

𝑡𝑠𝑝𝑛−1
𝑖=1 × 𝑃𝑖,𝑗 (7) 

Subject to 

∑ 𝑆𝑖,𝑗
𝑡𝑠𝑝𝑛
𝑗=𝑖 ≤ ∑ 𝑆𝑘,𝑖

𝑖
𝑘=1  for 𝑖 = 1,2,3, … , 𝑡𝑠𝑝𝑛 (8) 

𝑆𝑖,𝑗 ≤ ∑ 𝑆𝑘,𝑖
𝑖
𝑘=1  for 𝑖 = 1,2,3, … , 𝑡𝑠𝑝𝑛, 𝑗 = 𝑖 + 1, 𝑖 + 2, … , 𝑡𝑠𝑝𝑛 (9) 

𝑆𝑖,𝑗 ∈ ℤ0
+  for 𝑖 = 1,2, … , 𝑡𝑠𝑝𝑛; 𝑗 = 𝑖 + 1, 𝑖 + 2, … , 𝑡𝑠𝑝𝑛 (10) 

where TR is the total revenue while considering the loss of reputation for a certain train operation; 𝑡𝑠𝑝𝑛 is the 

total number of stops for a certain train operation; 𝑆𝑖,𝑗 represents the number of allocated seats between the ith 

and jth (i<j) stops in its running region for a certain train operation.  𝐷𝑖,𝑗 is the seat demand of passengers between 

the ith and jth (i<j) stops for a certain train operation; 𝑃𝑖𝑗, represents the ticket price between the ith and jth (i<j) 

stops for a certain train operation; RC is the penalty coefficient for losing the reputation. 

In Equation (7) of the above mathematical model, the front half before the minus sign represents the revenue from 

providing seats to fulfill the passengers’ demands and the second half behind the minus sign denotes the loss of 

reputation due to the allocated seats cannot satisfy seat demands of passengers. Next, Equation (8) states that the 

total number of allocated seats departing from a certain stop cannot exceed the total number of seats allocated by 

the previously stops and released in this stop in a certain train operation as shown in Table 1 (illustrated by the 

4th stop). Notably, 𝑆𝑖,𝑖s (for 𝑖 = 2,3,4, … , 𝑡𝑠𝑝𝑛), i.e., the allocated seats for the same station of departure and 

destination, are zero, and 𝑆1,1 represents the total number of available seats in a certain train operation. Equation 

(9) indicates that the number of allocated seats departing from each stop cannot exceed the total number of seats 

allocated by the previously stops and released in this stop. Finally, the number of allocated seats between two 

stops cannot be negative as expressed in Eq. (10). 

 

Table 1: The relationship of allocated and released seats 

𝑆𝑖𝑗 
j 

1 2 3 4 5 6 7 

i 

1 - 𝑆12 𝑆13 𝑆14 … 

2 - - 𝑆23 𝑆24 … 

3 - - - 𝑆34 … 

4 - - - - 𝑆45 𝑆46 𝑆47 
 

 

 

Total number of seats allocated by the 1st, 2nd and 

3rd stops as the departure stations and released in the 

4th stop 

Total number of seats allocated by the 4th stop 

with the destination stations of the 5th, 6th and 7th 

stops 
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Proposed Approach 

This study proposes a systematic approach for allocating seats of trains by using the SOM neural network and 

SOS optimization algorithm. Figure 3 briefly depicts the proposed methodology that are explained in more detail 

as follows: 

1. Data Collection 

The data regarding the trains’ operation and passengers’ demands are first collected. The collected information of 

the trains’ operation includes (1) the departure and destination, (2) the stops, (3) the total number of available 

seats, (4) ticket prices between any paired stops. The data of passenger’s demands in each train’s operation are 

also collected. Notably, the real demands of passengers’ travelling between any combination of stops cannot be 

known since passengers who transfer to the other trains cannot be checked accurately. Therefore, the passengers’ 

demands of any paired stops must be estimated based on the booking records that including both of the successful 

booking, i.e. get reserved seats, and the unsuccessful booking, i.e. fail to get reserved seats, gathered from the 

booking web system. 

