
Available online www.jsaer.com

Journal of Scientific and Engineering Research

247

Journal of Scientific and Engineering Research, 2020, 7(2):247-256

Research Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Translating GRAFCET Charts into C++ Code for Embedded Control

Applications

Médésu Sogbohossou*, Clément Hounkpevi

Laboratoired’Électrotechnique, de Télécommunications et d’Informatique Appliquée (LETIA), École

Polytechniqued’ Abomey-Calavi (EPAC), UAC, 01 BP 2009 Cotonou, Benin

*Corresponding author: E-mail: medesu.sogbohossou@epac.uac.bj

Abstract For the implementation of an embedded application, the specification phase of the system allows it to

be validated. A GRAFCET chart (IEC 60848) may be the modelling language for this kind of systems. This

paper introduces the translation of GRAFCET chart into a code for embedded platforms in order to perform

control applications. Here, GRAFCET charts are edited with Jgrafchart software, which returns a XML file that

is used to translate useful information of the chart into code in C++ language, particularly for mbed

microcontrollers. The notable elements of GRAFCET that we consider are steps (and their corresponding

actions), transitions, variables and especially elements that take into account the hierarchical aspect in

GRAFCET such as macro-steps and enclosing steps.

Keywords GRAFCET (IEC 60848), code generation, control applications, mbed platform, Jgrafchart

1. Introduction

A good design of a complex, reliable and scalable computer system requires the use of a development cycle

model. Thus, a specification phase must precede the detailed design and development phases. The specification

phase allows for the description of the system to be conceived by formal abstractions enabling the verification of

the expected properties (via simulations, mathematical proofs, model-checking...) [1]: this offers some guarantee

of proper functioning before the implementation of a critical application. Many researchers try to meet this

requirement. For instance, M. Samek [2] uses UML State- charts as the specification language and develops

tools for automatic code generation for embedded platforms. More recently, the work in [3] presents a tool

(named PN2A) for the translation of time Petri net models into compilable code under Arduino; however,

hierarchical modelling which is essential for complex systems is not taken into account.

In the domain of control applications, the GRAFCET

standard [4] (Acronym in French: GRAphe Fonctionnel de

Commande Etape Transition) is a semi-formal specification language for the functional description of the

behaviour of the sequential part of a system. It is comparable to SFC

standard [5] (Sequential Function Charts)

intended to implement a system for Programmable Logic Controller (PLC). The main difference between the

two standards is about how computing an evolution. GRAFCET standard is event-driven: every input change

starts a sequence of transition firings until a stable situation is reached, before another input change. Whereas

SFC standard is clock-driven: all inputs of the PLC are scanned at every tick and then may cause only one set of

simultaneous firings; but several interpretations are conceivable about when updating variables. Many works

(such as [6]) are interested in generating code from the SFC implementation language for PLC. The advantages

of the GRAFCET standard are to be more formally defined than SFC, and to allow different levels of modelling

(of growing complexity) before the implementation: a system may be formally validated by model-checking on

Sogbohossou M & Hounkpevi C Journal of Scientific and Engineering Research, 2020, 7(2):1-7

Journal of Scientific and Engineering Research

248

these gradual models [7, 8]. This standard is also less specific to PLC issue. It can also be used to implement

control applications as well as the SFC standard.

In our context, the only known similar and more recent work is about C-code implementation from GRAFCET

and concerns the reference [9]: a compiler (called GeCé) implements the methodology presented by the authors.

Apart from the fact that the detailed algorithms used in the process of translating a grafcet into C-code are not

presented, some shortcomings need to be noted, such as: the hierarchical concept of enclosures and macro-steps

is not taken into account in [9], and evaluating transition conditions (called receptivities) only at the beginning

of an iterated evolution is not strictly in accordance with the standard in case of edge variables. In the sequel, we

propose more detailed algorithms and method of translation, and we take into account enclosures and macro-

steps.

Among the modern platforms for the development of embedded systems, mbed is one of the most widespread

[10]: mbed includes a real-time operating system (OS) called mbed OS. The software JGrafchart [11, 12] is a

graphical GRAFCET chart editor (even if not completely dedicated to the GRAFCET standard) for

implementation of sequential and control applications which produces a XML file. It is used here since an editor

completely in conformity with the GRAFCET standard seems to not exist. The present work proposes a method

to conceive a control application for an mbed platform from a GRAFCET chart (denoted grafcet in short) that

describes the operations of this application. C++ code is produced for mbed from a grafcet edited under

JGrafchart.

