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Abstract The effect of heat source and thermal buoyancy on Induced Magnetic Field Nano-Fluid over a 

Stretching Wedge with Slip was investigated. The problem is modeled into a system of coupled non-linear 

partial differential equations. The radiation heat flux is taken in the form of a unidirectional flux in the 𝑦 

direction. A stream function is used to transform the system to a set of ordinary differential equations. The 

resulting ordinary differential equations was solved using Homotopy Analysis Method that uses the homotopy 

parameter that split nonlinear system into an infinite set of linear systems which are solved analytically, while 

the continuation methods require solving a discrete linear system as the homotopy parameter is varied to solve 

the nonlinear system. The result of the procedure is represented both in figures and tables, some of the result 

obtained indicates that, velocity increases as stretching velocity increases, at a higher stretching velocity, 

velocity close to the surface is higher that the velocity at the surface. Stretching velocity decreases the 

concentration, that when heat moves from solid surface to fluid the temperature of the fluid flow increases, that 

slip velocity increases skin-friction and Nusselt number and decline Sherwood number of the flow field, 

Increases in Suction velocity decreases skin-friction and Nusselt number, while increases in Nanofluid 

parameter increases the skin friction and Nusselt number. The inclusion of induced magnetic field and higher 

order chemical reaction makes it interesting and useful for applications in the space technology, metallurgy, and 

pharmaceutical engineering industries, such as food processing technology, various hospital treatments, and 

polymer production. 
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thermophoresis 

1. Introduction  

Flow fluids that are influenced by convection are frequently encountered in solar power receivers, electronic 

appliances, cooling systems, and drying processes. Free convective flow is characterized by linear density 

difference embodies buoyant forces [1];[2]. The flows occur in an extensive range of natural circumstances and 

industrial applications, as in oil recovery, aquifer pollutant dispersion, and agricultural water circulation. Earlier 

experimental and theoretical work on convective flow was performed by [3], [4],[5], and [6]. Convective flows 

support mixing and stirring mechanism of heterogeneity chemical reaction with stretching component which 

takes place in an occurrence of velocity gradient [7].[8] utilized natural convection to induce buoyancy flow on 

the bounded flow of nanomaterial in a vertical medium. The flow was strongly influenced by buoyancy 

convective forces and stretching velocity.[9] examined convective stagnation nanofluid flow past a stretching 

device using series analytical solution. It was noticed that the flow reaction mixture was propelled by thermal 

buoyant force. 
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Fluid properties and its usefulness can be improved by magnetic induction that create electrical conductivity of 

the fluid, and have been applied in magnetohydromagnetic (MHD) power generators, nuclear reactors, heat 

exchangers and many other processes [10]. [11] inspected magnetic field impact on the nanofluid boiling 

subcooled flow. The fluid viscosity was encouraged with rising magnetic field effect. [12] obtained 

computational results for boundary layer laminar wedge MHD flow with heat generation and radiation. The 

conduction fluid flow rate was resisted by increasing the magnetic term. Other studies on the convective 

magnetic fluid flow were performed by [13], [14],[15], and [16]. 

Flow fluids involving radiative heat and heat absorption or generation phenomena are of increasing interest 

because of their use in mechanical and computer technologies. Radiation and heat sink or source changes heat 

distribution that affect the system rate of particle deposition [17]. These quantities progressively boost fluid 

temperature due to changes in the intermolecular collision as found nuclear reactor technology and electrolyte 

battery production [18]. Due to the importance of the quantities, [19], [20] examined combined convective 

furnace and free-radiation for a boundary designed problem. A volume finite technique is used to solve the 

radiative heat and flow momentum equations.[21] reported on heat generation and Joule heating effects on the 

Carreau fluid. The authors found that heat generation boosted temperature distribution of the fluid particles. [22] 

considered MHD flow fluid past an exponentially moving plate with radiation and varying heat source. They 

noticed that there is a decrease in the temperature field as the thermal relaxation influence is increasing. [23] 

examined the radiation effect on the conducting flow fluid influenced by pressure and magnetic field in 

nonlinear porous media with Soret and Dufour effects using symmetric Lie group. Their study revealed that the 

fluid molecular bonding force was influenced with rising radiation and magnetic field terms.[24], [25] 

investigated thermal radiation in the presence of nonlinear Boussinesq approximation for nanofluid. The model 

was numerically solved and indicated that the radiation term significantly impacted the heat transfer rate in the 

considered flow system. [26] also discussed heat generation and radiation impact on the conducting MHD 

Carreau nanofluid flow over an extended sheet. Temperature distribution was reportedly increased with rising 

heat generation and radiation terms. Hence, the essential of radiative heat and heat generation in a thermal 

species diffusion cannot be overly stressed as it has industrial significance. Therefore, managing thermal 

radiation and inner heat sink or production in a chemical reaction process is very critical, as reported by [27] and 

[28]. 

Furthermore, activation energy plays a critical part in the diffusion of binary chemical mixtures of energy and 

species transport phenomena as a minimum required energy for a chemical reaction to be produced from 

potential reactants. A quantitative and qualitative difference in the fluid heat transfer can be caused by species 

concentration difference with definite reaction activation energy, which is useful in water combinations, oil 

reservoir, and geothermal engineering [29]. Mass transfer and chemical reaction relation are complex as found 

in many manufacturing and consumption of reactant species. [30] analyzed the nanofluid chemical reaction of 

MHD flow in a vertical stratagem with buoyancy effects in the presence of activation energy. The species 

mixture activation energy was found to be directly proportional to the fluid concentration rate constant. [31] 

reflected on the declination of entropy generation for a nanomaterial radiative chemical binary reaction of MHD 

flow with activation energy over an extending surface. The activation energy caused a rising temperature field 

and thermal diffusivity of the species. [32] investigated covalent bonding of cross radiative nanofluid in 

axisymmetric with the effect of Arrhenius activation energy. From the computational outcome, the activation 

energy is found to have strongly influenced the concentration of the nanoparticle profile. Other reports on 

Arrhenius activation energy can be obtained from [33], [34], [35], and [36].  

Due to its critical applications in the space technology, metallurgy, and pharmaceutical engineering industries, 

such as food processing technology, various hospital treatments, and polymer production, tremendous research 

has recently been conducted on the heat and mass transfer analysis of the flow over a stretching sheet. 

Furthermore, coupled heat and mass transfer problems involving homogeneous-heterogeneous reactions are 

important in a variety of engineering processes, thus they are receiving a lot of attention these days. The study of 

heat generation or absorption effect, in moving fluids is important in view of several physical problems such as 

fluid undergoing exothermic or endothermic chemical reactions. In many chemical engineering processes, 

chemical reactions take place between a foreign mass and the working fluid which moves due to the stretching of 

a surface. The order of the chemical reaction depends on several factors. One of the simplest chemical reactions is 

the first-order reaction in which the rate of reaction is directly proportional to the species concentration.  

Inspired by this steady – state analysis of the convection problem, we feel that the inclusion of induced magnetic 

field and higher order chemical reaction would be interesting and useful for applications. Hence, we extend the 

work [37], [16], [38] and [39] to include thermal buoyancy and variable heat source. Thus, [39] become one of the 

special cases on this report. Hence, the applications and various suggestions from previous studies motivate the 

present investigation as it relates to technological improvement. It is our belief that the results of this research will 
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further provide deep insight into the effect of variable heat source and thermal buoyancy on Induced Magnetic 

Field  

 
Figure 1: Schematic Diagram 

Nano-Fluid Over a Stretching Wedge with Slip. We shall establish the agreement between our work and previous 

related articles especially [39] 

 

2 Mathematical Modelling and Method of Solution 

2.1 Mathematical/Problem formulation 

Consider a coupled heat and mass transfer by hydro - magnetic flow of a continuously moving vertical permeable 

surface in the presence of surface suction, heat generation or absorption effects, transverse magnetic field effects 

and chemical reactions.   