 

2. Data Clustering 

For each train run, the demand patterns of passengers during the usual working days might differ from those of 

the weekend. Therefore, the allocation of seats for the weekday must be different to the policy for allocating seats 

in the weekend for a train’s operation. Furthermore, the stopping stations for different train runs are not the same. 

Hence, the passengers’ demands for different trains’ operations might have various characteristics. Thus, the data 

regarding the demands of passengers between stops for all trains in a full week are classified into groups though 

using the SOM neural network. The input data for the clustering approach for the train no. t can be represented by 

(𝐷1,1
𝑡 , 𝐷1,2

𝑡 , … , 𝐷1,1
𝑡 , … , 𝐷𝑛−1,𝑛

𝑡 ) (11) 
where 𝐷𝑖𝑗

𝑡  is the demand of passengers between the ith and jth stops for the train no. t, and n is the total number 

of stops in the operation range of train no. t. 

 

3. Optimization of Seat Allocation 

Symbiotic organisms search (SOS) algorithm is then applied to resolve the optimization problem of seat allocation 

as formulated in Equations (7)-(10). Notably, the decision variables are 𝑆𝑖𝑗
𝑡 , i.e. the total number of allocated seats 

between the ith and jth (i<j) stops for the train no. t. Next, the penalty coefficient used to represent the reputation 

loss of the train’s operator when the total number of seats provided by trains cannot fulfill passengers’ demands, 

i.e. RC shown in Equation (7), must also be determined in advance. 

 

4. Case Study and Comparison 

A case study is then conducted to verify the effectiveness and efficiency of the optimization procedure for seat 

allocation proposed in this study. In addition, the results of the implementation will be analyzed and compared. 

 

Case Study 

With the completion of the railway around the Taiwan island, the electrification of the railway in the full range of 

trains’ operations, as well as the double-tracking of the eastern train routes, the tourism industry in Yilan, Hualien, 

and Taitung in eastern Taiwan has developed rapidly in recent years. However, the capacity of passenger’s 

transportation provided by the Taiwan Railway Administration (TRA) is insufficient seriously. Therefore, 

passengers have to scramble for tickets frequently during the consecutive holidays. The unbalance between the 

supply and demand of seats provided by the tilted trains, such as Taroko and Puyuma, is even more serious. The 

Taiwan Railway Administration has suffered huge losses both in terms of operation’s profits and reputation of a 

firm. Therefore, this study aims to solve the seat allocation problem of tilted trains operating in the eastern area 

of Taiwan, thereby maximizing the operation revenue of the Taiwan Railway Administration and the convenience 

of passengers. Furthermore, the simulated optimal seat allocation obtained by the method proposed in this study 

is also compared with the results provided by the seat allocation strategy that is set up according to the proportions 

of passenger’s demands between two stops. 

 

Data Collection 

Among the trains provided by TRA between the east and west of Taiwan island, the so-called golden trains (that 

is, trains with fewer stops) have the most serious unbalance between the supply and demand of train’s seats. 

Therefore, this study selects the trains no. 408 and 426 operated from Shulin to Taitung, as well as the trains no. 

421 and 441 running in the range between Zhiben and Shulin as the research targets. First, the departure and 

destination, stops, total number of available seats, and fares between any paired stops for trains no.408, 426, 421 

and 441 are first collected. The data regarding passengers’ demands for seats in the online ticketing system are 
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also gathered. The passengers’ demands between stops of any pair are estimated based on the reservation records 

in the online ticket reservation system by summing up the successful reservations and unsuccessful reservations. 

 

Data Clustering 

The SOM neural network is then applied to cluster the data regarding passengers’ demands between train stops 

for trains no. 408, 426, 421 and 441 on a daily basis within a week. The results are shown in Table 2. 

