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Abstract Divergence measures are useful for comparing two probability distributions. Depending on the nature of 

the problem, the different divergences are suitable. So it is always desirable to create a new divergence measure. 

In this work, new information inequalities, corresponding to difference of two generalized f- divergences, are 

obtained and characterized. Secondly, we obtain new divergence measure corresponding to new convex function 

and define the properties. Further, bounds of new divergence in terms of other standard divergences are evaluated. 

Comparison of this divergence with others is done as well.  
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Csiszar’s f- divergence [1] is a generalized information divergence measure, which is given by (1.1), i.e.,  
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Similarly (Jain and Saraswat [5]) introduced a generalized measure of information given by 
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Where f: (0,)  R (set of real no.) is real, continuous and convex function and 

   1 2 3 1 2 3, , ..., , , , ...,n nP p p p p Q q q q q  ∈ Γn, where ip  and iq  are probability mass functions. Many 

known divergences can be obtained from these generalized measures by suitably defining the convex function f. 

Some of those are as follows. 
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We can see that      , 2 , ,RJ P Q F Q P G Q P    ,    , 2 1 ,P Q W P Q     and 
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 is Harmonic mean divergence. Divergences 

from (1.4) to (1.7) are non- symmetric and (1.8), (1.9) are symmetric, with respect to probability distribution P, Q  

Γn. (1.4) and (1.9) are also known as Pearson divergence and Jeffreys- Kullback- Leibler divergence, respectively.  

Beside these, Symmetric Chi- square divergence [4] can be written as the sum of Chi- square divergence and its 

adjoint, i.e., 
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New Information Inequalities 

 

In this section, we introduce new information inequalities on difference of two generalized f- divergences. Such 

inequalities are for instance needed in order to calculate the relative efficiency of two divergences. 

Theorem 2.1 Let 1, 2 :f f I R R  be two convex and normalized functions, i.e.    1 21 1 0f f   and 

suppose the assumptions: 

a. 1 2f and f are twice differentiable on (α, β) where 0 1 ,        . 

b. There exists the real constants m, M such that m < M and 
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If , nP Q , then we have the inequalities, 
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Where    , , ,f fE P Q S P Q are given by (1.2) and (1.3) respectively.  

Proof: Let us consider two functions  

     1 2mF t f t mf t   ,                                                                                                    (2.3) 

and  

     2 1MF t Mf t f t  .                                                                                                                       (2.4) 

Where “m” and “M” are the minimum and maximum values of the function 
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Since        1 21 1 0 1 1 0m Mf f F F     ,                                                                                              (2.5) 

and the functions  1f t  and  2f t  are twice differentiable. Then in view of (2.1), we have  
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In view (2.5), (2.6) and (2.7), we can say that the functions  mF t  and  MF t  are normalized and convex on (α, 

β). 

Now, with the help of linearity property, we have, 
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Since    , ,f fE P Q S P Q  from [5], therefore (2.8) and (2.9) can be written as the followings. 
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(2.10) and (2.11), together give the result (2.2). 
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In this section, we obtain new divergence measure for new convex function; further define the properties of new 

convex function and new divergence. Firstly, 

Let  : 0,f R  be a function defined as 
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and  
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Properties of function defined by (3.1), are as follows.

  

a. Since    1 11 0f f t   is a normalized function.  

b. Since      1 10 0,f t t f t      is a convex function as well. 

c. Since  1 0f t  at  0,1 and  1 0f t  at    11, f t  is monotonically decreasing in  0,1 and 

monotonically increasing in  1, and    1 11 0, 1 8 0f f    . 

d.  

 

 

 

      

          

 

 

Figure 3.1: Convex function  1f t  

Now put  1f t and  1f t  in (1.3) and (1.2) respectively, we get the following new divergence measure, 
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Properties of new divergence measure defined in (3.3), are as follows.

 

a.  * ,S P Q is convex and non- negative in the pair of probability distribution  , n nP Q   . 
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c. Since    * *, ,S P Q S Q P   * ,S P Q is non- symmetric divergence measure. 

 

 

 

Application of New Information Inequalities 

 

In this section, we obtain bounds of new divergence measure (3.3) by using new inequalities defined in (2.2), in 

terms of standard divergences. 