The flow is assumed unsteady, laminar and the surface is maintained at a uniform temperature and the 

concentration species, and is assumed to be infinitely long. It is also assumed that the applied transverse magnetic 

Reynolds number is significant so that the induced magnetic field is considered. The porous layer is homogeneous 

and isotropic and it is heated and salted from below. Furthermore, the effects like activation energy, exponential 

temperature-dependent heat source/sink, and variable thermal and molecular diffusivity are also considered during 

mathematical formulation of the problem. The flow is characterized by temperature dependent viscousity and 

conductivity. In addition, there is no applied electric field and all of the Hall effect, viscous dissipation and Joule 

heating are neglected, thermo - physical properties are assumed constant except the density in the buoyancy terms 

of the momentum equation. The fluid is assumed to be Newtonian, electrically conducting and its property 

variations due to temperature and induced magnetic field are limited to fluid density. The density variation is 

assumed to be negligible in the momentum equation (Boussinesq approximation). In addition, there is no applied 

electric field and all of the Hall effects and Joule heating are neglected. We assume that the induced magnetic 

field either also contribute to the fluid flow properties. Let the 𝑥 −axis be taken along the direction of plate and y-

axis normal to it. If 𝑢, 𝑣, 𝑇  and 𝐵𝑖 , 𝑖 = 1,2 are the fluid x-component of velocity, 𝑦 −component of velocity, 

temperature and induced magnetic respectively. Under the aforementioned assumptions and after utilizing the 

necessary boundary layer approximations the full equation of motion for a two-dimensional flow in Cartesian 

form regarding continuity, momentum, energy, and concentration are given as 
𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
=  0,                                                                                                                         (1) 

𝜕𝐵1
𝜕𝑥

+
𝜕𝐵2
𝜕𝑦

=  0,                                                                                                                         (2) 

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑢𝑒

𝑑𝑢𝑒
𝑑𝑥

+ (
𝜇𝑛𝑓

𝜌𝑛𝑓
(1 +

1

𝛾
) +

𝜈𝑛𝑓

𝑎𝑢𝑤
(
𝜕𝑢

𝜕𝑦
))
𝜕2𝑢

𝜕𝑦2
 +

𝑔𝛽

𝜌𝑛𝑓
(𝑇 − 𝑇∞)        

                         +
μe

4𝜋𝜌𝑛𝑓
(B1

𝜕𝐵1
𝜕𝑥

+ 𝐵2
𝜕𝐵1
𝜕𝑦

− 𝐵𝑒
𝑑𝐵𝑒
𝑑𝑥

) +
𝑔𝛽𝐶
𝜌𝑛𝑓

(𝐶 − 𝐶∞)

         (3) 

𝜕𝐵1
𝜕𝑡

+ 𝑢
𝜕𝐵1
𝜕𝑥

+ 𝑣
𝜕𝐵1
𝜕𝑦

= 𝐵1
𝜕𝑢

𝜕𝑥
+ 𝐵2

𝜕𝑢

𝜕𝑦
+ 𝜇0

𝜕2𝐵1
𝜕𝑦2

,                                                                             (4) 
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𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓

𝜕2𝑇

𝜕𝑦2
+

𝜇𝑛𝑓

(𝑐𝑝𝜌)𝑛𝑓
(1 +

1

𝛾
) (
𝜕𝑢

𝜕𝑦
)
2

+
1

𝜎(𝑐𝑝𝜌)𝑛𝑓
(
𝜕𝐵1
𝜕𝑦

)
2

             +
𝐷𝑚𝑘𝑇

(𝜌𝑐𝑝)𝑛𝑓𝐶𝑤

𝜕2𝐶

𝜕𝑦2
+

𝑘𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓

𝜕𝑞𝑟
𝜕𝑦

 +
𝑞′′′

(𝜌𝑐𝑝)ℎ𝑛𝑓

                 (5) 

𝜕𝐶

𝜕𝑡
+  𝑢

𝜕𝐶

𝜕𝑥
+  𝑣

𝜕𝐶

𝜕𝑦
=
𝐷𝑚
𝜌𝑛𝑓

𝜕2𝐶

𝜕𝑦2
+

𝐷𝑇
𝜌𝑛𝑓𝑇∞

𝜕2𝑇

𝜕𝑦2
                                             

                                                −
𝑘′𝜈

𝜏𝜌𝑛𝑓
 
𝜕

𝜕𝑦
((𝐶 − 𝐶∞)𝑉𝑇) + 𝑘𝑟

2(𝐶 −  𝐶∞)
𝑛

                                         (6) 

where 𝜇𝑛𝑓 is density of hybrid nanofluid, 𝑇∞ is the free stream temperature, 𝜎ℎ𝑛𝑓 is electrical conductivity, 𝐵0is 

magnetic field, 𝑞𝑟  is radiative heat flux, 𝑄0  is volumetric rate of heat source, 𝑘𝑛𝑓  is thermal conductivity of 

hybrid nanofluid and (𝜌𝑐𝑝)ℎ𝑛𝑓 is heat capacity of hybrid nanofluid. Where 𝛾 Casson fluid parameter, μe 4𝜋𝜎𝑛𝑓⁄  

magnetic diffusivity 𝜇𝑒 is magnetic permeability, 𝐿 is the characteristic length of the stretching surface, 𝑁 is the 

velocity slip factor, 𝐵0 is an estimation of the uniform magnetic field at the upstream infinity, 𝑢𝑒(𝑥) = 𝑎𝑥 is the 

velocity of the flow outside the boundary layer, 𝑢𝑤(𝑥) = 𝑐𝑥 is the velocity of the stretching sheet with c and a 

being the positive constants determining the strength of the stagnation point and stretching rate, and 𝐵𝑒(𝑥) =
𝐵0(𝑥 𝐿⁄ ) is the magnetic feld at the edge of the boundary layer. Also (𝐵𝑥 , 𝐵𝑦) are magnetic components in 

(𝑥 , 𝑦) directions, respectively. 

It is assumed that the radiation heat flux is to be presented in the form of an unidirectional flux in the 𝑦 

direction. Using the Roseland approximation for radiative heat transfer and the Roseland approximation for 

diffusion, the expression for the radiative heat flux 𝑞𝑟 can be given as 

𝑞𝑟 = (
−4𝜎

3𝑘𝑠
) (
𝜕𝑇4

𝜕𝑦
)                                                                          (6) 

Here in Eq.(6), the parameters 𝜎  and 𝑘𝑠  represent the Stefan Boltzmann constant and the Roseland mean 

absorption coefficient, respectively. 

Now on assuming that the temperature differences within the fluid flow are sufficiently small, 𝑇4 in Eq.(6) can 

be expressed as a linear function of 𝑇∞ ' using the Taylor series expansion. The Taylor series expansion of 

𝑇4about 𝑇∞ , after neglecting the higher order terms, takes the form 

𝑇4 ≅ 4𝑇∞
3𝑇 − 3𝑇∞

4 = 𝑇∞
3(4𝑇 − 3𝑇∞)                                                                             (7) 

Using equation (7) in (6), we have 

𝑞𝑟 = (
−16𝜎𝑇∞

3

3𝑘𝑠
) (
𝜕𝑇

𝜕𝑦
)                                                                                                        (8) 

The rate of heat generation is given as  

𝑞′′′ = (
𝑘𝑛𝑓𝑢𝑤(𝑥)

𝑥𝜈𝑛𝑓
) [
𝐴∗(𝑇𝑤 − 𝑇∞)

𝑏𝑥
𝑢 + 𝑄0(𝑇 − 𝑇∞)]                                                     (6) 

(𝐴∗, 𝑄0) denoted the space and temperature dependent heat source/sink coefficient, respectively. Moreover, if 
(𝐴∗ > 0 and 𝑄0 > 0)  correlates to internal heat generation, while when (𝐴∗ < 0 and 𝑄0 < 0)  correlates to 

internal heat absorption. 