 

Table 2: Clustering results for passengers’ seat demands within a week 

Train No. 408 Train No. 426 Train No. 421 Train No. 441 

Day Cluster Day Cluster Day Cluster Day Cluster 

Monday 1 Monday 1 Monday 1 Monday 1 

Tuesday 1 Tuesday 2 Tuesday 1 Tuesday 2 

Wednesday 1 Wednesday 2 Wednesday 1 Wednesday 3 

Thursday 2 Thursday 1 Thursday 2 Thursday 3 

Friday 2 Friday 1 Friday 2 Friday 3 

Saturday 3 Saturday 3 Saturday 2 Saturday 3 

Sunday 3 Sunday 4 Sunday 2 Sunday 3 

 

Optimization of Allocating Seats 

Next, the SOS algorithm is utilized to resolve the problem of seat allocation as formulated in Equations (7) to 

(10). The parameters 𝐵𝐹1 and 𝐵𝐹2 in SOS are set as 2. Notably, all of trains no. 408, 426, 421 and 441 are operated 

by the train type of Taroko, the total number of seats of these train is set as 376. For each train number, the SOS 

algorithm is executed on a PC with an i7-4470 CPU and 32GB RAM for ten times. Table 3 summarizes the 

experimental results while ignoring the loss of a firm’s reputation, i.e. the RC in Equation (1) is 0. Similarly, the 

implementation results when considering the loss of a firm’s reputation, i.e. the RC in Equation (1) is set as 1, are 

shown in Table 4. The asterisk indicates the optimal implementation result of SOS among a specific cluster for a 

certain train number, thus the optimal allocation of a train’s seats can be obtained as shown in Tables 5 and 6.   
 

Table 3: Experimental results of SOS (𝑅𝐶 = 0) 

(A) Train No. 408 

Day Monday, Tuesday, Wednesday Thursday, Friday Saturday, Sunday 

Execution 

No. 

Objective 

function 

CPU time 

(seconds) 

Objective 

function 

CPU time 

(seconds) 

Objective 

function 

CPU time 

(seconds) 

1 281,254 21 305,312* 25 305,312* 23 

2 293,315 33 305,312 19 305,312 22 

3 293,315 30 305,312 20 300,618 22 

4 293,315 24 305,312 18 305,312 25 

5 282,174 23 305,312 29 305,312 22 

6 281,937 32 305,312 19 305,312 23 

7 293,596* 23 282,054 20 305,312 18 

8 285,015 28 305,312 22 305,312 23 

9 282,114 35 305,312 20 305,312 18 

10 281,254 18 305,312 27 305,312 21 

(B) Train No. 426 

Day 
Monday, Thursday, 

Friday 
Tuesday, Wednesday Saturday Sunday 

Execution 
No. 

Objective 
function 

CPU time 
(seconds) 

Objective 
function 

CPU time 
(seconds) 

Objective 
function 

CPU time 
(seconds) 

Objective 
function 

CPU time 
(seconds) 

1 286,829 21 290,992 22 306,012 27 305,312* 41 

2 297,612* 22 297,408 21 305,312 21 305,312 25 

3 292,831 32 297,612 26 305,982 17 305,312 27 

4 297,612 27 297,877* 21 305,312 26 305,312 22 

5 297,612 23 297,612 44 305,312 22 283,875 23 

6 292,831 25 297,877 25 306,012 23 305,312 27 

7 292,831 28 297,877 32 306,480* 28 305,312 33 

8 286,829 33 297,612 27 306,012 23 295,279 39 

9 297,612 29 297,408 23 305,374 30 302,562 28 

10 297,612 26 297,408 35 305,312 30 305,312 22 
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(C) Train No. 421 

Day Monday, Tuesday, Wednesday Thursday, Friday, Saturday, Sunday 

Execution 

No. 

