
Available online www.jsaer.com

Journal of Scientific and Engineering Research

189

Journal of Scientific and Engineering Research, 2023, 10(2):189-201

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Comprehensive Development and Build Strategies for the PERN

Stack

Bhargav Bachina

Abstract This technical paper presents an integrated approach to developing and deploying React applications

using the PERN stack, comprising PostgreSQL, React, Express, and NodeJS. This combination is celebrated for

its cohesiveness and the convenience of using JavaScript across the entire development stack, making it an ideal

choice for various web development scenarios. The document explores the construction process of a React-

based frontend, the implementation of PostgreSQL as the database layer, and the utilization of Express and

NodeJS for the middleware, providing a step-by-step guide through the development of an example PERN stack

project. Topics covered include project setup, database configuration, API development, and user interface

construction, alongside modern development practices such as Docker containerization and environment

management. By offering a concise yet comprehensive overview, this paper aims to equip developers with the

necessary tools and knowledge to effectively employ the PERN stack in building robust full-stack web

applications, highlighting the stack's relevance and efficiency in current web development practices.

Keywords Programming, Web Development, Software Development, Software Engineering, JavaScript

Numerous methodologies exist for constructing React applications and preparing them for production

deployment. A prominent approach involves utilizing a combination of NodeJS and PostgreSQL for server-side

operations and database management, respectively. This method is part of a broader, highly regarded stack

known as the PERN stack, which stands out for its cohesive use of JavaScript across all layers of development.

The components of this stack—PostgreSQL, React, Express, and NodeJS—offer a powerful, integrated

environment that caters to a wide array of web development needs.

In this approach, the frontend is entirely developed using React, allowing for dynamic and responsive user

interfaces. PostgreSQL serves as the backend database, chosen for its robustness and capability to handle

complex data structures as a document store. Express and NodeJS form the application's middle layer, handling

server-side logic and HTTP requests, thereby linking the frontend with the database efficiently.

Bachina B Journal of Scientific and Engineering Research, 2023, 10(2):189-201

Journal of Scientific and Engineering Research

190

This paper aims to delve into the intricacies and practical implementation of the PERN stack. We will provide a

detailed examination, following a structured, step-by-step approach illustrated with a real-world example

project. This will include setting up the development environment, integrating each component of the stack, and

demonstrating how they work together to create a seamless, full-stack web application. Through this detailed

guide, readers will gain insights into leveraging the PERN stack for efficient web development, showcasing its

versatility and power in modern web application construction.

• Introduction

• Prerequisites

• Example Project

• Project Structure

• Install PostgreSQL on Local Machine

• Install PGAdmin Tool

• Create a Database Table

• Building API

• Configure PostgreSQL In API

• Externalize the Environment Variables

• Building UI

• Make API Calls From UI

• Development Environment Setup

• Running on Docker Compose

• Dockerize PERN Stack

• Linting

• Unit Testing API

• Unit Testing UI

• Integration Tests

• Build for production.

• Demo

• Summary

• Conclusion

1. Introduction

As we said earlier, PERN Stack uses four technologies such as PostgreSQL, Express, React, and NodeJS. React is

a javascript library for building web apps and it doesn’t load itself in the browser. We need some kind of

mechanism that loads the index.html (single page) of React application with all the dependencies (CSS and js

files) in the browser. In this case, we are using node as the webserver which loads React assets and accepts any

API calls from the React UI app.

Figure 1: PERN Stack

Bachina B Journal of Scientific and Engineering Research, 2023, 10(2):189-201

Journal of Scientific and Engineering Research

191

If you look at the above diagram all the web requests without the /api will go to React routing and the React

Router kicks in and loads components based on the path. All the paths that contain /api will be handled by the

Node server itself.

2. Prerequisites

There are some prerequisites for this post. You need to have a NodeJS installed on your machine and some other

tools that are required to complete this project.

