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Abstract From back surface illuminated silicon solar remained under temperature and external magnetic field, 

new expressions of back surface recombination velocity of excess minority carriers in the base are expressed 

dependent of both, the thickness and the diffusion coefficient. This later parameter is in relationship with both, 

the temperature and the applied magnetic field that express, Umklapt and Lorentz physical phenomena that take 

place in the base of silicon solar cell. The plot of back surface recombination velocity expressions for given 

diffusion coefficient, as a function of thickness, yields intercept point, that gives the optimum thickness of the 

base of the solar cell to be manufactured. 

 

Keywords Silicon solar cell-Umklapt and Lorentz processes- Diffusion coefficient- Surface recombination 

velocity-base thickness 

Introduction 

Measurement of both diffusion and mobility coefficients of excess minority carrier goes through spectroscopic 

techniques [1-4] and current or voltage responses measurement of material or solar cell under specific 

theoretical and experimental conditions [5-6]. Mathematical correlations are established between the diffusion 

coefficient and: 

a) the doping rate of the emetter and the base [7-9] 

b) the operating temperature [10,11] 

c) frequency of electrical or light excitation [12,13], with magnetic superimposed [14,15] 

d) the magnetic or electrical field [16-19] 

e) the excess minority carrier recombination velocity at junction surfaces (n/p, n 
+
/ p, p / p 

+
), grain boundaries, 

grain size and structures dimensions [20-27] 

f) Irradiation parameters (flux and intensity) [28-34] by charged particles on the solar cell  

From the diffusion coefficient, these different parameters influence minority carrier recombination velocity in 

volume and surfaces [35; 36] of the solar cell. 

The current and voltage responses of the solar cell, under these different conditions, are studied as a function of 

the minority carrier recombination velocity in order to evaluate the quality of the solar cells. 
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In this work, the minority carriers recombination velocity in volume, () at the emitter-base junction (Sf) and at 

the back surface (Sb) are studied to determine, optimum thickness (H) bifacial silicon solar cell to the   

illuminated by the rear face. That leading to the optimum short-circuit current, as a function of the temperature 

T and the magnetic field B, inducing the diffusion coefficient (D (B , T)) [37]. 

 

2. Theory 

2.1. Bifacial silicon solar cell 

figure 1 represents a n
+
-p-p

+
 bifacial silicon solar cell type and under polychromatic illumination [35,36], by 

back side (p
+
), through the collector gates. The space charge region, (in x = 0) constitutes the junction (n

+
-p), 

allowing the separation of photogenerated electron-hole pairs, subjected to a junction recombination velocity 

(Sf) [20-23]. The back surface corresponds to a zone of higher doping rate (p
+
), in x = H, and produces an 

electric field (Back surface Field), which allows the return of the minority carriers towards the junction, and 

minimizes the recombination velocity (Sb) in this rear face [19, 6, 20]. Metal grids are placed on the back (p
+
) 

and allow illumination by the rear face. 
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Figure 1: Back side illuminated n

+
-p-p

+
 silicon Solar cell, under both the magnetic field and the temperature 

When the solar cell is under illumination, the minority carrier density δ(x) photogenerated  for a low injection in 

the base, is governed by the following equation

 

                                                                                  (1) 

 

 and D are, respectively, the lifetime and the diffusion coefficient of the minority carrier  in the base, connected 

by the relation of Einstein 

L
2
(B,T) = D(B,T)*                                                                                                          (2) 

with L(B,T)the diffusion length of the minority carrier which depends on both, the magnetic field and the 

temperature. The diffusion coefficient of the excess minority carrier is related to the magnetic field and the 

temperature by the following relations [10; 37]: 

𝐷 𝐵,𝑇 =
𝐷(𝑇)

1+(𝜇 𝑇 ∗𝐵)
     

𝐷 𝑇 = 𝜇 𝑇 .
𝑘𝑏 .𝑇

𝑞
(4)