 Thus, on substituting (8) into (5), we have 

𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓

𝜕2𝑇

𝜕𝑦2
+

𝐷𝑚𝑘𝑇

(𝜌𝑐𝑝)𝑛𝑓𝐶𝑤

𝜕2𝐶

𝜕𝑦2
+

𝜇𝑛𝑓

(𝑐𝑝𝜌)𝑛𝑓
(1 +

1

𝛾
) (
𝜕𝑢

𝜕𝑦
)
2

                            

+
1

𝜎(𝑐𝑝𝜌)𝑛𝑓
(
𝜕𝐵1
𝜕𝑦

)
2

−
𝑘𝑛𝑓

(𝜌𝑐𝑝)𝑛𝑓

16𝜎𝑇∞
3

3𝑘𝑠

𝜕2𝑇

𝜕𝑦2
+ (

𝑘𝑛𝑓𝑢𝑤(𝑥)

𝑥𝜈𝑛𝑓
) [
𝐴∗(𝑇𝑤 − 𝑇∞)

𝑐𝑥
𝑢 + 𝑄0(𝑇 − 𝑇∞)]

          (9) 

The thermophoretic function is given by 

   𝑉𝑇 = −
𝑘′𝜇𝑛𝑓
𝑇𝑟

𝜕𝑇

𝜕𝑦
                                                                                                              (8) 

and 𝑘′ thermophoretic absorption constant and 𝑇𝑟 reference temperature. 

The boundary conditions at the plate surface and far into the cold fluid may be written as: 

𝑢 = 𝑢𝑤(𝑥) + 𝑁 (1 +
1

𝛾
)
𝜕𝑢

𝜕𝑦
, 𝑣 = 𝑣𝑤,

𝜕𝐵1
𝜕𝑦

= 𝐵2 = 0,−𝑘𝑛𝑓
𝜕𝑇

𝜕𝑦
= ℎ(𝑇𝑤 − 𝑇), 𝐷𝐵

𝜕𝐶

𝜕𝑦
+
𝐷𝑇
𝑇∞

𝜕𝑇

𝜕𝑦
= 0 at 𝑦 = 0

                                                                                                                 𝑢 → 𝑈𝑒 , 𝐵1 → 𝐵𝑒 , 𝑇 → 𝑇∞, 𝑇 → 𝑇∞ as 𝑦 → ∞

   (9) 
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where ℎ is the plate heat transfer coefficient, 𝑇𝑤 is the plate temperature of the hot fluid at the left surface of the 

plate and 𝑘ℎ𝑛𝑓 is the thermal conductivity coefficient.  

The surface temperature and concentration of the sheet is assumed to vary by both the sheet and time, in 

accordance with 𝑇𝑤(𝑥, 𝑡) = 𝑇∞ + 𝑏𝑥(1 − 𝛼𝑡)
−2  and 𝐶𝑤(𝑥, 𝑡) = 𝐶∞ + 𝑏𝑥(1 − 𝛼𝑡)

−2  respectively. The wall 

temperature and concentration 𝑇𝑤(𝑥, 𝑡) , 𝐶𝑤(𝑥, 𝑡)  increases (reduces), if 𝑏  is positive (negative) and is in 

proportion to 𝑥 . Moreover, the amount of temperature and concentration increase (reduce) along the sheet 

increases with time. Here 𝑣𝑤(𝑡) = −𝑣0 √(1 − 𝛼𝑡)⁄  at is the velocity of suction 𝑣0 > 0 or blowing 𝑣0 < 0. The 

expression for 𝑈𝑤(𝑥, 𝑡), 𝑣𝑤(𝑡), 𝐶𝑤(𝑥, 𝑡), 𝜆(𝑡), 𝜅𝑟(𝑡) is valid for time 𝑡 < 𝛼−1. 

 

2.2 Rate of Heat and Mass Transfer at the wall 

The quantities of engineering interest are the local Skin-Friction, Nusselt number and Sherwood number. These 

parameters characterize the wall heat and nano mass transfer rates. These parameters characterized the wall 

nano heat and mass transfer rates and are respectively define as follows: 

The quantities Skin friction coefficient, Nusselt number and Sherwood number are denoted by 𝑐𝑓, 𝑁𝑢 and Sh 

respectively and are define similar to [39] as follows: 

𝑐𝑓 =
𝜏𝑤

𝜌𝑛𝑓𝑈𝑤
2
 , 𝑁𝑢 =

𝑥𝑞𝑤
𝑘𝑛𝑓(𝑇𝑤  −  𝑇∞)

 , 𝑆ℎ𝑥 = 
𝐽𝑤

𝐷(𝐶𝑤 − 𝐶∞)
                             (11) 

where 𝜏𝑤 represents the skin friction along the surface, 𝑞𝑤 the heat flux from the surface and  

𝜏𝑤 = [(𝜇𝐵 +
𝑃𝑦

√2𝜋𝑐
)
𝜕𝑢

𝜕𝑦
]

𝑦=0

, 𝑞𝑤 = [𝑘𝑛𝑓 (1 −
16𝜎𝑇∞

3

3𝑘𝑠(𝜌𝑐𝑝)𝑛𝑓

)
𝜕𝑇

𝜕𝑦
]

𝑦=0

, 𝐽𝑤 = −𝐷
𝜕𝐶

𝜕𝑦
|
𝑦=0

                                                                                                         

          (13) 

where 𝑈𝑤, 𝑞𝑤  and 𝐽𝑤, represents the wall shear stress, heat transfer and mass transfer respectively. 

 

3. Method of Solution 

3.1. Similarity Transformation 

To seek for solution, we sought for a stream function 𝜓(𝑥, 𝑦, 𝑡) which must identically satisfied continuity 

equations, such that the stream function 𝜓𝑢,𝐵 corresponding to velocity and magnetic field respectively, 

satisfies the continuity equation (1) and (2) automatically with 

𝑢 =
𝜕𝜓𝑢
𝜕𝑦

 and 𝑣 = −
𝜕𝜓𝑢
𝜕𝑥

, 𝑢 =
𝜕𝜓𝐵
𝜕𝑦

 and 𝑣 = −
𝜕𝜓𝐵
𝜕𝑥

                                                   (12) 

A similarity solution of Equations (1) – (4) and (10) and (11) are obtained by defining an independent variable 𝜂 

and dependent variables 𝑓 and 𝑔 in terms of the stream function 𝜓 as  

𝜂 = 𝑦√
𝑈𝑤

𝜈𝑥(1 − 𝛼𝑡)
, 𝜓𝑢 = √

𝜈𝑛𝑓𝑥𝑈𝑤

1 − 𝛼𝑡
𝑓(𝜂), 𝜓𝐵 = √

𝜈𝑛𝑓𝑥𝐵𝑒

1 − 𝛼𝑡
𝑔(𝜂)                                     (13) 

The dimensionless temperature and concentration transformation are given as 

𝜃(𝜂) =
𝑇 − 𝑇∞
𝑇𝑤 − 𝑇∞

, 𝜙(𝜂) =
𝐶 − 𝐶∞
𝐶𝑤 − 𝐶∞

.                                                (14) 

But 𝑈𝑤 and 𝐵𝑒 are defined respectively as 

𝑢𝑤(𝑥) =
𝑐𝑥

(1 − 𝛼𝑡)
 and 𝐵𝑒(𝑥) = 𝐵0 (

𝑥

𝐿(1 − 𝛼𝑡)
)                                                            (15) 

Thus with (15), equation (13) implies 

𝜂 = 𝑦√
𝑐

𝜈𝑛𝑓(1 − 𝛼𝑡)
, 𝜓𝑢 = 𝑥√

𝜈𝑛𝑓𝑐

1 − 𝛼𝑡
𝑓(𝜂), 𝜓𝐵 = 𝑥√

𝜈𝑛𝑓𝐵0

𝐿(1 − 𝛼𝑡)
𝑔(𝜂)                            (16) 

Hence, we can obtain the following identities conveniently; 