The next section of this paper presents a summary about GRAFCET and JGrafchart. In Section 3 is proposed the

translation of elements of GRAFCET language into C++ code. Section 4 shows an application. Finally, Section

5 presents a summary of the results and formulates some perspectives.

2. Reminders

2.1. GRAFCET elements

A grafcet [4] is composed with three kinds of graphic elements: steps, transitions, and directed links.

A step models the state of the system. The set of active steps at a given moment constitutes the situation and the

associated actions are executed. There are several types of steps, namely macro-steps, enclosing steps and

ordinary steps. Moreover, a step may be initial or not except the case of a macro-step. The actions associated

with a step are often actuator controls (motors, jacks). They can also be commands of auxiliary functions of

automaton (counter, delay ...). We distinguish several types of actions such as continuous actions, conditional

actions and stored actions:

 continuous action: It is executed if the related step is really active. A conditional action gets a logical

proposition, called assignment condition, which can be true or false and can condition a continuous

action;

 stored action: It makes it possible to assign a determined value to a variable. Different kinds of stored

actions are distinguished: action on activation, action on deactivation, action on the clearing, and action

on event.

A transition controls the move from one step to another, through the transition condition associated with this

transition. The transition condition associated with a transition is a logical condition or an event. A logical

condition is a boolean function of external variables and internal variables. An internal variable is related to the

activations of the steps. An external variable is information coming from a sensor, a push button or an external

system.

2.2. GRAFCET interpretation

Algorithm 1 [7] shows how a GRAFCET specification evolves from one situation to the next. At the line 1,

actions on activation are done. After this, the loop (lines 2-15) is executed: at each iteration of the loop, all the

transition conditions are evaluated at line 3 and the fireable transitions are computed. Then, at line 5, it is

checked if exists at least one fireable transition and if applicable, these transitions are fired (line 6) and stored

actions of the following steps are done (line 7). But if there is no fireable transition, the conditions of continuous

actions are evaluated and these actions are executed if related condition is true.

Sogbohossou M & Hounkpevi C Journal of Scientific and Engineering Research, 2020, 7(2):1-7

Journal of Scientific and Engineering Research

249

1 Do the Stored Action on activation of the initial steps;
2 while True do
3 Evaluate condition of transitions;
4 Compute the set of fireable transitions;
5 if Exists a nonempty set of fireable transition then

6 Fire the transitions of the set (as one stage);
7 Do the Stored Actions;
8 else

9 Evaluate conditions of a Continuous Actions;
10 Set the Output allowed by the valid Continuous Action (and Reset the others);
11 Start or Restart the required clocks for the timed variables;
12 Wait for the occurence of some external event;
13 Get and latch all timer clocks;
14 end

15 end

Algorithm 1. Execution scheme of a grafcet

2.3. Editing GRAFCET charts with JGrafchart

It should be noted that no public tool is currently available to edit the grafcets; for instance in the work [9], no

tool (even used privately) is shown up.

JGrafchart software is based on the specific GRAFCHART language: GRAFCHART is derived from several

languages, including GRAFCET, SFC, Petri Net. In terms of similarity with GRAFCET, they have some

common elements: the steps and the related actions, the transitions and the related conditions, the directed links,

the AND divergences, the AND convergences, the variables. But, there are many GRAFCET elements that are

not taken into account by JGrafchart: for instance, the semantics of enclosing steps is different from JGrafchart

elements such as Procedure steps or Process steps. Nethertheless, we limit ourselves to a syntactic point of view

to represent an enclosing step with JGrafchart.

A Procedure in JGrafchart (symbolized by a lonely rectangle) represents a partial grafcet. Here, an enclosing

step is represented by a Process step with a corresponding Procedure. Each of the enclosures of the enclosing

step is represented by an isolated macro-step (different from the common use of an ordinary macro-step)

contained in the Procedure related to this enclosing step. And the sub-workspace of each such isolated macro-

step contains the grafcet describing the intended enclosure.

