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Abstract The moving grid method is used to determine the numerical solution of shallow water equations. To 

illustrate the efficiency and accuracy, we compare the computed solutions with a reference one obtained using a 

very fine mesh on two test problems. 
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1. Introduction  

Many problems involving shallow water flow in oceanography and atmospheric sciences are modeled by 

shallow water equation system. It's a hyperbolic system of conservation laws that describes various flows such 

as rivers, coastal areas, dam breaks, flooding, flow of pollutants, tsunamis, avalanches [1, 2]. The shallow water 

equations with a non-flat bottom topography play a critical role in the modeling and simulation of the flows in 

rivers, channels and coastal areas. These equations are a nonlinear system of partial differential equations, i.e., 

conservation laws describing the evolution of the height and mean velocity of the fluid. In general, solutions of 

these equations are not available, except for certain with simplified conditions. Due to the nonlinearity of the 

model, the complexity to the applications, much numerical methods have been developed to solve these 

equations approximately. A wide range of numerical schemes based on the finite difference, finite element and 

finite volume methods have been applied to solve numerically the solution of these equations. However, many 

real applications introduce complications, the main problem in solving the shallow water equations is the 

presence of the source terms modeling the bottom topography and the Coriolis forces included in the system so, 

it is very important to have an accurate, efficient and robust numerical method for the shallow water equation 

system. Some numerical techniques to solve time dependent partial differential equations (PDEs) integrate on a 

uniform spatial grid that is kept fixed on the entire time interval and when the solutions have regions of high 

spatial activity, a standard fixed grid technique is inefficient, so, to achieve an accurate numerical 

approximation, we use a very large number of grid points. The grid on which the PDE is discretized then needs 

to be locally refined. Moreover, if the regions of high spatial activity are moving in time, then techniques are 

needed to also adapt the grid in time [3]. The aim is to use the technique of moving grid method to solve shallow 

water equations under the method of lines. This paper is organized as follows: In Section 2, we give a brief 

review of the method of lines and the moving grid method. In Section 3, we apply the method to the shallow 

water system. Some numerical results are shown in Section 4. Concluding remarks are given in Section 5. 
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2. Brief review of the method of lines and the moving grid method 

2.1 Method of lines 

Method of lines is a semi-discrete approach that involves reducing an initial/boundary value problem to a 

system of ordinary differential equations in time using discretization in space. The most important advantage of 

the method approach is that it is possible to achieve higher-order approximations in the discretization of spatial 

derivatives without significant increasing in the computational complexity. The accuracy of the method can be 

enhanced using a highly reliable and robust ODE solvers. The method is stable and suitable even for strong 

shock waves problems. To apply the method of lines, we must: partition the solution region into layers, 

discretize the partial differential equation in a coordinate direction, transform it to obtain decoupled ordinary 

differential equations, reverse transform and introduce boundary conditions, then resolve the resulting system 

[4, 5, 6]. 

Let us consider, in 1D, the following general problem: 

{
 
 

 
 
𝑢𝑡 = ℒ(𝑢, 𝑥, 𝑡), 𝑎 < 𝑥 < 𝑏, 𝑡 > 0

𝑢(𝑥, 0) = 𝑢0(𝑥),   (𝐼𝐶)            (1)

ℬ(𝑢, 𝑥, 𝑡) = 0, 𝑥 = 𝑎; 𝑥 = 𝑏, (𝐵𝐶𝑠)

 

where ℒ, ℬ are a given differential operator, the order of ℬ is less than the order of ℒ. 

According to the method of lines, the coordinate 𝑥 is discretized with 𝑛 uniformly spaced grid points 𝑥𝑖. The 

partial derivatives depending on spatial variable in system (1) are replaced by, for example finite difference 

method approximations, finite volume method approximations, at grid point 𝑥𝑖  and this yields a system of 

ordinary differential equations which depend on 𝑡 in the following form: 

𝑑𝑢𝑖
𝑑𝑡

= 𝑓(𝑢𝑖), 𝑖 = 1,2, … , 𝑛.     (2) 

This system (2) can be solved by using ODE solver like ode15s of MATLAB. 

