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Abstract Images, integral to numerous applications, are encoded as matrices where each element represents a 

pixel's grayscale intensity. In grayscale images, values range from 0 (representing black) to 1 (indicating white). 

As image dimensions increase, so does the demand for storage space. Smaller images are easily managed, but 

larger ones pose challenges. Hence, data compression techniques are applied to mitigate storage consumption. 

One effective approach involves employing Singular Value Decomposition (SVD) on the image matrix. 

Through SVD, we create a low-rank approximation for each color channel separately, resulting in a 3-

dimensional array that closely approximates the original image. This process achieves image compression while 

retaining vital image characteristics. This paper illustrates the fundamental concept of SVD and demonstrates its 

remarkable efficacy in substantially reducing image storage requirements while preserving image quality to a 

nearly perfect degree. As an illustrative example, we utilized a grayscale image of a bird to showcase how SVD 

can generate a near-replica of the original image while utilizing only 7.82% of the original image's storage 

capacity. This underscores the practical importance of SVD in optimizing image storage and transmission. 
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1. Principal of SVD 

According to SVD, any n × m matrix, A, can be factorized into UΣVT, where U and V are orthogonal matrices, 

and Σ is a diagonal matrix comprised of the singular values of A (σ1 > · · · > σn > 0) which appear in descending 

order along the main diagonal. The eigenvalues of AAT and ATA are represented by the numbers σ1
2 ≥ · · · ≥ σn. 

The principle of SVD is expressed as a formula below. 

A = UΣVT 

U = [u1  u2 ….un-1   un]               Σ = [
𝛔𝟏 ⋯ 𝟎
⋮ ⋱ ⋮
𝟎 ⋯ 𝛔𝐧

]                  VT = 

[
 
 
 
 

𝐯𝟏
𝐓

𝐯𝟐

…

𝐓

𝐯𝐧−𝟏

𝐯𝐧
𝐓

𝐓

]
 
 
 
 

 

Illustrating SVD using an example –  

Let a matrix A = [
2 2

−1 1
] 

Then, AT= [
2 −1
2 1

] 

Calculating AAT and ATA we get,  

AAT =  [
2 2

−1 1
] [

2 −1
2 1

] = [
8 0
2 0

] 

ATA = [
2 −1
2 1

] [
2 2

−1 1
] = [

5 3
3 5

] 

Now we find the eigenvalues of AAT and ATA using the equations -  

1. |AAT – λI| = 0 

2. |ATA – λI| = 0 
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It's observed that solving either equation yields two identical eigenvalues (λ). This equivalence arises because a 

matrix's eigenvalues are derived from its characteristic polynomial, obtained by subtracting the identity matrix 

from the matrix itself. In the case of square matrices, the determinant remains consistent when calculated for 

both the matrix and its transpose. Consequently, the characteristic polynomials of ATA and AAT are identical if 

A is square. 

Solving both the equations, we get λ1= 8 and λ2 = 2 

Now that we have λ1 and λ2, we can find out σ1 and σ2 and hence compute Σ using the relations below –  

σ1= √𝜆1 = √8 

σ2= √𝜆2 = √2 

 

Σ = [
 σ1 0
0  σ2

] = [
   √8 0

0   √2 
] 

Now we find the orthogonal matrix U whose columns are the unit eigenvectors of AAT. We use the equation 

[AAT – λI]x = 0 for the two different eigenvalues (λ1 = 8 and λ2 = 2) to get the first and second column of U. 

Solving the equations –  

1. [AAT – λ1I]x1 = 0 

2. [AAT – λ2I]x2 = 0 

 

 We get x1 = [
−1
0

] and x2 = [
0
1
]  

Since U is orthogonal we convert the vectors x1 and x2 into their unit vectors by dividing them by their 

magnitude. i.e.  

u1= 
x1

|𝑥1|
 = [

−1
0

] 

u2 = 
x2

|𝑥2| 
= [

0
1
] 

Therefore, U = [
−1 0
0 1

] 

 

Now we find the orthonormal matrix V whose columns are the unit eigenvectors of ATA. We use the equation 

[ATA – λI]x = 0 for the two different eigenvalues (λ1= 8 and λ2=2) to get the first and second column of V. 

Repeating the same process we applied to find U, we find that –  

V = [
1/ √2 −1/ √2 

1/ √2 1/ √2
] 

Therefore we have found Σ, U, V and can factorize A = UΣVT in matrix form as below -  

[
2 2

−1 1
] = [

−1 0
0 1

] [
 √8 0

0  √2
] [

1/ √2 1/ √2 

−1/ √2 1/ √2 
] 

 

2. How SVD aids in Image Compression 

When we expand on the formula wherein matrix A can be factored into 2 orthogonal matrices (U,V) and 1 

diagonal matrix (Σ), we can express our initial matrix A as a combination of simpler rank 1 matrices. 