• NodeJS (https://nodejs.org/en/)

• Express Framework (https://expressjs.com/)

• PGAdmin (https://www.pgadmin.org/)

• PostgreSQL (https://www.postgresql.org/)

• Postgresapp (https://postgresapp.com/)

• Node-Postgres (https://www.npmjs.com/package/pg)

• VSCode (https://code.visualstudio.com/)

• Postman (https://www.postman.com/)

• Nodemon (https://nodemon.io/)

• Dotenv (https://www.npmjs.com/package/dotenv)

• Create-React-App (https://create-react-app.dev/)

• Typescript (https://www.typescriptlang.org/)

• React Bootstrap (https://react-bootstrap.github.io/)

NodeJS: As an asynchronous event-driven JavaScript runtime, Node.js is designed to build scalable network

applications.

Express Framework: Express is a minimal and flexible Node.js web application framework that provides a

robust set of features for web and mobile applications.

PGAdmin: pgAdmin is an Open-Source administration and development platform for PostgreSQL.

PostgreSQL: Open-Source relational Database

Node-Postgres: Non-blocking Postgresql Client for NodeJS

VSCode: The editor we are using for the project. It’s open-source and you can download it here

(https://code.visualstudio.com/).

Postman: Manual testing your APIs

Nodemon: To speed up the development.

If you are a complete beginner and don’t know how to build from scratch, I would recommend going through the

below articles. We used these projects from this article as a basis for this post.

• How To Get Started with React (https://medium.com/bb-tutorials-and-thoughts/how-to-get-started-

with-react-ba61895a8f0c)

• How To Develop and Build React App with NodeJS (https://medium.com/bb-tutorials-and-

thoughts/how-to-develop-and-build-react-app-with-nodejs-bc06fa1c18f3)

• How to Build NodeJS REST API with Express and PostgreSQL (https://medium.com/bb-tutorials-

and-thoughts/how-to-build-nodejs-rest-api-with-express-and-postgresql-674d96d5cb8f)

• How to write production-ready Node.js Rest API — Javascript version (https://medium.com/bb-

tutorials-and-thoughts/how-to-write-production-ready-node-js-rest-api-javascript-version-

db64d3941106)

3. Example Project

Here is an example of a simple tasks application that creates, retrieves, edits, and deletes tasks. We run the API on

the NodeJS server, and you can use PostgreSQL to save all these tasks.

https://miro.medium.com/v2/resize:fit:1400/1*BRzkjumicvmmdiD8Yn_DyQ.gif

As you add users, we are making an API call to the nodejs server to store them and get the same data from the

server when we retrieve them. You can see network calls in the following video.

https://miro.medium.com/v2/resize:fit:720/1*Yw9Jl54tMWx554iAlW8XUA.gif

https://code.visualstudio.com/
https://miro.medium.com/v2/resize:fit:1400/1*BRzkjumicvmmdiD8Yn_DyQ.gif
https://miro.medium.com/v2/resize:fit:720/1*Yw9Jl54tMWx554iAlW8XUA.gif

Bachina B Journal of Scientific and Engineering Research, 2023, 10(2):189-201

Journal of Scientific and Engineering Research

192

Here is a Github link to this project. You can clone it and run it on your machine.

// clone the projectgit clone https://github.com/bbachi/pern-stack-example.git

// React Codecd uinpm installnpm start

// API codecd apinpm install\npm run dev

4. Project Structure

Let’s understand the project structure for this project. We will have two package.json: one for the React and

another for nodejs API. It’s always best practice to have completely different node_modules for each one. In

this way, you won’t get merging issues or any other problems regarding web and server node modules collision.

It’s easier to convert your PERN Stack into any other stack later such as replacing the API code with

microservices and serving your UI through the NGINX web server.

Figure 2: Project Structure

If you look at the above project structure, all the React app resides under the ui folder and nodejs API resides

under the api folder.

5. Install PostgreSQL on Local Machine

There are so many ways to install PostgreSQL on your local machine from the below link. The Postgres.app is the

easiest and fastest one.

https://www.postgresql.org/download/macosx/

You can click on the Postgres.app and download the app from that page.

Figure 3: Postgres.app

https://github.com/bbachi/pern-stack-example.git
https://www.postgresql.org/download/macosx/

Bachina B Journal of Scientific and Engineering Research, 2023, 10(2):189-201

Journal of Scientific and Engineering Research

193

You can go through the below installation steps and initialize the Database.

Figure 4: Download and Install Instructions

If everything is successful, you can see the below screen with the database named after the username on the

machine.