Objective 

function 

CPU time 

(seconds) 

Objective 

function 

CPU time 

(seconds) 

1 303,108 31 294,829 51 

2 303,108 21 299,208* 49 

3 305,312* 33 294,258 28, 

4 305,312 22 295,690 43 

5 303,108 29 293,268 29 

6 305,312 28 295,690 36 

7 305,312 35 295,690 32 

8 305,312 29 299,208 43 

9 303,108 28 293,268 35 

10 303,108 29 293,268 33 

 

(D) Train No. 441 

Day Monday Tuesday 
Wednesday, Thursday, Friday, 

Saturday, Sunday 

Execution 

No. 

Objective 

function 

CPU time 

(seconds) 

Objective 

function 

CPU time 

(seconds) 

Objective 

function 

CPU time 

(seconds) 

1 308,376* 45 304,184* 28 304,324* 33 

2 304,649 29 304,184 33 395,490 45 

3 304,184 28 304,184 23 300,655 45 

4 305,084 28 304,184 34 301,718 67 

5 305,084 21 304,184 22 296,956 28 

6 305,084 35 304,184 36 296,956 56 

7 308,376 29 304,184 34 300,655 58 

8 308,376 32 304,184 37 304,324 47 

9 308,376 39 304,184 25 304,324 62 

10 304,184 30 304,184 28 300,655 52 

 

 

Table 4: Experimental results of SOS (𝑅𝐶 = 1) 

(A) Train No. 408 

Day 
Monday, Tuesday, 

Wednesday 
Thursday, Friday Saturday, Sunday 

Execution 

No. 

Objective 

function 

CPU time 

(seconds) 

Objective 

function 

CPU time 

(seconds) 

Objective 

function 

CPU time 

(seconds) 

1 -2,821,620 19 -7,238,354* 20 -19,607,060 18 

2 -2,838,750 29 -7,238,354 19 -19,602,960* 17 

3 -2,807,780* 30 -7,245,570 33 -19,602,960 16 

4 -2,840,262 21 -7,238,354 19 -19,602,960 17 

5 -2,823,062 20 -7,238,354 19 -19,602,960 18 

6 -2,821,620 25 -7,238,354 20 -19,603,536 21 

7 -2,828,902 22 -7,238,354 20 -19,602,960 18 

8 -2,821,460 19 -7,282,430 20 -19,602,960 19 

9 -2,823,062 25 -7,241,346 27 -19,602,960 21 

10 -2,823,062 35 -7,238,354 20 -19,603,536 22 

(B) Train No. 426 

Day Monday, Thursday, Friday Tuesday, Wednesday Saturday Sunday 

Execution 

No. 

Objective 

function 

CPU time 

(seconds) 

Objective 

function 

CPU time 

(seconds) 

Objective 

function 

CPU time 

(seconds) 

Objective 

function 

CPU time 

(seconds) 

1 -6,108,947* 20 -3,539,618* 23 -20,185,607* 19 -8,915,422* 21 

2 -6,111,055 21 -3,540,792 19 -20,185,607 25 -9,347,184 22 

3 -6,128,855 22 -3,540,792 20 -20,193,805 22 -9,301,634 22 

4 -6,113,345 22 -3,542,218 23 -20,193,107 25 -9,301,634 19 

5 -6,111,055 18 -3,540,592 22 -20,188,409 24 -9,324,642 22 

6 -6,111,055 23 -3,540,592 20 -20,196,523 26 -9,301,634 20 

237 -6,108,947 20 -3,539,618 20 -20,200,445 25 -9,328,876 23 

8 -6,111,055 22 -3,539,618 25 -20,185,607 23 -9,320,812 25 

9 -6,111,055 21 -3,540,592 21 -20,204,123 25 -9,317,518 25 

10 -6,128,855 25 -3,540,592 26 -20,195,409 20 -9,301,634 20 
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(C) Train No. 421 

Day Monday, Tuesday, Wednesday 
Thursday, Friday, Saturday, 

Sunday 

Execution 

No. 