The minority carrier mobility coefficient with temperature is given by [10]: 

𝜇 𝑇 = 1.43 ∗ 109𝑇−2.42cm
2
V

-1
.s

-1
                                                                                          (5) 

T is the temperature of the solar cell, kb = 1.43 10-23m
2
 kg.s

-2
.K

-1
 is the Boltzmann constant and q is the 

elementary charge. D (B, T) is therefore the result of the coexistence of the Umklapt and Lorentz processes, 

describing respectively the thermal agitation and the deflection of the minority charge carriers [37]. 

x) the excess minority carrier density of photogenerated in the illuminated base by the (p +) face, is produced 

by the generation rate [36, 38], expressed by the following equation: 

   
 xG

x

x

x
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𝐺 𝑥 =  𝑎𝑖 . 𝑒
−𝑏𝑖(𝐻−𝑥)3

𝑖=1         

(6)

 

Where, ai and bi are coefficients obtained from the modeling of the radiation under A.M1.5 

The expression of the excess minority carrier’s density at point x in the base is given by the resolution of the 

continuity equation and is written by: 

𝛿 𝑥,𝐵,𝑇 = 𝐴 𝐵,𝑇 . cosh  
𝑥

𝐿(𝐷)
 + 𝐶 𝐵,𝑇 . sinh  

𝑥

𝐿(𝐷)
 +  𝐾𝑖(𝐵,𝑇). 𝑒

−𝑏𝑖(𝐻−𝑥)3
𝑖=1  (7) 

Where : 𝐾𝑖(𝐵,𝑇) =
𝑎𝑖 .𝐿(𝐵,𝑇)

2(𝐵 ,𝑇)

𝐷(𝐵,𝑇) 1−(𝐿 𝐵,𝑇 .𝑏𝑖)
2 

      (8) 

A(B,T) and C(B,T) are coefficients deduced using boundary conditions of the base. They respectively introduce 

the junction recombination velocity (Sf) and at the back surface (Sb) of the excess minority  carrier. 

 At the junction x = 0 (SCR) 

 𝜕𝛿  𝑥 ,𝐵,𝑇 

𝜕𝑥
 
𝑥=0

= 𝑆𝑓 ∗ 𝛿 𝑥 = 0,𝐵,𝑇                                                                                          (9) 

Sf indicates the minority carrier velocity of passage  across the junction. This  minority carrier velocity of 

passage  is imposed by the resistance of the external charge of the solar cell which indicates the operating point 

[20-23]. Thus, the minority carriers that are not collected and  not crossing the external load, constitute the 

losses, and are therefore linked to the electrical model through the shunt resistance [31, 39]. The velocity is 

associated with the concept of the intrinsic  recombination velocity, defining the solar cell under open circuit 

condition [21]. 

 At the back surface (x=H) 

 𝜕𝛿  𝑥 ,𝐵,𝑇 

𝜕𝑥
 
𝑥=𝐻

= −𝑆𝑏 ∗ 𝛿 𝑥 = 𝐻,𝐵,𝑇                                                                                       (10) 

Sb is the excess minority carrier recombination velocity at the rear face [19, 6, 20], at x = H, where there is a 

rear electric field (p/p
+
i.e. low-high junction), which returns electric charges towards the junction (SCR). At this 

surface where there is a potential barrier, the minority carriers can cross this junction p / p + [19]. 

 

2.2. Results and Discussions 

2.2.1. Photocurrent Density 

The expression of the photocurrent density is given by the following equation: 

 𝐽𝑝ℎ 𝑆𝑓,𝐵,𝑇,𝐻 = 𝑞𝐷(𝐵,𝑇) ∗
𝜕𝛿  𝑥 ,𝐵,𝑇 

𝜕𝑥
 
𝑥=0

= 𝑞𝐷(𝐵,𝑇)  
𝐶 𝐵,𝑇 

𝐿 𝐵,𝑇 , 
−  𝑏𝑖𝐾𝑖(𝐵,𝑇)

3
𝑖=1                    (11) 

FIG. 2 gives the profile of the photocurrent density as a function of minority carrier recombination velocity at 

the junction for different depth values H of the base. At large values of SF (> 10
5
 cm / s), the short-circuit 

current, represented by the plates, decreasing with thickness: reduction of Lorentz forces with thickness. 