Figure 5: Postgres.app

6. Install PGAdmin Tool

The pgAdmin tool is the open-source administration and development platform for PostgreSQL. You can install

this tool from the following location.

https://www.pgadmin.org/

https://www.pgadmin.org/

Bachina B Journal of Scientific and Engineering Research, 2023, 10(2):189-201

Journal of Scientific and Engineering Research

194

Figure 6: pgAdmin Tool

Once installed, you can open that and connect to the PostgreSQL server with the following credentials. It changes

based on your username folder.

// name of the servername: local (You can name anything)

// Hostnamehost name: localhost

// User Nameusername: <user name based on the above postgres.app>

Figure 7: pgAdmin Tool

Let’s connect to the server by clicking on the register below.

Figure 8: Register Server

Bachina B Journal of Scientific and Engineering Research, 2023, 10(2):189-201

Journal of Scientific and Engineering Research

195

The server name can be anything that you give for your server such as local, dev, test, etc.

Figure 9: Server Name

Let’s give all the details such as HostName, port, username, etc under the connection tab.

Figure 10: Connection Details

Once connected, you can see the details below.

Figure 11: Connected

7. Create a Database Table

Let’s create a table by clicking on the Query Tool as below.

Bachina B Journal of Scientific and Engineering Research, 2023, 10(2):189-201

Journal of Scientific and Engineering Research

196

Figure 12: Query Tool

Let’s run the following query to create the database table.

https://gist.github.com/bbachi/9dbcc0530954f4a8320eda5ecd34b5c3#file-database-sql

Figure 13: Table Created

8. Building API

We have configured PostgreSQL in the previous section, it’s time to build the API. I would recommend you go

through two articles posted in the prerequisites section. Let me put those here as well.

• How to Build NodeJS REST API with Express and PostgreSQL (https://medium.com/bb-tutorials-

and-thoughts/how-to-build-nodejs-rest-api-with-express-and-postgresql-674d96d5cb8f)

• How to write production-ready Node.js Rest API — Javascript version (https://medium.com/bb-

tutorials-and-thoughts/how-to-write-production-ready-node-js-rest-api-javascript-version-

db64d3941106)

The starting point of the API is the server.js file in which we define all the routes and import the express. Here is

the file where the nodejs server runs on port 3080 and starts listening for the incoming requests.

https://gist.github.com/bbachi/ecbfc405a9add7964d5a154ec9e222cc#file-server-js

We have defined 4 routes for CRUD operations. Notice that we are using four different HTTP methods for

creating, updating, reading, and deleting operations. The request comes to these routes and each route calls the

respective method in the controller class. You can read the body of the incoming requests in the req object

https://gist.github.com/bbachi/9dbcc0530954f4a8320eda5ecd34b5c3#file-database-sql
https://gist.github.com/bbachi/ecbfc405a9add7964d5a154ec9e222cc#file-server-js

Bachina B Journal of Scientific and Engineering Research, 2023, 10(2):189-201

Journal of Scientific and Engineering Research

197

defined in each route. The result of these methods is a promise based so you need to use then method to read and

send back to the client with the method res.json().

Here is the controller class in which we are calling the service class with async/await. The async/await is the

cleaner way of reading promises. You don’t need async/await here since we are directly returning the result of the

service class.

https://gist.github.com/bbachi/cf3d9b47e600f3327715a80c624a8472#file-task-controller-js

Let’s look at the service class in which we call the repository to interact with the PostgreSQL data.

https://gist.github.com/bbachi/4c0206ee864bf83a8916642f7e9b9ba5#file-task-service-js

You need to know how to configure PostgreSQL Connection in the NodeJS before looking at the repository so

that you can read the data from PostgreSQL. Let’s find that out in the following section.

9. Configure PostgreSQL in API

Let’s configure the pg Client from our application. The first thing we need to do is to get the connection string or

connection details. You can get it from the properties below.

Figure 14: Connection Details

The next thing is to install the pg client with the following command.

// install client and sequelizenpm install pgnpm install sequelize

// node-postgres home pagehttps://node-postgres.com/

Let’s place the connection string and database name in the application properties file below. You have to URL

encode the password if you have any special characters in the password.