Objective 

function 

CPU time 

(seconds) 

Objective 

function 

CPU time 

(seconds) 

1 -26,451,040 18 -4,693,455 23 

2 -26,452,258 29 -4,695,105 25 

3 -26,440,840* 19 -4,686,263* 22 

4 -26,453,320 23 -4,702,169 24 

5 -26,453,320 24 -4,704,821 39 

6 -26,438,408 30 -4,686,263 35 

7 -26,438,408 25 -4,686,263 29 

8 -26,440,840 19 -4,686,263 33 

9 -26,440,840 23 -4,704,821 29 

10 -26,440,840 26 -4,693,455 31 

 

(D) Train No. 441 

Day Monday Tuesday 
Wednesday, Thursday, Friday, 

Saturday, Sunday 

Execution 
No. 

Objective 
function 

CPU time 
(seconds) 

Objective 
function 

CPU time 
(seconds) 

Objective 
function 

CPU time 
(seconds) 

1 -117,117,667* 22 -35,560,754 19 -7,781,653* 25 

2 -117,117,995 24 -35,560,754 18 -7,792,123 34 

3 -117,117,667 21 -35,560,754 26 -7,785,435 32 

4 -117,117,995 20 -35,558,272* 26 -7,784,907 23 

5 -117,117,667 23 -35,582,988 31 -7,784,783 28 

6 -117,117,667 22 -35,560,754 30 -7,784,783 33 

7 -117,117,667 23 -35,560,754 25 -7,784,783 26 

8 -117,117,995 25 -35,558,272 32 -7,781,653 28 

9 -117,117,995 19 -35,560,754 26 -7,781,653 25 

10 -117,117,667 21 -35,558,272 28 -7,792,123 32 

 

Table 5: Optimal allocation of seats (𝑅𝐶 = 0)

(A) Train No. 408 (Monday, Tuesday, Wednesday) 
Destination 

Departure 
Banqian Taipei Songshan Hualien Yuli Taitung 

Shulin 55 194 53 7 0 67 

Banqian  3 0 0 3 49 

Taipei   97 0 0 100 

Songshan    0 0 150 

Hualien     7 0 

Yuli      0 

Profit= NT$293,596 

 

(B) Train No. 408 (Thursday, Friday) 

Destination 

Departure 
Banqian Taipei Songshan Hualien Yuli Taitung 

Shulin 0 0 0 0 0 376 

Banqian  0 0 0 0 0 

Taipei   0 0 0 0 

Songshan    0 0 0 

Hualien     0 0 

Yuli      0 

Profit= NT$350,312 

 

(C) Train No. 408 (Saturday, Sunday) 
Destination 

Departure 
Banqian Taipei Songshan Hualien Yuli Taitung 

Shulin 0 0 0 0 0 376 

Banqian  0 0 0 0 0 

Taipei   0 0 0 0 

Songshan    0 0 0 

Hualien     0 0 

Yuli      0 

Profit= NT$350,312 

 

(D) Train No. 426 (Monday, Thursday, Friday) 
Destination 

Departure 
Banqian Taipei 

Song-

shan 

Hua-

lien 
Yuli 

Tai-

tung 
Zhiben 

Shulin 0 0 0 0 50 326 0 

Banqian  0 0 0 0 0 0 

Taipei   0 0 0 0 0 

Songshan    0 0 0 0 

Hualien     0 0 0 

Yuli      0 50 

Taitung       50 

Profit= NT$297,612 
 

(E) Train No. 426 (Tuesday, Wednesday) 

Destination 

Departure 
Banqian Taipei 

Song-

shan 

Hua-

lien 
Yuli 

Tai-

tung 
Zhiben 

Shulin 44 9 0 0 49 274 0 

Banqian  0 0 0 0 0 44 

Taipei   6 3 0 0 0 

Songshan    0 1 5 0 

Hualien     0 3 0 

Yuli      0 50 

Taitung       50 

Profit= NT$297,877 
 

(F) Train No. 426 (Saturday) 
Destination 

Departure 
Banqian Taipei 

Song-

shan 

Hua-

lien 
Yuli 

Tai-

tung 
Zhiben 

Shulin 50 0 0 18 0 308 0 

Banqian 0 0 0 0 0 0 50 

Taipei  0 0 0 0 0 0 

Songshan   0 0 0 0 0 

Hualien    0 0 0 18 

Yuli     0 0 0 

Taitung      0 0 

Profit= NT$306,480 
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(G) Train No. 426 (Sunday) 