 
Figure 2: Photocurrent density as a function of the junction recombination velocity for different thicknesses H, 

B=10
-3.45

Tesla ; T=276K ; D=30.23cm²/s 
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Figures 3 and 4 represents the calibration curves of the photocurrent density as a function of the minority carrier 

recombination velocity at the junction. The bifacial silicon  solar cell of thickness H is placed under magnetic 

field and temperature, leading to the D values of the minority carrier diffusion coefficient [25, 37], and for 

recombination velocity respectively Sb1 and Sb2 [21, 22]. 

 
Figure 3: Photocurrent Density versus junction recombination velocity for different values of the magnetic field 

and the temperature, H=0.02 cm 

 
Figure 4: Photocurrent density versus junction recombination velocity for different values of magnetic field and 

temperature H=0.02 cm 
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4
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5
cm/s, depending on the diffusion coefficient (D), the photocurrent density is 

increasing. 

Beyond 10
5
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This short circuit density decreases with D, therefore with increasing thermal agitation and magnetic field 

(reduction of Lorentz forces). In the case where Sb2 (Figure 3) is smaller than Sb1 (Figure 4), this produces 

much larger short-circuit photocurrent densities (Jsc2 of Figure 3 is larger than Jsc1 in Figure 4) regardless of 

the values of T and B. 

 

2.2.2. Back Surface Recombination Velocity Sb(B, T) 

Figures 2, 3 and 4 has showed a tray regardless of, D, H, and n, thus the derivative of the expression of the 

photocurrent density relative to the junction recombination velocity Sf, is zero [10; 13; 17, 26]: 
𝜕𝐽𝑝 ℎ(𝑆𝑓 ,𝐵,𝑇,𝐻)

𝜕𝑆𝑓
= 0         (12) 

The resolution of this equation yields to expressions of back surface recombination velocity Sb1 (bi, H, D) and 

Sb2 (H, D), with D function of B and T: 

𝑆𝑏1 𝐵,𝑇,𝐻 = −
𝐷(𝐵,𝑇)

𝐿(𝐵,𝑇)
∗ tanh 

𝐻

𝐿(𝐵,𝑇)
                                                                                  (13) 

Sb1 (B, T, H) <0, is the minority charge carrier velocity  crossing the junction p / p
+
. It is  the  flux of minority 

carriers towards the (p)   part (FICK law), justifying the potential inducing the electric field on the rear face [6]. 

It represents the intrinsic recombination velocity   of minority  carrier at the p/p
+
 junction. 

𝑆𝑏2 𝐵,𝑇,𝐻 =  
𝐷(𝐵,𝑇)

𝐿(𝐵 ,𝑇)
∗

 sinh  
𝐻

𝐿 𝐵 ,𝑇 
 +𝐿 𝐵,𝑇 ∗𝑏𝑖∗cosh  

𝐻

𝐿(𝐵 ,𝑇)
  𝑒−𝑏𝑖𝐻−𝐿 𝐵 ,𝑇 ∗𝑏𝑖

1− cosh  
𝐻

𝐿(𝐷)
 +𝐿(𝐵,𝑇)𝑏𝑖sinh  

𝐻

𝐿(𝐷)
  𝑒−𝑏𝑖𝐻

3
𝑖=1                            (14) 

Where appears the effect of the absorption of the light in the material through the coefficients (bi) and leads to a 

generation velocity for (bi.H >> 1). Sb1 indicates the velocity of  excess minority  carrier sent back to the 

junction n 
+
/p, to participate in the photocurrent. 