𝑢 =
𝑐𝑥

1 − 𝛼𝑡
𝑓′(𝜂), 𝑣 =  −

√𝜈𝑛𝑓𝑐

1 − 𝛼𝑡
𝑓(𝜂),

𝐵1 = 𝑥√
𝑐𝐵0

𝐿(1 − 𝛼𝑡)
𝑔′(𝜂) and 𝐵2 = −√

𝜈𝑛𝑓𝐵0

𝐿
𝑔(𝜂)

                                                               (17) 

Where 

𝑇𝑤(𝑥, 𝑡) = 𝑇∞ + 𝑏𝑥(1 − 𝛼𝑡)
−2, 𝐶𝑤(𝑥, 𝑡) = 𝐶∞ + 𝑏𝑥(1 − 𝛼𝑡)

−2 

Using equations (14) - (19), dimensionless form of (3), (4) and (9) are obtained as  
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((1 +
1

𝛾
) + 𝛿1 (

𝜕2𝑓(𝜂)

𝜕𝜂2
)

2

)
𝜕3𝑓(𝜂)

𝜕𝜂3
−
κ

A2
((
𝜕𝑔(𝜂)

𝜕𝜂
)

2

+ 𝑔(𝜂)
𝜕2𝑔(𝜂)

𝜕𝜂2
− 1) + 𝜆2         

             −𝐴1 ((
𝜕𝑓(𝜂)

𝜕𝜂
)

2

− 𝑓(𝜂)
𝜕2𝑓(𝜂)

𝜕𝜂2
+ 𝛼1 (

𝜕𝑓(𝜂)

𝜕𝜂
+
𝜂

2

𝜕2𝑓(𝜂)

𝜕𝜂2
)) + 𝐺𝑟(𝜃(𝜂) + N𝜙(𝜂)) = 0

                 (20) 

𝜕3𝑔(𝜂)

𝜕𝜂3
+
𝐴5
Ω
(𝑓(𝜂)

𝜕2𝑔(𝜂)

𝜕𝜂2
− 𝑔(𝜂)

𝜕2𝑓(𝜂)

𝜕𝜂2
) −

𝛼1
2
(
𝜕𝑔(𝜂)

𝜕𝜂
+ 𝜂

𝜕2𝑔(𝜂)

𝜕𝜂2
) = 0                 (21) 

(𝐴4 −
4𝑅𝑑
3
)
𝜕2𝜃(𝜂)

𝜕𝜂2
+ Pr𝐸𝑐 (1 +

1

𝛾
) (
𝜕2𝑓(𝜂)

𝜕𝜂2
)

2

− 𝐴3 Pr (𝛼1
𝜂

2
− 𝑓(𝜂))

𝜕𝜃(𝜂)

𝜕𝜂
    

                                                 +𝐴4𝛼0 (
𝜕2𝑔(𝜂)

𝜕𝜂2
)

2

+ 𝐷𝑢
𝜕2𝜙(𝜂)

𝜕𝜂2
+ 𝐴4 (𝐴

∗
𝜕𝑓(𝜂)

𝜕𝜂
+ 𝐵∗𝜃(𝜂)) = 0

                 (22) 

𝜕2𝜙(𝜂)

𝜕𝜂2
+ 𝑆𝑟

𝜕2𝜃(𝜂)

𝜕𝜂2
− 𝐿𝑒𝛽

𝜕

𝜕𝜂
(𝜙(𝜂)

𝜕𝜃(𝜂)

𝜕𝜂
) − 𝐿𝑒𝛼1 (

𝜂

2
− 𝑓(𝜂))

𝜕𝜙(𝜂)

𝜕𝜂
+ 𝛿𝜙(𝜂)𝑛 = 0                 (23) 

Dimensionless form of boundary conditions (10) becomes  

𝑓′(0) = 1 + 𝑉 (1 +
1

𝛾
)
𝜕2𝑓(0)

𝜕𝜂2
, 𝑓(0) = 𝑆, 𝑔′′(0) = 0, 𝑔(0) = 0

 𝐵𝑖
𝜕𝜃(0)

𝜕𝑦
= −(1 − 𝜃(0)), 𝜔

𝜕𝜙(0)

𝜕𝑦
= −(1 − 𝑟𝜃(0))

}
 
 

 
 

,

𝜕𝑓(𝜂)

𝜕𝜂
→ 𝜆,

𝜕𝑔(𝜂)

𝜕𝜂
→ 1, 𝜃(𝜂) → 0, 𝜙(𝜂) → 0   as 𝜂 → ∞

                                         (24) 

The emerging dimensionless flow governing parameters are defined by 

𝛼1 =
𝛼

𝑐
, 𝑃𝑟 =

(𝜇𝑐𝑝)𝑓

𝑘𝑓
, 𝑅 =

4𝜎𝑇∞
3

𝑘𝑠
, 𝛼0 =

𝐵𝑒
2

(𝑇𝑤 − 𝑇∞)𝐵0
2𝜅𝑓𝜎

, 𝑆 = −
𝑣0

√𝜈𝑛𝑓𝑐
, 𝜆 =

𝑎

𝑐
, 𝑃𝑚 = 𝜎𝜈𝑓𝜇𝑓 , 

𝐿𝑒 =
𝜇𝑓

𝐷𝑚
, 𝑃𝑟 =

𝜇𝑓𝑐𝑝𝑓
𝑘𝑓

, 𝛿1 =
(1 − 𝛼𝑡)𝑘𝑟

2(𝐶𝑤 − 𝐶∞)
𝑛−1

𝑐𝜌𝑛𝑓
, 𝐸𝑐 =  

𝑐2𝑥2

(𝑐𝑝)𝑛𝑓(𝑇𝑤 − 𝑇∞)
,
𝜅𝑓

𝐴2
=
(1 − 𝛼𝑡)𝐵0𝜇𝑒
4𝑐𝐿𝜋𝜌𝑓

 

1

𝐿𝑒
=
𝐷𝑚
𝜇𝑓
,
1

𝑃𝑟
=

𝜅𝑓

𝜇𝑓𝑐𝑝𝑓
, 𝐺𝑟 =  

𝑔𝛽𝑇(𝑇𝑤 − 𝑇∞)

𝜌𝑛𝑓𝑐
2𝑥

, 𝑆𝑟 =
𝐷𝑇(𝑇𝑤 − 𝑇∞)

𝑇∞𝐷𝑚(𝐶𝑤 − 𝐶∞)
, 𝐷𝑢 =

𝐷𝑚(𝐶𝑤 − 𝐶∞)

𝐶𝑤(𝑇𝑤 − 𝑇∞)
, 

𝛽 =
(𝑇𝑤 − 𝑇∞)𝑘𝑓

𝑇𝑟
, 𝜇0 =

1

4𝜋𝜇𝑒𝜎𝑓
, 𝐴5 =

𝜎𝑛𝑓

𝜎𝑓
, 𝑁 =

𝛽𝑐(𝐶𝑤 − 𝐶∞)

𝛽𝑡(𝑇𝑤 − 𝑇∞)
, 𝑟 =

𝑇𝑤 − 𝑇∞
𝑇∞

  

 

3.2 Non-Dimensional Skin-Friction and wall Heat Transfer 

In non-dimensional form, the rate of heat transfer at the wall is computed from Fourier's law which represent the 

skin friction along the surface and the Nusselt number represent the heat transfer at the wall. These parameters 

characterized the wall nano heat and mass transfer rates and are respectively define as follows: 

 

𝑐𝑓 =
𝜏𝑤

𝜌𝑛𝑓𝑈𝑤
2
=

𝜇𝑛𝑓

𝜌𝑛𝑓𝑈𝑤
2
 [(1 +

1

𝛾
)
𝜕𝑢

𝜕𝑦
+
𝜈𝑛𝑓

𝑢𝑤𝛾
(
𝜕𝑢

𝜕𝑦
)
3

]
𝑦=0

 =
1

√𝑅𝑒
 [(1 +

1

𝛾
)
𝜕𝑓′(𝜂)