Proposition 4.1 Let      2 , , , , ,RP Q J P Q J P Q  and  * ,S P Q  be defined as in (1.4), (1.6), (1.9) and 

(3.3) respectively. For P, QΓn, we have 

a. If 0 0.65  , then 
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b. If 0.65 1   , then 
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Proof: Let us consider 

         
 

2 2 2

1
1 log , 0, , 1 0, log

t
f t t t t f f t t

t


        and  

 2 2

1 t
f t

t


  .                                                                                                                                           (4.3) 

Since  2 0f t  ∀ 0t  and  2 1 0f  , so  2f t  is convex and normalized function respectively. Now, 

Put  2f t  in (1.3) and  2f t  in (1.2), we get the followings. 
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Now, let  
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, where    1 2f t and f t  are given by (3.2) and (4.3) respectively. 
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If   0 0.649793 0.65g t t    
.
 

It is clear that g (t) is decreasing in (0, 0.65] and increasing in (0.65,). 

Also g (t) has a minimum value at t=0.65, because  0.65 23.0035 0g   . Now, 

a. If 0 0.65  , then 
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b. If 0.65 1  , then 
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The results (4.1) and (4.2) are obtained by using (3.3), (4.4), (4.5), (4.6), (4.7), (4.8) and (4.9) in (2.2). 

Proposition 4.2 Let    2 , , ,P Q F P Q  and  * ,S P Q  be defined as in (1.4), (1.5) and (3.3) respectively. For 

P, QΓn, we have 

a. If 0 0.58  , then 
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b. If 0.58 1   , then 
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Proof: Let us consider 
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Since  2 0f t  ∀ 0t  and  2 1 0f  , so  2f t  is convex and normalized function respectively. Now, 

Put  2f t  in (1.3) and  2f t  in (1.2), we get the followings. 
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Now, let  
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, where    1 2f t and f t  are given by (3.2) and (4.12) respectively. 
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It is clear that g (t) is decreasing in (0, 0.58] and increasing in (0.58,). 

Also g (t) has a minimum value at t=0.58, because  0.58 41.38 0g   . Now, 

a. If 0 0.58  , then 
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The results (4.10) and (4.11) are obtained by using (3.3), (4.13), (4.14), (4.15), (4.16), (4.17) and (4.18) in (2.2). 

Proposition 4.3 Let    , , ,G P Q J P Q  and  * ,S P Q  be defined as in (1.7), (1.9) and (3.3) respectively. For 

P, QΓn, we have 

a. If 0 0.76  , then 
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       2 2 2log , 0, , 1 0, 1 logf t t t t f f t t     
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Since  2 0f t  ∀ 0t  and  2 1 0f  , so  2f t  is convex and normalized function respectively. Now, 

Put  2f t  in (1.3) and  2f t  in (1.2), we get the followings. 
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Now, let  
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It is clear that g (t) is decreasing in (0, 0.76] and increasing in (0.76,). 

Also g (t) has a minimum value at t=0.76, because  0.76 47.96 0g   . Now, 

a. If 0 0.76  , then 
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b. If 0.76 1  , then 
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The results (4.19) and (4.20) are obtained by using (3.3), (4.22), (4.23), (4.24), (4.25), (4.26) and (4.27) in (2.2). 

Proposition 4.4 Let    2 , , ,P Q P Q   and  * ,S P Q  be defined as in (1.4), (1.8) and (3.3) respectively. For 

P, QΓn, we have 
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Proof: Let us consider 
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Since  2 0f t  ∀ 0t  and  2 1 0f  , so  2f t  is convex and normalized function respectively. Now, 

Put  2f t  in (1.3) and  2f t  in (1.2), we get the followings. 
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It is clear that g (t) is increasing in  0, , so 
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The result (4.28) is obtained by using (3.3), (4.30), (4.31), (4.32) and (4.33) in (2.2). 

  

 

Figure 4.1 shows the behavior of          * 2, , , , , , , ,S P Q P Q J P Q P Q and P Q  . We have 

considered    ,1 , 1 ,i ip a a q a a    , where  0,1a . It is clear from figure that the new 

divergence  * ,S P Q has a steeper slope than        2 , , , , , ,P Q J P Q P Q and P Q  .
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