 

2.2 The governing shallow water equation 

The system of the shallow water equations in one dimension under specific assumptions are as follows [1, 7, 8]: 

{
 
 

 
 

𝜕ℎ

𝜕𝑡
+
𝜕

𝜕𝑥
(ℎ𝑢) = 0, (3)

𝜕

𝜕𝑡
(ℎ𝑢) +

𝜕

𝜕𝑥
(ℎ𝑢2 +

1

2
𝑔ℎ2) + 𝑔ℎ

𝜕𝐵

𝜕𝑥
= 0, (4)

 

where ℎ(𝑥, 𝑡) is the water depth, 𝑢(𝑥, 𝑡) is the velocity, 𝐵(𝑥, 𝑡) is the bottom elevation and 𝑔 is the gravitational 

constant. Sometime one can use the notation 𝑞(𝑥, 𝑡) = ℎ(𝑥, 𝑡)𝑢(𝑥, 𝑡) which is the discharge and then, the 

system (3) − (4) become: 

{
 
 

 
 

𝜕ℎ

𝜕𝑡
+
𝜕𝑞

𝜕𝑥
= 0, (5)

𝜕𝑞

𝜕𝑡
+
𝜕

𝜕𝑥
(
𝑞2

ℎ
+
1

2
𝑔ℎ2) + 𝑔ℎ

𝜕𝐵

𝜕𝑥
= 0, (6)

 

 

2.3 The numerical scheme of moving grid method 

Suppose that [𝑎;  𝑏] is the physical domain with a physical variable 𝑥 and [0;  1] is the computational domain for 

a computational variable 𝜉. The coordinates transform is expressed as follow [9, 10]: 

𝑥 =  𝑥(𝜉;  𝑡): [0, 1] ⟶ [𝑎, 𝑏], 𝑡 > 0, 𝑥 ∈ [𝑎; 𝑏], 𝜉 ∈ [0; 1] 

Thus, the solution ℎ, 𝑢 are transformed as: 

ℎ(𝑥;  𝑡) = ℎ(𝑥(𝜉, 𝑡);  𝑡), (7)  

𝑢(𝑥;  𝑡) = 𝑢(𝑥(𝜉, 𝑡);  𝑡), (8) 

The coordinate 𝑥 is rearranged as follows: 

𝑥𝑖(𝜉) = 𝑥(𝜉𝑖 , 𝑡), 𝑖 = 1, 𝑛 + 1. 
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𝜉𝑖 =
(𝑖−1)(𝑏−𝑎)

𝑛
 , 𝑖 = 1, 𝑛 + 1. 

The uniform mesh on [0, 1] is 𝜉𝑖 and 

𝑎 = 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 < 𝑥𝑛+1 = 𝑏 

is the corresponding mesh on physical domain. Applying the chain rule of the method  

ℎ𝑥 =
ℎ𝜉

𝑥𝜉
,    ℎ𝑡 = ℎ̇ −

ℎ𝜉

𝑥𝜉
𝑥𝑡 

𝑞𝑥 =
𝑞𝜉

𝑥𝜉
,    𝑞𝑡 = �̇� −

𝑞𝜉

𝑥𝜉
𝑥𝑡 

𝐵𝑥 =
𝐵𝜉

𝑥𝜉
 

Using the method of lines method and the centered finite difference scheme, we obtain the following ODEs 

system: 

{
 
 

 
 

𝑑ℎ𝑖
𝑑𝑡

−
ℎ𝑖+1 − ℎ𝑖−1
𝑥𝑖+1 − 𝑥𝑖−1

𝑑𝑥𝑖
𝑑𝑡

+
𝑞𝑖+1 − 𝑞𝑖−1
𝑥𝑖+1 − 𝑥𝑖−1

= 0;        𝑖 = 2, … , 𝑛 , (10)