𝜕𝜂
+
𝐴1𝑆

𝛾
(
𝜕𝑓′(𝜂)

𝜕𝜂
)

3

 ]

𝑦=0                  

       ⟹ 𝑐𝑓(𝑅𝑒𝑥)
1 2⁄ = [[(1 +

1

𝛾
)
𝜕2𝑓(𝜂)

𝜕𝜂2
+
𝐴1𝑆

𝛾
(
𝜕2𝑓(𝜂)

𝜕𝜂2
)

3

 ]]

𝜂=0

    (22) 

𝑁𝑢 =
𝑥𝑞𝑤

𝑘𝑛𝑓(𝑇𝑤  −  𝑇∞)
= −√𝑅𝑒 [(𝐴4 −

4

3
𝑅𝑑)

𝜕𝜃(𝜂)

𝜕𝜂
]
𝑦=0

⟹ 𝑁𝑢(𝑅𝑒𝑥)
−1 2⁄ = −(𝐴4 −

4

3
𝑅𝑑) [

𝜕𝜃(𝜂)

𝜕𝜂
]
𝜂=0

  (23) 

𝑆ℎ𝑥 =  
𝐽𝑤

𝐷(𝐶𝑤 − 𝐶∞)
 = −√𝑅𝑒 [

𝜕𝜙(𝜂)

𝜕𝜂
]
𝑦=0

 ⟹ 𝑆ℎ(𝑅𝑒𝑥)
−1 2⁄   =  − 

𝜕𝜙(𝜂)

𝜕𝜂
|
𝜂=0

.                 (24)  

Where the local Reynolds number (𝑅𝑒𝑥) is define as 
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𝑅𝑒𝑥 = 𝑥𝑢𝑤 𝜈𝑓⁄ =
𝑐𝑥2

𝜈𝑓(1 − 𝛼𝑡)
 

3.3 Solution by Homotopy analysis method 

The HAM is an analytical method which involves obtaining a set of base functions for the 

representation of the problem at hand. We chose our base functions as 𝑓(𝜂), 𝑔(𝜂), and 𝜃(𝜂) because at infinity, 

the boundary layer flows are decaying exponentially: 

𝑓(𝜂)  =  𝑎0,0
∗ +∑∑𝑎𝑘,𝑛

∗ 𝜂𝑘𝑒−𝑛𝜂
∞

𝑛=1

∞

𝑘=0

 

𝑔(𝜂)  =  𝑏0,0
∗ +∑∑𝑏𝑘,𝑛

∗ 𝜂𝑘𝑒−𝑛𝜂
∞

𝑛=1

∞

𝑘=0

 

𝑓(𝜂)  =  𝑐0,0
∗ +∑∑𝑐𝑘,𝑛

∗ 𝜂𝑘𝑒−𝑛𝜂
∞

𝑛=1

∞

𝑘=0

 

where the 𝑎𝑖,𝑘
∗ , 𝑏 𝑖,𝑘

∗  and 𝑐 𝑖,𝑘
∗  are constants. 

The approximation of 𝑓, 𝑔, and 𝜃 must obey the above equations which is called the rule of solution for the 

them. 

Following the boundary conditions and the rule of the solution, we have the initial approximations as: 

𝑓0(𝜂) =  1 +
1 −  𝑒𝑥𝑝(−𝜂)

1 +  𝜆1 (1 +
1

𝛾
)
, 𝑔0(𝜂)  =  𝑒𝑥𝑝(−𝜂), 𝜃0(𝜂) =

𝛽𝑖

𝑁3
(𝑒−𝜂  −  1) 

Also, the auxiliary linear operators are given as: 

𝐿𝑓(𝑓) =
𝑑3

𝑑𝜂3
𝑓 −

𝑑

𝑑𝜂
𝑓, 𝐿𝑔(𝑔) =

𝑑3

𝑑𝜂3
𝑔 −

𝑑

𝑑𝜂
𝑔, 𝐿𝜃(𝜃) =

𝑑3

𝑑𝜂3
𝜃 − 𝜃 

Satisfying 

𝐿𝑓(𝑐4𝑒
−𝜂 + 𝑐3𝑒

−𝜂 + 𝑐2𝜂 + 𝑐1)  =  0, 𝐿𝑔(𝑐7𝑒
−𝜂 + 𝑐6𝑒

𝜂 + 𝑐5)  =  0, 𝐿𝜃(𝑐8𝑒
𝜂 + 𝑐9𝑒

−𝜂)  =  0 

where the 𝑐𝑠 are constants. 

If the embedding and non-zero parameters are given as 0 ≤  𝑝 ≤  1, and (ℏ𝑓 , ℏ𝑔, ℏ𝜃 ) respectively, then the 

deformation problems (of zeroth order) are: 

 

(1 −  𝑝)(𝑓(𝜂, 𝑝) − 𝑓0(𝜂)) 𝐿𝑓  =  𝑁𝑓(𝑓, 𝑔, 𝜃)𝑝ℏ𝑓  

(1 −  𝑝)(𝑔(𝜂, 𝑝) − 𝑔0(𝜂)) 𝐿𝑔 = 𝑁𝑔(𝑓, 𝑔, 𝜃)𝑝ℏ𝑔 

(1 −  𝑝)(𝜃(𝜂, 𝑝) − 𝜃0(𝜂)) 𝐿𝜃  =  𝑁𝜃(𝑓, 𝑔, 𝜃)𝑝ℏ𝜃 

The corresponding boundary equations are: 

𝑓′(0, 𝑝) = 1 +  𝜆1  (1 +
1

𝛾
) 𝑓′′(0, 𝑝), 𝑓(0, 𝑝) = 𝑆, 𝑓′(∞, 𝑝) = 𝐴 

𝑔′′(0, 𝑝) = 0, 𝑔(0, 𝑝) = 0, 𝑔′(∞, 𝑝) = 1 
𝜔𝜃′(0, 𝑝) = −(1 − 𝜃), 𝜃(∞, 𝑝) = 0 

as p changes from 0 to 1, 𝑓0(𝜂), 𝑔0(𝜂) and 𝜃0(𝜂) approach 𝑓(𝜂, 𝑝), 𝑔(𝜂, 𝑝) and 𝜃(𝜂, 𝑝) respectively. 

By Taylor’s series expansion, 

𝑓(𝜂;  𝑝) =  𝑓0(0) +∑𝑓𝑚(𝜂)𝑝
𝑛

∞

𝑛=1

, 𝑔(𝜂;  𝑝)  =  𝑔0(0) +∑𝑔𝑚(𝜂)𝑝
𝑛

∞

𝑛=1

 

𝜃(𝜂;  𝑝) =  𝜃0(0) +∑𝜃𝑚(𝜂)𝑝
𝑛

∞

𝑛=1

, 𝜙(𝜂;  𝑝)  =  𝜙0(0) +∑𝜙𝑚(𝜂)𝑝
𝑛

∞

𝑛=1

 

where 

𝑓𝑚(𝜂;  𝑝) =
1

𝑘!

𝜕𝑚

𝜕𝜂𝑚
𝑓(𝜂;  𝑝), 𝑔𝑚(𝜂;  𝑝) =

1

𝑘!

𝜕𝑚

𝜕𝜂𝑚
𝑔(𝜂;  𝑝),  

𝜃𝑚(𝜂;  𝑝) =
1

𝑘!

𝜕𝑚

𝜕𝜂𝑚
𝜃(𝜂;  𝑝), 𝜙𝑚(𝜂;  𝑝) =

1

𝑘!