The recombination velocity expressions i.e.  Sb1 and Sb2 give an asymptote under the conditions where H / L 

>> 1, equal to D / L, who represents a diffusion velocity [10 ; 13 ; 26].  

FIG. 3 gives the profile of the recombination velocity at the rear face versus solar cell base thickness, for 

different values (B, T) leading to the diffusion coefficient values of the minority carrier in the base ( table 1). 

 
Figure 5: Back surface recombination velocity Sb1 and Sb2  versussolar cell base thickness  

The intercept point on the plot of the curves Sb1 and Sb2, for each diffusion coefficient, allows to deduce the 

optimum thickness of the base of the bifacial silicon  solar cell, illuminated by the rear face, et sought by other 

authors [40, 41, 42] using macroscopic values of current and voltage.  

Table 1 summarizes the variation of the thickness of the base of the solar cell illuminated by the rear face and 

placed under the conditions (B, T) et leading to the specific values of the diffusion coefficient and the respective 
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short-circuit currents Jsc1 and Jsc2. Jsc1 and Jsc2 values  remain maximum and constant,  corresponding to Sb1 

and Sb2. 

 

Table 1: Values of the thickness H for different diffusion coefficients D (B, T) 

Magnetic field (Tesla) 10
-3.45 

10
-3.36 

10
-3.3

 10
-3.2

 10
-3.1

 

Temperature (K) 276 298 315 347 382 

D(cm²/s) 30.23 26.77 24.69 21.57 18.84 

H(cm).10
-2

 0.44 0.58 0.50 0.48 0.47 

Jsc1(A/cm
2
)

 
0.028 0.028 0.027 0.027 0.027 

Jsc2(A/cm
2
).10

-3
 5.36 5.26 5.15 5.28 5.29 

Sb1(cm/s) 217.831 246.181 283.589 235.816 230.513 

Sb2(cm/s).10
2 

2650 21730 19860 17550 15360 

Figure 6 gives the required thickness of the base of the solar cell manufactured for each case of the diffusion 

coefficient. 

 
Figure 6: Depth H as a function of diffusion coefficient D. 

The correlation between the diffusion coefficient and the optimum thickness of the base is established for 18 

cm
2
/s < D <35 cm

2
/s, as: 

H cm =  −0.2𝐷2  
𝑐𝑚2

𝑠
 + 13𝐷(

𝑐𝑚2

𝑠
)− 149 10−4                                                            (15) 

It makes it possible to manufacture the bifacial solar cell with a thickness H of the base, illuminated by the rear 

face, maintained under the conditions of a magnetic field B and at the temperature T. It  leads to a  minority 

carrier diffusion coefficient  D(B,T), who results from the coexistence of the Umklapt and Lorentz processes, 

respectively due to the thermal agitation and the deflection of the minority charge carriers. 

 

3. Conclusion 

In this work, a technique of the intersection of back surface recombination velocity is proposed for the 

determination of the optimum thickness of the base of the bifacial solar cell illuminated by the rear face et 

submitted to temperature and magnetic field variation. The calibration curves of the photocurrent as a function 

of the excess minority carrier recombination velocity at the junction, are produced under: 

i) different thicknesses H of the base 

ii) different values (Sb1 and Sb2) of the minority carrier recombination velocity to the rear face of the base 

iii) different diffusion coefficients, Dmax (T, B) obtained at the resonance points of the D (T) curves while B is 

kept constant, lead to recombination velocity obtained in the rear face, depending on both, the thickness and the 

diffusion coefficient D(B, T) of the minority  carrier in the base.  
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The study of the profile of the minority carrier recombination velocity at the rear face, through the two 

expressions obtained, made it possible to establish the optimum thickness of the base under magnetic field B, 

associated with the optimum temperature, leading to an optimum short-circuit  current, through a mathematical 

correlation. 
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