𝑑𝑞𝑖
𝑑𝑡

−
𝑞𝑖+1 − 𝑞𝑖−1
𝑥𝑖+1 − 𝑥𝑖−1

𝑑𝑥𝑖
𝑑𝑡

+
2𝑞𝑖
ℎ𝑖

𝑞𝑖+1 − 𝑞𝑖−1
𝑥𝑖+1 − 𝑥𝑖−1

− (
𝑞𝑖
ℎ𝑖
)
2 ℎ𝑖+1 − ℎ𝑖−1
𝑥𝑖+1 − 𝑥𝑖−1

+ 𝑔ℎ𝑖 (
ℎ𝑖+1 − ℎ𝑖−1
𝑥𝑖+1 − 𝑥𝑖−1

−
𝐵𝑖+1 − 𝐵𝑖−1
𝑥𝑖+1 − 𝑥𝑖−1

) = 0, (11)

 

In the moving grids method, the monitor function connecting the mesh with the physical solution, is chosen to 

redistribute more grid points at critical regions where more accuracy is needed there by reducing errors 

introduced by the numerical scheme [11, 12]. In this paper, arc-length monitor function is used with MATLAB 

solver ode15s for the numerical simulation. We give a summary of the calculation statistics using the following 

notations: 

𝒏: moving grid node number, 

𝒏𝒓: grid fixe node number, 

𝑺𝑻𝑬𝑷𝑺: number of successful steps, 

𝑭𝑨𝑰𝑳: number of failed attempts, 

𝑭𝑵𝑺: number of function evaluations, 

𝑷𝑫𝑹: number of partial derivatives, 

𝑳𝑼: number of LU decompositions, 

𝑳𝑰𝑵: number of solutions of linear system, 

𝑪𝑷𝑼: CPU-time 

 

3. Numerical results 

In this section, we present some numerical results obtained with two examples. As the exact solution is 

unavailable, we compare the calculated solutions with a reference solution obtained using a very fine mesh. 

3.1. Example 1 

Let's consider a water flow on a flat bottom, i.e., bottom 𝐵 ≡ 0, where the initial conditions are 

ℎ(𝑥, 0) = 1 + 𝑒−𝑥
2
, 𝑞(𝑥, 0) = 0, 𝑎 ≤ 𝑥 ≤ 𝑏 

and boundary conditions are [13]: 

ℎ(𝑎, 𝑡) = ℎ(𝑏, 𝑡) = 1, 𝑞(𝑎, 𝑡) = 𝑞(𝑏, 𝑡) = 0 

For the numerical simulation, the computational domain is [−8; 8] 

Figure 1 shows the water height and the discharge profile with 𝑛 = 300 and 𝑛𝑟 = 2000 points grid at 𝑡 = 0. 
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Figure 1: Numerical and reference solution at 𝑡 = 0. 
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Figure 2: Comparison of solutions obtained with a moving grid for 𝑛 = 300 nodes and those a fixed uniform 

grid with 𝑛𝑟 =  2000 nodes for ℎ, 𝑞 at time 𝑡 = 0.3 

 

 

 

Figure 3: Comparison of solutions obtained with a moving grid for 𝑛 = 300 nodes and those a fixed uniform 

grid with 𝑛𝑟 =  2000 nodes for ℎ, 𝑞 at time 𝑡 = 0.6 
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Figures 2 and 3 shows the computed h and q at t = 0.3 and t=0.6, where the black solid line indicates the 

reference solution. From Figures, it can be clearly shown that, the moving grid with a small number of nodes, 

the solution is better and numerically stable. 

Table 1: Computational statistics of shallow water system. 