𝜕𝑚

𝜕𝜂𝑚
𝜙(𝜂;  𝑝) 

At 𝑝 = 1 the series equations 1 and 2 converge if the following parameters: initial guesses, auxiliary linear 

operators, and the auxiliary are chosen appropriately. Hence, 

𝑓(𝜂) =  𝑓0(𝜂) +∑𝑓𝑚(𝜂)

∞

𝑛=1

, 𝑔(𝜂)  =  𝑔0(𝜂) +∑𝑔𝑚(𝜂)

∞

𝑛=1
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𝜃(𝜂) =  𝜃0(𝜂) +∑𝜃𝑚(𝜂)

∞

𝑛=1

, 𝜙(𝜂)  =  𝜙0(𝜂) +∑𝜙𝑚(𝜂)

∞

𝑛=1

 

The dth - order deformation problems are: 

𝐿𝑓(𝑓𝑑  −  𝜒𝑑𝑓𝑑−1  =  ℏ𝑓𝑅𝑑
𝑓(𝜂), 𝐿𝑔(𝑔𝑑 − 𝜒𝑑𝑔𝑑−1  =  ℏ𝑔𝑅𝑑

𝑔
(𝜂) 

𝐿𝜃(𝜃𝑑 − 𝜒𝑑𝜃𝑑−1  =  ℏ𝜃𝑅𝑑
𝜃(𝜂), 𝐿Φ(Φ𝑑 − 𝜒𝑑Φ𝑑−1  =  ℏ𝜃𝑅𝑑

Φ(𝜂) 
 

Table 1: Skin-friction, Sherwood and Nusselt number for various values of parameter 

   𝑓′′(0)  𝜙′(0)  𝜃′(0)     𝑓′′(0)  𝜙′(0)  𝜃′(0) 

𝛼1 = 0.01 -0.995111 0.161297 -6.414047  𝜆 = 0.0 -1.186811 0.112066 -6.039250 

𝛼1 = 0.05 -1.006193 0.167257 -6.395599  𝜆 = 0.2 -1.017993 0.186360 -6.483918 

𝛼1 = 0.1 -1.019516 0.175038 -6.372722  𝜆 = 0.4 -0.788811 0.247884 -6.892394 

𝛼1 = 0.2 -1.044417 0.191765 -6.327371  𝜆 = 1.2 0.675767 0.169660 -7.218612 

𝐿𝑒 = 0.5  -0.941740 2.242965 -7.512009  𝜅 = 0.0 -1.002309 0.180959 -6.451934 

𝐿𝑒 = 1.0  -0.989628 1.119776 -6.920784  𝜅 = 1.0 -1.098695 0.174696 -6.390421 

𝐿𝑒 = 2.0 -1.014173 0.185243 -6.466521  𝜅 = 3.0 -1.246742 0.159776 -6.269489 

𝐿𝑒 = 3.0 -1.038390 -1.494091 -5.668529  𝜅 = 6.0 -1.393169 0.142991 -6.143704 

𝑆𝑟 = 0.0  -1.032775 -1.831770 -5.517776  𝑁 = 0.1  -1.055867 0.183322 -6.456387 

𝑆𝑟 = 0.2 -1.025406 -0.902069 -5.961982  𝑁 = 0.6 -0.992856 0.188191 -6.501308 

𝑆𝑟 = 0.4 -1.017993 0.186360 -6.483918  𝑁 = 1.6 -0.868387 0.195157 -6.577461 

𝑆𝑟 = 0.5 -1.014269 0.802956 -6.780412  𝑁 = 3.2 -0.672714 0.199534 -6.666042 

𝛽 = 0.1 -1.017993 0.186360 -6.483918  𝐺𝑟 = 0.0 -1.093447 0.180355 -6.429699 

𝛽 = 0.2 -1.021359 -0.361485 -6.221075  𝐺𝑟 = 0.5 -0.999200 0.187674 -6.496576 

𝛽 = 0.3 -1.024374 -0.821238 -6.000834  𝐺𝑟 = 1.0 -0.905503 0.193169 -6.554776 

𝛽 = 0.4 -1.027102 -1.215880 -5.812025  𝐺𝑟 = 2.0 -0.718394 0.199070 -6.647469 

𝑅𝑑 = 0.0 -1.011443 0.127714 -6.232691  𝐸𝑐 = 0.0  -1.026780 0.413585 -7.417163 

𝑅𝑑 = 0.05 -1.011692 0.153708 -6.338058  𝐸𝑐 = 0.5 -1.017993 0.186360 -6.483918 

𝑅𝑑 = 0.10 -1.011933 0.180611 -6.447290  𝐸𝑐 = 1.0 -1.009184 -0.042451 -5.558240 

𝑅𝑑 = 0.25 -1.012605 0.267284 -6.800451  𝐸𝑐 = 1.5 -1.000352 -0.272838 -4.640141 

𝑛 = 0.0  -0.976461 0.720419 -6.750778  𝛼0 = 0.0 -1.020460 0.209554 -6.575060 

𝑛 = 1.0  -1.011933 0.180611 -6.447290  𝛼0 = 0.1 -1.017993 0.186360 -6.483918 

𝑛 = 2.0 -1.013320 0.136662 -6.426205  𝛼0 = 0.2 -1.015525 0.163089 -6.392593 

𝑛 = 3.0 -1.013654 0.121214 -6.418922  𝛼0 = 0.5 -1.008108 0.092808 -6.117509 

𝐷𝑢 = 0.0  -1.044003 0.103155 -6.259825  𝜑 = 0.0  -1.217147 0.339391 -7.002714 

𝐷𝑢 = 1.0 -1.039772 0.126203 -6.358817  𝜑 = 0.4 -0.457625 -0.420157 -4.330721 

𝐷𝑢 = 2.0 -1.035486 0.152852 -6.472317  𝜑 = 0.6 -0.129797 -0.925658 -2.545722 

𝐷𝑢 = 2.5 -1.033318 0.167761 -6.535486  𝜑 = 0.8 0.280587 -1.549161 -0.356785 

Ω = 0.4 -1.011966 0.180594 -6.447212  𝛿 = −0.6  -1.024791 -0.154981 -6.321343 

Ω = 0.8 -1.011556 0.180791 -6.448107  𝛿 = −0.2 -1.021801 0.001698 -6.395878 

Ω = 1.4 -1.010710 0.181177 -6.449885  𝛿 = 0.2 -1.017993 0.186360 -6.483918 

Ω = 2.4 -1.008925 0.182051 -6.454040  𝛿 = 0.6 -1.012879 0.413779 -6.592661 

 

Table 2: Effect of Slip condition on rate of heat transfer at the wall 

   𝑓′′(𝜂)  𝜙′(𝜂)  𝜃′(𝜂)     𝑓′′(𝜂)  𝜙′(𝜂)  𝜃′(𝜂) 

𝑉 = 0.0  -1.191737 0.088101 -6.175432  𝐵𝑖 = −0.5  -1.033394 -1.906548 1.648379 

𝑉 = 0.2 -0.889001 0.252905 -6.685767  𝐵𝑖 = −0.1 -1.050398 -4.320467 9.789199 

𝑉 = 0.4 -0.709943 0.336187 -6.926648  𝐵𝑖 = 0.1 -1.017993 0.186360 -6.483918 

𝑉 = 0.8 -0.506875 0.417743 -7.142987  𝐵𝑖 = 0.3 -1.027228 -1.057945 -1.516120 

𝑆 = 0.0 -0.663751 -0.250730 -0.924433  𝜑 = 0.0  -1.217147 0.339391 -7.002714 

𝑆 = 0.4 -0.709054 0.347763 -3.967396  𝜑 = 0.4 -0.457625 -0.420157 -4.330721 

𝑆 = 0.8 -0.808640 0.426594 -5.348031  𝜑 = 0.6 -0.129797 -0.925658 -2.545722 

𝑆 = 1.2 -0.923874 0.317679 -6.094311  𝜑 = 0.8 0.280587 -1.549161 -0.356785 

 

 

With the conditions: 
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𝑓𝑑
′(𝜂, 0) = 1 + 𝑉 (1 +

1

𝛾
) 𝑓𝑑

′′(0), 𝑓𝑑(𝜂) = 𝑆, 𝑓𝑑
′(∞) = 𝜆, 𝑔𝑑

′′(𝜂) = 0, 𝑔𝑑(𝜂) = 1, 𝑔𝑑
′ (∞) 