Destination 

Departure 
Banqian Taipei 

Song-

shan 

Hua-

lien 
Yuli 

Tai-

tung 
Zhiben 

Shulin 0 0 0 0 50 326 0 

Banqian  0 0 0 0 0 0 

Taipei   0 0 0 0 0 

Songshan    0 0 0 0 

Hualien     0 0 0 

Yuli      0 50 

Taitung       50 

Profit= NT$350,312 

 

(H) Train No. 421 (Monday, Tuesday, Wednesday) 
Destination 

Departure 
Taitung Yuli 

Hua-

lien 

Song-

shan 
Taipei Banqian Shulin 

Zhiben 376 0 0 0 0 0 0 

Taitung  0 300 0 0 0 76 

Yuli   0 0 0 0 0 

Hualien    0 0 0 300 

Songshan     0 0 0 

Taipei      0 0 

Banqian       0 

Profit= NT$305,312 

 

(I) Train No. 421 (Thursday, Friday, Saturday, 

Sunday) 
Destination 

Departure 
Taitung Yuli 

Hua-

lien 

Song-

shan 
Taipei Banqian Shulin 

Zhiben 376 0 0 0 0 0 0 

Taitung  0 0 0 76 300 0 

Yuli   0 0 0 0 0 

Hualien    0 0 0 0 

Songshan     0 0 0 

Taipei      0 76 

Banqian       300 

Profit= NT$299,208 

 

 

(J) Train No. 441 (Monday) 

Destination 

Departure 
Taitung Yuli 

Hua-

lien 

Song-

shan 
Taipei Banqian Shulin 

Zhiben 14 0 0 0 108 254 0 

Taitung  0 14 0 0 0 0 

Yuli   0 0 0 0 0 

Hualien    0 0 14 0 

Songshan     0 0 0 

Taipei      0 108 

Banqian       268 

Profit= NT$308,376 

 

(K) Train No. 441 (Tuesday) 
Destination 

Departure 
Taitung Yuli 

Hua-

lien 

Song-

shan 
Taipei Banqian Shulin 

Zhiben 0 0 0 0 303 73 0 

Taitung  0 0 0 0 0 0 

Yuli   0 0 0 0 0 

Hualien    0 0 0 0 

Songshan     0 0 0 

Taipei      301 0 

Banqian       374 

Profit= NT$-35,558,272 

 

(L) Train No. 441 (Wednesday, Thursday, Friday, 

Saturday, Sunday) 
Destination 

Departure 
Taitung Yuli 

Hua-

lien 

Song-

shan 
Taipei Banqian Shulin 

Zhiben 0 0 0 0 0 0 0 

Taitung  0 0 0 0 76 300 

Yuli   0 0 0 0 0 

Hualien    0 0 0 0 

Songshan     0 0 0 

Taipei      0 0 

Banqian       0 

Profit= NT$304,324 

 

Table 6: Optimal allocation of seats (𝑅𝐶 = 1)

(A) Train No. 408 (Monday, Tuesday, Wednesday) 
Destination 

Departure 
Banqian Taipei Songshan Hualien Yuli Taitung 

Shulin 114 195 0 0 0 67 

Banqian  14 50 0 0 50 

Taipei   100 0 39 70 

Songshan    0 0 150 

Hualien     0 0 

Yuli      39 

Profit= NT$-2,807,780 
 

(B) Train No. 408 (Thursday, Friday) 

Destination 

Departure 
Banqian Taipei Songshan Hualien Yuli Taitung 

Shulin 0 0 0 0 0 376 

Banqian  0 0 0 0 0 

Taipei   0 0 0 0 

Songshan    0 0 0 

Hualien     0 0 

Yuli      0 

Profit= NT$-7,238,354 
 

(C) Train No. 408 (Saturday, Sunday) 