Here is the configuration file in which you connect to PostgreSQL with the help of the connection string. We are

using pg and sequelize to connect with PostgreSQL for all the queries. These tools make it easy for you to interact

with PostgreSQL.

https://gist.github.com/bbachi/720d64b801d81ed69278de2548aba8c6#file-db-config-js

The next thing we should define is the schema for the database model as below.

https://gist.github.com/bbachi/d00f608146c63195178a8df31e094a8c#file-task-model-js

Finally, we have a repository class as below using the above model for the CRUD operations.

https://gist.github.com/bbachi/a3680ab2e51ddf0fd9ad82c03ce831a0#file-task-repository-js

10. Externalize the Environment Variables

We have seen how to configure your PostgreSQL connection in the API. We need to store this kind of

configuration outside of your app so that you can build once and deploy it in multiple environments with ease.

We need to use the dotenv library for environment-specific things. Dotenv is a zero-dependency module that

loads environment variables from a .env file into process.env. Storing configuration in the environment separate

from code is based on The Twelve-Factor App (http://12factor.net/config) methodology.

The first step is to install this library npm install dotenv and put the .env file at the root location of the project.

https://gist.github.com/bbachi/cf3d9b47e600f3327715a80c624a8472#file-task-controller-js
https://gist.github.com/bbachi/4c0206ee864bf83a8916642f7e9b9ba5#file-task-service-js
https://gist.github.com/bbachi/720d64b801d81ed69278de2548aba8c6#file-db-config-js
https://gist.github.com/bbachi/d00f608146c63195178a8df31e094a8c#file-task-model-js
https://gist.github.com/bbachi/a3680ab2e51ddf0fd9ad82c03ce831a0#file-task-repository-js
https://nodejs.org/docs/latest/api/process.html#process_process_env

Bachina B Journal of Scientific and Engineering Research, 2023, 10(2):189-201

Journal of Scientific and Engineering Research

198

https://gist.github.com/bbachi/38e674535f4f0851245b98bce36e8e94#file-env

We just need to put this line require('dotenv').config() as early as possible in the application code as in the

server.js file.

https://gist.github.com/bbachi/1a29181bbce1029e85af3802504a778f#file-server-js

Let’s define the configuration class where it creates a connection with the connection details from the properties.

We are using pg client to connect with PostgreSQL for all the queries. This client makes it easy for you to interact

with PostgreSQL. We are fetching the connection details with the dotenv library and connecting it to PostgreSQL

with pg client. We are exposing one function from this file connect.

Sequelize is a promise based NodeJS ORM tool for many relational databases such as Postgres, MYSQL, etc.

https://gist.github.com/bbachi/d2a5ec615c9a8477b5b3369e07bddfb3#file-db-config-js

11. Building UI

Once you create the separate folder for React code you need to start with the following command to scaffold the

React structure with the help of React CLI. We will not build the entire app here instead we will go through

important points here. You can clone the entire GitHub Repo and check the whole app.

npm create-react-app ui

Here is the index.js file for the app and App Component as the bootstrap component which means this is the first

component that loads in the browser.

https://gist.github.com/bbachi/a464fcd3f35291b8ff72bb25d5cea219#file-index-js

Here is the starting point of the application in which we define the home component to load for the path /. You

need to import the react-router-dom library for the routing part of the app. The Home page will be loaded when

we start the application.

https://gist.github.com/bbachi/ca05d3eb1c3dee19bc797bf983ef5da1#file-app-js

Here is the home component. This is a simple application where you add, update, and delete tasks. You can go

through the GitHub repo to check the rest of the files. We are using two hooks here one is for maintaining the

local state and another is for fetching the data from the API.

https://gist.github.com/bbachi/0f4dbda7b02c1db0c66605a743557eb1#file-home-js

We have another two important components here one is for the createTask Form component, and another is for

the Tasks table.

https://gist.github.com/bbachi/b02b50bb1ae61e4f4ff84f6279a642f7#file-createtask-js

Run the React code in local with the following command which runs on the port 3000 on localhost. Make sure

you are in the root folder of React code which is todo-app here.

cd uinpm start

Figure 15: React Code running on port 3000.