 

 𝐵𝑖
𝜕𝜃𝑑(𝜂)

𝜕𝜂,
= −(1 − 𝜃𝑑(𝜂)), 𝜃𝑑(∞) = 0, 𝜔

𝜕𝜙𝑑(𝜂, 0)

𝜕𝜂,
= −(1 − 𝑟𝜃𝑑(𝜂, 0)), 𝜙𝑑(∞) = 0 

where 

𝑅𝑑
𝑓(𝜂)  = ((1 +

1

𝛾
) + 𝛿∑𝑓𝑑−1−𝑘

′′

𝑑=1

𝑘=1

)∑𝑓𝑑−1
′′′

𝑑=1

𝑘=1

−
κ

A2
(∑𝑔𝑑−1−𝑘

′ 𝑔𝑗
′

𝑑=1

𝑘=1

+∑𝑔𝑑−1−𝑘
′ 𝑔𝑘

′′

𝑑=1

𝑘=1

− 1) + 𝜆2               

                  −𝐴1 (∑𝑓𝑑−1−𝑘
′′ 𝑓𝑘

𝑑=1

𝑘=1

−∑𝑓𝑑−1−𝑘
′ 𝑓𝑘

′

𝑑=1

𝑘=1

+ 𝛼1 (∑𝑓𝑑−1−𝑘
′

𝑑=1

𝑘=1

+
𝜂

2
∑𝑓𝑑−1−𝑘

′′

𝑑=1

𝑘=1

)) + 𝐺𝑟(𝜃𝑑−1 + N𝜙𝑑)

 

𝑅𝑑
𝑔(𝜂) =  ∑𝑔𝑑−1−𝑘

′′

𝑑=1

𝑘=1

+
𝐴5
𝑃𝑚

(∑𝑓𝑑−𝑔𝑑−1−𝑘
′′

𝑑=1

𝑘=1

−∑𝑔𝑑−𝑓𝑑−1−𝑘
′′

𝑑=1

𝑘=1

) −
𝛼1
2
(∑𝑔′

𝑑

𝑑=1

𝑘=1

+ 𝜂∑𝑔𝑑−1−𝑘
′′

𝑑=1

𝑘=1

)             

              

𝑅𝑑
𝜃 = (𝐴4 −

4𝑅𝑑
3
)∑𝜃𝑑−1−𝑘

′′

𝑑=1

𝑘=1

+ Pr𝐸𝑐 (1 +
1

𝛾
)∑𝜃𝑑−1−𝑘

′′ 𝜃𝑘
′′

𝑑=1

𝑘=1

− 𝐴3 Pr(𝛼1
𝜂

2
−∑𝑓𝑘

𝑑=1

𝑘=1

)∑𝜃𝑘
′

𝑑=1

𝑘=1

  

          +𝐴4𝛼0∑𝑔𝑑−1−𝑘
′′ 𝑔𝑘

′′

𝑑=1

𝑘=1

+ 𝐷𝑢∑𝜙𝑑−1−𝑘
′′ 𝜙𝑘

′′

𝑑=1

𝑘=1

+ 𝐴4 (𝐴
∗∑𝑓𝑑−1−𝑘

′

𝑑=1

𝑘=1

+ 𝐵∗𝜃𝑑)

 

  𝑅𝑑
𝜙
= ∑𝜙𝑑−1−𝑘

′′ 𝜙𝑘
′′

𝑑=1

𝑘=1

+ 𝑆𝑟∑𝜃𝑑−1−𝑘
′′ 𝜃𝑘

′′

𝑑=1

𝑘=1

− 𝛽∑(𝜙𝑑∑𝜃𝑑−1−𝑘
′

𝑑=1

𝑘=1

)

𝑑−1

𝑘−1

− 𝛼1 (
𝜂

2
−∑𝑓𝑘

𝑑=1

𝑘=1

)∑𝜙𝑑−1−𝑘
′

𝑑=1

𝑘=1

+ 𝛿1𝜙(𝜂)
𝑛 

Where 𝜒 =  0 when 𝑑 ≤  1  and 𝜒 =  1 when 𝑑 >  1 

Hence, the general solutions are: 

𝑓𝑑(𝜂) =  𝑓𝑑(𝜂)
′  +  𝑐1  +  𝑐2𝜂 +  𝑐3𝜂

2  +  𝑐4𝜂
3 

𝑔𝑑(𝜂) =  𝑔𝑑(𝜂)
′  +  𝑐5  +  𝑐6𝑒

𝜂  +  𝑐7𝑒
−𝜂  

𝜃𝑑(𝜂) =  𝜃𝑑(𝜂)
′  +  𝑐8𝑒

𝜂  +  𝑐9𝑒
−𝜂  

Here, 𝑓𝑑(𝜂)
′, 𝑔𝑑(𝜂)

′ and 𝜃𝑑(𝜂)
′ are the particular solution, while 𝑐’𝑠 are constants which were determined by 

the boundary conditions. 

 Lastly, the equations are coded and executed in a symbolic system MAPLE 2021 package. 

 

Table 3: Computed initial data and skin-friction, Sherwood and Nusselt number for space heat generation or 

absorption 

Computed Initial data 

Space heat source 𝑓′(0) 𝑓′′(0) 𝑔′(0) 𝜙(0) 𝜃(0) 𝜙′(0)  𝜃′(0) 

(𝐴∗, 𝐵∗) = (−3,−9) 0.9 -1.0 1.2 1.0 0.2544 0.4318 -7.4562 

(𝐴∗, 𝐵∗) = (−1,−3) 0.9 -1.0 1.2 1.0 0.3108 0.2916 -6.8924 

(𝐴∗, 𝐵∗) = (0.7, 0.2) 0.9 -1.0 1.2 1.0 0.3787 0.1218 -6.2131 

(𝐴∗, 𝐵∗) = (2, 2) 0.9 -1.0 1.2 1.0 0.4392 -0.0306 -5.6083 

 

4. Discussion of Results 

We have used the Homotopy Analysis Method (HAM) that uses the homotopy parameter that split nonlinear 

system into an infinite set of linear systems which are solved analytically, while the continuation methods 

require solving a discrete linear system as the homotopy parameter is varied to solve the nonlinear system. The 

procedure that generates the result numerically and graphed is codded in Wolfram mathematical language. The 

result of the computation are displayed using figures, Figure 2-25 and Table 1-3. The discussion of both the 

graphs and the tables are set out below. 

 

4.1 Validity of Results 

In order to assess the accuracy of the numerical method, we have compared the present results of 𝑓′′(0) for 

different values of 𝛼  with 𝛽 = 0  and 𝛾 → ∞  in the absence of the energy equation versus the previously 

published data of Mahapatra and Gupta [38], Ishak et al. [39], Ali et al. [26] and Mohamed and Ali [39]. The 

comparison is listed in Table 1 and found in excellent agreement. 



Akinyemi OA et al                                      Journal of Scientific and Engineering Research, 2023, 10(3):17-33 

Journal of Scientific and Engineering Research 

26 

 

 

4.2 Velocity: The velocity distribution is examined considering the impact of stretching velocity 𝜆, buoyancy 

ratio, Grashof number 𝑁, slip velocity 𝑉, suction velocity 𝑆 and nano-fluid parameter 𝜑. We display in Figure 2 

the impact of stretching velocity on velocity distribution, from this figure, it could be seen that velocity 

increases as stretching velocity increases. Also, at a higher stretching velocity, we observed that velocity close 

to the surface is higher that the velocity at the surface. The velocity boundary layer was also seen to increase 

with increase in stretching velocity. While both buoyancy ratio and Grashof (thermal) increases the velocity 

distributions as displayed in Fig 3 and 4. The effect of velocity slip and suction velocity are shown in Figure 5 

and 6 respectively. From the figures, we observed that increase in both parameters, velocity slip and suction 

velocity decreases the velocity boundary. Figure 7 displayed the impact of nano-fluid parameter on the velocity 

distribution. The figure indicate that velocity is enhanced with increases in nano-fluid parameter. 