 

A = UΣVT 

 

A = [u1  u2  · · ·  un-1  un]

[
 
 
 
 
𝜎1 0 0 0 0
0 𝜎2 0 0 0
0 0 … 0 0
0 0 0 𝜎𝑛−1 0
0 0 0 0 𝜎𝑛]

 
 
 
 

  

[
 
 
 
 

v1
T

v2

…

T

vn−1

vn
T

T

]
 
 
 
 

 

 

A = u1σ1v1
T   +  u2σ2v2

T  +   · · · +  un-1σn-1vn-1
T  +  unσnvn

T 



Chatterjee A                                             Journal of Scientific and Engineering Research, 2023, 10(10):44-47 

Journal of Scientific and Engineering Research 

46 

 

 

A = ∑ uiσi
vi

T𝑛
𝑖=1  

We know that the diagonal matrix Σ is arranged from the largest value σ1 at the top to the smallest value σn at the 

bottom. Therefore, only the first few summations of A = ∑ uiσi
vi

T𝑛
𝑖=1  will have the largest values. This holds 

key to data compression since we can literally approximate A by adding only the first few values of the 

summation 

We obtain a new rank-k matrix, where k represents the total number of rank-1 matrices combined to form the 

approximation Aapprox. 

Aapprox = ∑ uiσi
vi

T𝑘
𝑖=1  

 

As the value of k rises, image quality improves, but so does the memory requirement. Consequently, smaller k 

values are favored. Remarkably, near-perfect replication of a geometric image is achievable with rank-1 or rank-

2 SVD. Storing just the initial two columns of U and V, along with their singular values, allows exact 

replication of a square image, utilizing a mere 0.02% of the original storage capacity. 

 

3. Showcasing SVD Compression using an Example 

Let’s demonstrate how image compression by k rank SVD works using a 512 × 512 pixel colored image of a 

bird. Given below is the original colored image when k=512. 

 

 

Figure 1: Original, Colored Image of Bird 

 

We separate the grayscale values for each color to create 3 independent 2-dimensional matrices to perform an 

SVD for each color separately. Since k=20 is the lowest k value which provided the closest approximation to the 

original image, let’s use that as our primary example to see the practicality and effectiveness of SVD in Image 

Compression and also for our calculation of Compression Ratio in this case. 

 
Figure 2: The image on the left is a grayscale representation of the original, colored image. The image on the 

right is the SVD compressed at k=20  
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As seen above, we have created an almost perfect replica of the original gray scale image of the bird. Using 

mathematics we can show that we have created this almost perfect replica using only 7.82% of the original 

image’s memory.   

Let the memory a m × n pixel non-compressed image, Im require = mn 

Im = mn 

However when we apply rank k SVD, we actually apply it on the three matrices, U, Σ, and V.  

 

Let's consider matrix U. Initially, U is an m × m matrix, but we only require its first k columns. This implies that 

U can be condensed into an m × k matrix. We can denote its storage as Um, represented by – 

Um  = mk 

 

Likewise, we're interested in only the initial k rows of matrix VT. Therefore, we can optimize storage by 

condensing V into an n×k matrix, denoted as Vm, simplifying the representation -  

Vm = nk 

 

Finally, as we are retaining solely the initial k columns of U and V, we require only the first k singular values 

from the diagonal matrix Σ. This condensed storage, denoted as Σm, can be represented by –  

Σm = k 

If Am is the total storage of the three orthogonal matrices. It can be represented as -  

Am = Um + Vm + Σm 

Am = mk + nk + k  

Am = k(m + n + 1) 

 

For the example of the bird we’ve taken above,  

 Im = 512 × 512 = 262,144 bytes 

Am = 20(512 + 512 + 1) = 20,500 bytes 

For the example above, the Compression Ratio, which is simply the ratio of the storage of the non-compressed 

image to the storage of the SVD compressed image, comes out to be 12.78 

 

4. Conclusion  

This demonstration of image compression through k-rank SVD highlights the remarkable efficiency of this 

technique. We achieved an almost perfect replica of the original image and through mathematical analysis, 

revealed the substantial reduction in memory usage. This efficiency becomes particularly evident when 

considering the storage requirements of the three orthogonal matrices involved in the SVD process. The total 

storage significantly diminishes compared to the storage needed for the uncompressed image, leading to a 

Compression Ratio of 12.78 for the example of the bird image taken above. 

As technology advances and the demand for high-quality images in various applications continues to rise, the 

role of SVD in image compression becomes even more critical. Its capacity to create compact representations of 

images while retaining essential details makes it indispensable in fields such as medical imaging, satellite 

imagery, and multimedia communication. In essence, this paper underscores the vital role of SVD as a 

transformative tool in image compression. By harnessing the power of SVD, we can pave the way for more 

efficient, accessible, and meaningful handling of visual data, shaping the future landscape of image processing 

and communication. 
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