12. Make API Calls From UI

Here is the service file which calls the API, in this case. We have four API operations to get, add, edit, and delete

tasks with root path /api.

https://gist.github.com/bbachi/a0118082cfcf01b85b20b4a3cd8b36ab#file-todoservice-js

From the react components you can call this service to get the data using React Hooks. Here is an example.

https://gist.github.com/bbachi/38cd2ff52039c62e553e0a48e0120f74#file-home-js

You can look at the below article for a detailed post.

How To Make API calls in React Applications (https://medium.com/bb-tutorials-and-thoughts/how-to-make-

api-calls-in-react-applications-7758052bf69)

https://gist.github.com/bbachi/38e674535f4f0851245b98bce36e8e94#file-env
https://gist.github.com/bbachi/1a29181bbce1029e85af3802504a778f#file-server-js
https://gist.github.com/bbachi/d2a5ec615c9a8477b5b3369e07bddfb3#file-db-config-js
https://gist.github.com/bbachi/a464fcd3f35291b8ff72bb25d5cea219#file-index-js
https://gist.github.com/bbachi/ca05d3eb1c3dee19bc797bf983ef5da1#file-app-js
https://gist.github.com/bbachi/0f4dbda7b02c1db0c66605a743557eb1#file-home-js
https://gist.github.com/bbachi/b02b50bb1ae61e4f4ff84f6279a642f7#file-createtask-js
https://gist.github.com/bbachi/a0118082cfcf01b85b20b4a3cd8b36ab#file-todoservice-js
https://gist.github.com/bbachi/38cd2ff52039c62e553e0a48e0120f74#file-home-js

Bachina B Journal of Scientific and Engineering Research, 2023, 10(2):189-201

Journal of Scientific and Engineering Research

199

13. Development Environment Setup

Usually, the way you develop and the way you build and run production are completely different.

In the development phase, we run the nodejs server and the React app on completely different ports. It’s easier

and faster to develop that way. If you look at the following diagram the React app is running on port 3000 with

the help of a webpack dev server and the nodejs server is running on port 3080.

Figure 16: Development Environment

There should be some interaction between these two. We can proxy all the API calls to nodejs API. Create-react-

app provides some inbuilt functionality and to tell the development server to proxy any unknown requests to your

API server in development, add a proxy field to your package.json of the React. Have a look at the package.json

below. Remember you need to put this in the React UI package.json file.

https://gist.github.com/bbachi/9ae4dbdb179ca15a5507ee2a7296c262#file-package-json

Now you can run both Reac UI and NodeJS API on different ports and the React Code interacts with the API.

// React Codecd uinpm installnpm start

// API codecd apinpm installnpm run dev

https://miro.medium.com/v2/resize:fit:720/1*j7EWjQuwx76WTOILWDvXHQ.gif

https://miro.medium.com/v2/resize:fit:1400/1*Yw9Jl54tMWx554iAlW8XUA.gif

14. Running on Docker Compose

Docker Compose is useful when we don’t have the development environment setup on our local machine to run

all parts of the application to test or we want to run all parts of the application with one command. For example, if

you want to run NodeJS REST API and PostgreSQL database on different ports and need a single command to

set up and run the whole thing. You can accomplish that with Docker Compose.

Coming Soon!!

15. Dockerize PERN Stack

Docker is an enterprise-ready container platform that enables organizations to seamlessly build, share, and run

any application, anywhere. Almost every company is containerizing its applications for faster production

workloads so that they can deploy anytime and sometimes several times a day. There are so many ways we can

build a PERN Stack. One way is to dockerize it and create a docker image so that we can deploy that image any

time or sometimes several times a day.

Coming Soon!!

16. Linting

We need to lint our project in that way it’s easier to follow some standards in your project. We will see this in a

separate article.

Coming Soon!!

17. Unit Testing API

There are so many tools out there to unit test your application such as Mocha, Chai, etc. We need a separate

article for that to cover different libraries.

Coming Soon!!

https://gist.github.com/bbachi/9ae4dbdb179ca15a5507ee2a7296c262#file-package-json
https://miro.medium.com/v2/resize:fit:720/1*j7EWjQuwx76WTOILWDvXHQ.gif
https://miro.medium.com/v2/resize:fit:1400/1*Yw9Jl54tMWx554iAlW8XUA.gif

Bachina B Journal of Scientific and Engineering Research, 2023, 10(2):189-201

Journal of Scientific and Engineering Research

200

18. Unit Testing UI

We will see how to unit test with UI with jest library.