 

4.3 Induced Magnetic Field: Magnetic induced of the flow is described using figures 8-13 with the of flow 

governing parameters; unsteadiness parameter 𝛼1 , nano-fluid parameter 𝜑 , magnetic Prandtl number Ω , 

stretching velocity 𝜆, magnetic inductance 𝜅  and velocity slip 𝑉 . Figure 8 indicates unsteadiness parameter 

declines the induced magnetic field as unsteadiness parameter increases, the induced magnetic boundary layer 

reduces while nanofluid parameter enhances induced magnetics as shown in Figure9. Figure 10-13 shows the 

enhancement effects of stretching velocity, magnetic inductance and velocity slip on induced magnetic field. It 

was observed that increase in those parameters declines the induced magnetic field. 

 

4.4 Temperature: The impact of Eckert number, magnetic parameter 𝛼0, Dufort number, stretching velocity, 

nanofluid parameter, Lewis number on temperature distribution were explained through figures 14-18. These 

graphical illustrations are just in two folds viz: Eckert number, magnetic parameter, Dufort number and 

nanofluid parameter were observed to enhances the temperature distributions. Further, close to the surface of 

flow, temperature dropped rapidly and the approaches zero asymptotically as displayed in Figure 14-16 and 18 

respectively whereas, stretching velocity decline the temperature distributions. 

 

4.4 Concentration: We displayed the effect of Lewis number on concentration of the flow field in Figure 19, 

from this figure we observed that concentration boundary layer decline as Lewis number increases. So also, we 

discovered that concentration flux at the surface depends on the values of Lewis number. Soret number was 

discovered to enhances concentration of the flow field as displayed in Figure 20. In Figure 21, stretching 

velocity declines the concentration and we deduced from the figure that the profile is independent of the value 

of stretching velocity. While suction velocity and concentration slip bring about decline in concentration of the 

flow field as displayed in Figure 22 and Figure 24. This observation is practically correct as suction or slip have 

the tendencies of reducing the chemical species in the flow field leaving behind less concentration. Figure 23 

displayed the effect of convective surface temperature, from where we discovered that when heat moves from 

solid surface to fluid (𝐵𝑖 < 0) the temperature of the fluid flow increases whereas, when heat moves from fluid 

to the solid surface (𝐵𝑖 > 0), the bulk temperature of the fluid declines. The reactivity parameter of the chemical 

species was seen to increase the species concentration for the case of generative chemical reaction (𝛿 > 0) and 

decline the concentration boundary layer for destructive reaction (𝛿 < 0) as displayed in Figure 25. 

 

4.5 Rate of heat and mass transfer at the wall: The flow rate at the wall in terms of skin friction 𝑓′′(0), heat 

flux 𝜃′(0) and concentration transfer at the wall 𝜙′(0) is displayed in Table 1. The effect of the flow governing 

parameters were explained using the data contained in the table. From the table, we discovered that unsteadiness 

parameter, Lewis number, thermophoretic parameter 𝛽 , radiation, reaction order, Dufort number 𝐷𝑢  and 

magnetic inductance 𝜅, decline skin-friction of the flow whereas, Soret number, Magnetic Prandtl number, 

stretching velocity, buoyancy ratio, Grashof number, Eckert number, magnetic inductance, nanofluid parameter, 

and reactivity parameter enhances the skin-friction. In this same vein, the effect of all these parameters on 

Sherwood and Nusselt number are displayed in the table and self-explained. The effect of Slip condition on rate 

of heat and mass transfer at the wall is displayed in Table 2. From this table, we discovered that slip velocity 

increases skin-friction and Nusselt number and decline Sherwood number of the flow field. Increases in Suction 

velocity decreases skin-friction and Nusselt number, while increases in Nanofluid parameter increases the skin 

friction and Nusselt number and, decline the Sherwood number. We also compute the initial data for the system 

of equations for specifi space heat source. The corresponding initial data were displayed in Table 3. 
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Figure 2: Effect of stretching velocity on velocity 

distribution 

 
Figure 3: Effect of buoyancy ratio on velocity 

distribution 

 
Figure 4: Effect of thermal Grashof number on 

velocity distribution 

 
Figure 5: Effect of velocity slip on velocity 

distribution 

 
Figure 6: Effect of suction velocity on velocity 

distribution 

 
Figure 7: Effect of nano parameter on velocity 

distribution 
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Figure 8: Effect of unsteadiness parameter on induced 

magnetic field 

 
Figure 9: Effect of Nanofluid parameter on induced 

magnetic field 

 
Figure 10: Effect of magnetic Prandtl number on 

induced magnetic field 

 
Figure 11: Effect of stretching velocity on induced 

magnetic field 

 
Figure 12: Effect of magnetic inductance on induced 

magnetic field 

 
Figure 13: Effect of velocity slip on induced magnetic 

field 
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Figure 14: Effect of Eckert number on temperature 

distribution 

 
Figure 15: Effect of magnetic parameter on 

temperature distribution 

 
Figure 16: Effect of Dufort number on temperature 

distribution 

 
Figure 17: Effect of stretching velocity on 

temperature distribution 

 
Figure 18: Effect of nanofluid parameter on 

temperature distribution 

 
Figure 19: Effect of Lewis number on concentration 

distribution 
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Figure20: Effect of Soret number on concentration 

distribution 

 
Figure 21: Effect of stretching velocity on 

concentration distribution 

 
Figure 22: Effect of suction velocity on concentration 

distribution 

 
Figure 23: Effect of convective heat transfer on 

concentration distribution 

 
Figure 24: Effect of concentration slip on  

concentration distribution 

 
Figure 25: Effect of reactivity parameter on 

concentration distribution 

       

5. Conclusion  

Homotopy Analysis Method (HAM) that uses the homotopy parameter that split nonlinear system into an 

infinite set of linear systems has been used, while the continuation methods require solving a discrete linear 

system as the homotopy parameter is varied to solve the nonlinear system. The procedure that generates the 
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result numerically and graphed is codded in Wolfram mathematical language. The result of the procedure is 

represented both in figures and tables. From the discussion above, some of the results obtained are: 

• velocity increases as stretching velocity increases.  

• at a higher stretching velocity, velocity close to the surface is higher that the velocity at the surface.  

• velocity boundary layer increase with increase in stretching velocity.  

• both buoyancy ratio and Grashof (thermal) increases the velocity distributions  

• Eckert number, magnetic parameter, Dufort number and nanofluid parameter were observed to enhances 

the temperature distributions.  

• close to the surface of flow, temperature dropped rapidly and the approaches zero asymptotically. 

• that concentration boundary layer decline as Lewis number increases 

• that concentration flux at the surface depends on the values of Lewis number.  

• stretching velocity declines the concentration  

• suction velocity and concentration slip bring about decline in concentration of the flow field as displayed 

suction or slip have the tendencies of reducing the chemical species in the flow field leaving behind 

less concentration.  

• that when heat moves from solid surface to fluid (𝐵𝑖 < 0) the temperature of the fluid flow increases  

• reactivity parameter of the chemical species was seen to increase the species concentration for the case of 

generative chemical reaction and decline the concentration boundary layer for destructive reaction. 

• that unsteadiness parameter, thermophoretic parameter 𝛽, radiation, reaction order, Dufort number 𝐷𝑢 

and magnetic inductance 𝜅, decline skin-friction of the flow  

• Soret number, Magnetic Prandtl number, stretching velocity, buoyancy ratio, Grashof number, magnetic 

inductance, nanofluid parameter, and reactivity parameter enhances the skin-friction.  

• that slip velocity increases skin-friction and Nusselt number and decline Sherwood number of the flow 

field. 

• Increases in Suction velocity decreases skin-friction and Nusselt number,  

• while increases in Nanofluid parameter increases the skin friction and Nusselt number and 
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