Destination 

Departure 
Banqian Taipei Songshan Hualien Yuli Taitung 

Shulin 0 0 0 0 0 376 

Banqian  0 0 0 0 0 

Taipei   0 0 0 0 

Songshan    0 0 0 

Hualien     0 0 

Yuli      0 

Profit= NT$-19,602,960 
 

(D) Train No. 426 (Monday, Thursday, Friday) 

Destination 

Departure 
Banqian Taipei 

Song-

shan 

Hua-

lien 
Yuli 

Tai-

tung 
Zhiben 

Shulin 0 0 0 0 50 326 0 

Banqian  0 0 0 0 0 0 

Taipei    0 0 0 0 0 

Songshan      0 0 0 0 

Hualien        0 0 0 

Yuli          0 50 

Taitung            50 

Profit= NT$-6,108,947 
 

(E) Train No. 426 (Tuesday, Wednesday) 
Destination 

Departure 
Banqian Taipei 

Song-

shan 

Hua-

lien 
Yuli 

Tai-

tung 
Zhiben 

Shulin 46 0 0 0 49 281 0 

Banqian  0 1 0 0 0 45 

Taipei   0 0 0 0 0 

Songshan    1 0 0 0 

Hualien     1 0 0 

Yuli      0 50 

Taitung       50 

Profit= NT$-3,569,618 
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(F) Train No. 426 (Saturday) 

Destination 

Departure 
Banqian Taipei 

Song-

shan 

Hua-

lien 
Yuli 

Tai-

tung 
Zhiben 

Shulin 0 0 0 0 0 376 0 

Banqian  0 0 0 0 0 0 

Taipei   0 0 0 0 0 

Songshan    0 0 0 0 

Hualien     0 0 0 

Yuli      0 0 

Taitung       300 

Profit= NT$-20,185,607 

 

(G) Train No. 426 (Sunday) 
Destination 

Departure 
Banqian Taipei 

Song-

shan 

Hua-

lien 
Yuli 

Tai-

tung 
Zhiben 

Shulin 50 50 50 50 50 50 50 

Banqian  50 50 50 50 50 50 

Taipei   50 50 50 50 50 

Songshan    50 50 50 50 

Hualien     50 50 50 

Yuli      50 50 

Taitung       50 

Profit= NT$-8,915,422 

 

(H) Train No. 421 (Monday, Tuesday, Wednesday) 

Destination 

Departure 
Taitung Yuli 

Hua-

lien 

Song-

shan 
Taipei Banqian Shulin 

Zhiben 376 0 0 0 0 0 0 

Taitung  0 300 0 76 0 0 

Yuli   0 0 0 0 0 

Hualien    0 0 300 0 

Songshan     0 0 0 

Taipei      0 0 

Banqian       0 

Profit= NT$-26,440,840 

 

(I) Train No. 421 (Thursday, Friday, Saturday, 

Sunday) 

Destination 

Departure 
Taitung Yuli 

Hua-

lien 

Song-

shan 
Taipei Banqian Shulin 

Zhiben 376 0 0 0 0 0 0 

Taitung  4 20 0 52 300 0 

Yuli   4 0 0 0 0 

Hualien    24 0 0 0 

Songshan     24 0 0 

Taipei      76 0 

Banqian       0 

Profit= NT$-4,686,263 

 

(J) Train No. 441 (Monday) 
Destination 

Departure 
Taitung Yuli 

Hua-

lien 

Song-

shan 
Taipei Banqian Shulin 

Zhiben 0 0 0 0 376 0 0 

Taitung  0 0 0 0 0 0 

Yuli   0 0 0 0 0 

Hualien    0 0 0 0 

Songshan     0 0 0 

Taipei      376 0 

Banqian       0 

Profit= NT$-117,117,667 

 