 𝑺𝒖𝒄. 𝑺𝒕 𝑭𝒂𝒊𝒍. 𝒂𝒕 𝑭𝒖𝒏. 𝒆𝒗 𝑷𝒂𝒓𝒕. 𝒅𝒆𝒓 𝑳𝑼. 𝒅𝒆𝒄 𝑺𝒐𝒍. 𝒍𝒊𝒏 𝑪𝑷𝑼. 𝒕 

𝑡 = 0.3 
𝑛 = 300 66 10 336 10 28 136 28.0015 

𝑛𝑟 = 2000 24 1 64 1 7 42 129.1544 

𝑡 = 0.6 
𝑛 = 300 95 25 656 21 48 236 25.4024 

𝑛𝑟 = 2000 67 11 190 1 17 168 55.5749 

Table 1 shows that numerical results are satisfactory compared with those obtained by a very large number of 

nodes for a fixed grid. 

 

3.2. Example 2 

The secund case is an example with a parabolic bottom topography [14]. This problem simulates a flow over a 

bump. The initial conditions are given by: 

ℎ(𝑥, 0) = {
    0.13 + 0.05(𝑥 − 10)2, 𝑖𝑓 8 < 𝑥 < 12

0.33                                 𝑜𝑡ℎ𝑒𝑤𝑖𝑠𝑒

 

𝑞(𝑥, 0) = 0.18 

𝐵(𝑥, 0) = {
3 − (𝑥 − 10)2, 𝑖𝑓 8 < 𝑥 < 12

      2.8                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The boundary conditions are given by: 

𝑞(𝑎, 𝑡) = 0.18;  ℎ(𝑏, 𝑡) = 0.33 

The axis of the channel is the interval [0, 25] , we compare the numerical solutions with 𝑛 = 400  to the 

reference one obtained by using a very fine mesh 𝑛𝑟 = 2000 and 𝑛𝑟 = 4000 cells. 
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Figure 4: Comparison of solutions obtained with a moving grid for 𝑛 = 400 nodes and those of a uniform fixed 

grid for 𝑛𝑟 = 2000 nodes at 𝑡 = 0.6 

 

 

Figure 5: Comparison of solutions obtained with a moving grid for 𝑛 = 400 nodes and those of a uniform fixed 

grid for 𝑛𝑟 = 4000 nodes at 𝑡 = 0.8 
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Figure 4 and 5 shows that the numerical results are in very good agreement with reference solution. 

Table 2: Computational statistics of shallow water system 

 𝑺𝒖𝒄. 𝑺𝒕 𝑭𝒂𝒊𝒍. 𝒂𝒕 𝑭𝒖𝒏. 𝒆𝒗 𝑷𝒂𝒓𝒕. 𝒅𝒆𝒓 𝑳𝑼. 𝒅𝒆𝒄 𝑺𝒐𝒍. 𝒍𝒊𝒏 𝑪𝑷𝑼. 𝒕 

𝑡 = 0.6 
𝑛 = 400 34 0 70 1 12 50 12.0923 

𝑛𝑟 = 2000 19 0 46 1 6 28 64.0271 

𝑡 = 0.8 
𝑛 = 400 37 0 76 1 13 56 9.0205 

𝑛𝑟 = 4000 24 1 75 2 9 40 759.6754 

 

We compute the numerical solution using 𝑛 = 400 points in the interval [0, 25] and compare the results with 

the reference solution computed on a fine grid with 𝑛𝑟 = 2000, 𝑛𝑟 = 4000 points at 𝑡 = 0.2 and 𝑡 = 0.8. As 

can be observed, these numerical results are good when moving node are used. 

 

4. Conclusion 

The numerical schemes studied are an excellent alternative method to approximate time-dependent partial 

differential equations. The results of the proposed scheme based on moving grid techniques in this paper, shown 

that, numerical solutions obtained are in a good agreement with the reference solutions. Satisfactory numerical 

accuracy and efficiency properties are observed. 
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