Coming Soon!

19. Integration Tests

We will use cypress for the integration tests.

Coming Soon!

20. Build for production

We must build the project for production in a different way. We can’t use the proxy object. Here is the detailed

article on how to package your app for production.

Packaging Your React App with NodeJS Backend For Production (https://medium.com/bb-tutorials-and-

thoughts/packaging-your-react-app-with-nodejs-backend-for-production-7ddae2b84f1b)

21. Demo

Here is an example of a simple tasks application that creates, retrieves, edits, and deletes tasks. We run the API on

the NodeJS server, and you can use PostgreSQL to save all these tasks.

https://miro.medium.com/v2/resize:fit:720/1*BRzkjumicvmmdiD8Yn_DyQ.gif

As you add users, we are making an API call to the nodejs server to store them and get the same data from the

server when we retrieve them. You can see network calls in the following video.

https://miro.medium.com/v2/resize:fit:720/1*Yw9Jl54tMWx554iAlW8XUA.gif

22. Summary

• There are so many ways we can build React apps and ship them for production.

• One way is to build the React app with NodeJS and PostgreSQL as a database. There are four things

that make this stack popular, and you can write everything in Javascript.

• The four things are PostgreSQL, React, Express, and NodeJS. This stack can be used for a lot of uses

cases in web development.

• We will have two package.json: one for the React and another for nodejs API. It’s always best practice

to have completely different node_modules for each one.

• You can get the connection string and configure the NodeJS application to talk to PostgreSQL with pg

client, etc.

• Node-Postgres: Non-blocking Postgresql Client for NodeJS

• PGAdmin: pgAdmin is an Open-Source administration and development platform for PostgreSQL.

• We need to use the dotenv library for environment-specific things. Dotenv is a zero-dependency

module that loads environment variables from a .env file into process.env. Storing configuration in the

environment separate from code is based on The Twelve-Factor App (http://12factor.net/config)

methodology.

• In the development phase, we run the nodejs server and the React app on completely different ports.

It’s easier and faster to develop that way.

• We need to lint our project in that way it’s easier to follow some standards in your project.

• There are so many tools out there to unit test the API such as Mocha, Chai, etc.

• We can unit test with UI with jest library.

• We will use cypress for the integration tests.

• We must build the project for production in a different way. We can’t use the proxy object.

23. Conclusion

In conclusion, this paper has presented a comprehensive approach to building and deploying React applications

using the PERN stack, consisting of PostgreSQL, React, Express, and NodeJS. This stack is celebrated for its

unified JavaScript development environment, catering to various web development scenarios. We emphasized

best practices such as maintaining separate package.json files for the React and NodeJS components to ensure

https://miro.medium.com/v2/resize:fit:720/1*BRzkjumicvmmdiD8Yn_DyQ.gif
https://miro.medium.com/v2/resize:fit:720/1*Yw9Jl54tMWx554iAlW8XUA.gif

Bachina B Journal of Scientific and Engineering Research, 2023, 10(2):189-201

Journal of Scientific and Engineering Research

201

modularity and manage dependencies effectively. Further, the integration of PostgreSQL with NodeJS through

the pg client, the utilization of PGAdmin for database management, and the implementation of dotenv for

environment variable management were discussed, aligning with The Twelve-Factor App methodology.

Development strategies included running the NodeJS server and React app on different ports for efficiency and

adopting linting to maintain code standards.

Moreover, the paper highlighted the importance of unit testing using tools like Mocha, Chai, and Jest, and

integration testing with Cypress, to ensure robust application functionality. Lastly, we underscored the distinct

approaches required for building the project for production, diverging from development practices such as the

use of a proxy object, to ensure optimal performance and security. This guide serves as a foundational resource

for developers seeking to leverage the PERN stack for efficient and scalable web application development.

References

[1]. JavaScript Documentation https://developer.mozilla.org/en-US/docs/Web/JavaScript

[2]. PostgreSQL Documentation https://www.postgresql.org/docs/

[3]. Express.js Documentation https://expressjs.com/

[4]. NodeJS Documentation https://nodejs.org/docs/latest/api/

https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.postgresql.org/docs/
https://expressjs.com/