(K) Train No. 441 (Tuesday) 
Destination 

Departure 
Taitung Yuli 

Hua-

lien 

Song-

shan 
Taipei Banqian Shulin 

Zhiben 0 0 0 0 303 73 0 

Taitung  0 0 0 0 0 0 

Yuli   0 0 0 0 0 

Hualien    0 0 0 0 

Songshan     0 0 0 

Taipei      301 0 

Banqian       374 

Profit= NT$-35,558,272 

 

(L) Train No. 441 (Wednesday, Thursday, Friday, 

Saturday, Sunday) 

Destination 

Departure 
Taitung Yuli 

Hua-

lien 

Song-

shan 
Taipei Banqian Shulin 

Zhiben 376 0 0 0 0 0 0 

Taitung  0 0 76 0 300 0 

Yuli   0 0 0 0 0 

Hualien    0 0 0 0 

Songshan     0 0 76 

Taipei      0 0 

Banqian       300 

Profit= NT$-7,781,653 

 

 

 

 

 

 

 

 

 

Analysis and Comparison 

Through analyzing and comparing Table 5 and 6 regarding the optimal allocations of seats for demands of 

different clusters for each train number, the findings in this study are summarized as follows: 

(1) In the case of ignoring the loss of reputation of TRA and of only aiming to maximize the revenue, the 

algorithm tends to allocate seats for the passengers with travels of long distances in order to make more 

operating income. 

(2) For trains no. 408, 426, 421 and 441, passengers of short distances can reserve seats relatively easily on 

normal working days without considering the loss of reputation. However, the best seat configuration of trains 

no. 408 and 426 on weekends especially will allocate trains’ seats to passengers who are preparing for travels 

of long distances from the west to the east. In addition, the optimal policy of allocating seats for trains no. 

421 and 441 will try to make more reservations of seats for passengers who have finished their trips and 

prepared for long-distance travels to return to their working places from the west to the east. 

(3) In the case of considering the loss of reputation of TRA, the optimal seat configuration will be more dispersed 

than that ignoring the loss of reputation, so as not to be only income-oriented and ignore the demands of 

passengers with short distances. 
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(4) For TRA, the capacity of passengers’ transportation with/without taking the reputation into account is 

extremely not enough. 

 

Conclusions 

The rational allocation of trains’ seats is an important factor influencing the revenue form passengers’ 

transportation, thus affecting the occupancy rate and profit of operating trains. However, the occupancy rate can 

be determined by many elements and make the problem of allocating seats a very difficult optimization problem. 

This study applies the Self-Organizing Map (SOM) neural network and Symbiotic Organisms Search (SOS) 

optimization algorithm to construct a systematic approach for resolving the problem of allocating trains’ seats. 

First, the optimization problem is formulated by a mathematical model with considering the loss of reputation of 

a firm. The SOM is utilized to cluster passengers’ demands in different days within a week for a train to form 

several groups. The SOS is then used to find the (near) optimal solution for the seats’ allocation. The effectiveness 

and execution efficiency of the proposed method is demonstrated by taking the trains operated by the Taiwan 

Railway Administration (TRA) of the Ministry of Communications of the Republic of China as a case study. Based 

on the execution results, it tends to allocate seats for the passengers with travels of long distances for the purpose 

of making more operating income while not considering the loss of reputation of TRA and only trying to maximize 

the profit. For all of the golden trains, i.e. trains with fewer stops, considered in this study, passengers with short-

distance travels can get seats more easily on normal working days when not taking the loss of reputation into 

account. Next, the best configuration of seats for trains no. 408 and 426 especially on weekends tends to reserve 

seats for passengers that plan to have trips with long distances from the west to the east. Next, the policy for 

optimally allocating seats for trains no. 421 and 441 sailing from east to west can make more reservations of seats 

for passengers who have finished their journeys and returned to their working places for long distances from the 

west to the east. Furthermore, the optimal seat configuration will disperse the allocation of seats than the result 

provided by ignoring the loss of reputation, thus the passengers’ demands of shorter distances can be met and the 

operating profit will not be the only orientation. 
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