3. Translation of GRAFCET elements for the mbed platform

The main elements of the GRAFCET language that we translate are variables, steps, transitions, transition

conditions, actions, partial GRAFCET specifications (or partial grafcets) and, finally, the main process. There

are three types of partial GRAFCET specifications: an ordinary partial grafcet, an expansion and an enclosure.

3.1. Variables

We define two types of variables including input/output variables and simple variables. The input/output

variables are distinguished from the simple variables under JGrafchart by the fact that they are linked to the

ports of the related microcontroller.

Figures 1, 2 and 3 present the representation in Jgrafchart and the translation into C++ code respectively of a

digital input/output variable, an anolog input/output variable and a simple variable.

Figure 1: Digital input/output Variable Figure 2: Analog input/output Variable

Sogbohossou M & Hounkpevi C Journal of Scientific and Engineering Research, 2020, 7(2):1-7

Journal of Scientific and Engineering Research

250

Figure 3: Simple Variable

3.2. Step

A step is considered as an object having some attributes namely : its types (ordinary or not, initial step, star step,

input step or output step), its previous and current states, the real-time duration of activation of the step in order

to possibly manage the timers linked to it, and an identifier. In addition to these attributes, a macro-step has a

special state to allow the transitions that follow it to see it activated after the activation of the output step

contained in its expansion. The Getter and Setter methods are used to manipulate these different attributes.

3.3. Transition

Just like a step, a transition is an object that has the following attributes: an identifier, the list of steps that follow

this transition, the type of transition condition (either it is timed or not), the list of steps preceding this transition,

a boolean variable of its validity and his fireability variable. Here again, Getter and Setter methods as well as

other useful methods are used to manipulate the attributes mentioned above.

3.4. The condition of a transition

A transition condition is represented by a boolean function that returns the value "True" if the transition

condition is true and "False" if the transition condition is false. The function is called each time one needs to test

the transition condition. Moreover, it should be noted that transition conditions with delay are taken into account

directly by the related transitions. Indeed, the time and the delay step are recorded as an attribute of the related

transition. We present at Fig. 4 the translation of a transition condition into C++ code.

Figure 4: Representation of a transition condition

Here, the word "Wording" is used to name the transition condition.

3.5. Action

An action (Fig. 5) is a function that is executed by a process. When, it is a Continuous Action, it is the main

process main (cf. Annex A.4) which executes the function when the grafcet is in the stable situation (no fireable

transition). But in the case of Stored Action, it is the process that supports the partial grafcet (cf. Annexes A.1,

A.2 and A.3) containing the step related to the action which takes this action in charge.

Figure 5: Representation of Actions

3.6. Partial grafcet

A partial grafcet is represented by a process (use of threads with mbed) that will execute a function related to

this partial grafcet. The structure of this function depends on the type of partial grafcet (expansion for a macro-

step, enclosure for an enclosing step, and the ordinary partial grafcet). A main process of the program is

responsible for managing the global stability of the grafcet (checking stability and execution continuous and

conditional actions) and synchronizing other processes that execute partial grafcets.

Ordinary partial grafcet: It is a partial grafcet of which related function has a structure presented in the Annex

A.3. This function will also be executed by a process.

Sogbohossou M & Hounkpevi C Journal of Scientific and Engineering Research, 2020, 7(2):1-7

Journal of Scientific and Engineering Research

251

Expansion: It is a partial grafcet of which related function has a structure presented in Annex A.1.

Enclosure: Enclosure is a partial grafcet of which related function has a structure presented in Annex A.2.

In the cases of expansion and enclosure, the functions called in the algorithms are methods related to the

processes.

3.7. Main function

The content of the main function that will be executed is detailed in Annex A.4. VariableOrder is actually linked

individually to each of the created processes other than the main one. In other words, these variables help to

synchronize processes. We also preferred to consider some variables as global (but with no mutex problem) to

allow easy access to these variables for all processes. These include tables of steps and transitions.

In addition, we have created a process to update information about the transition conditions. The function that

will be executed by this process has a structure that looks like Annex A.5.

Fig. 10 in Annex B represent the class diagram of C++ codes for mbed platform obtained after translations.

4. Case study

In this section, we present a small application: a day/night sensor (by using an LDR). The display of current

information was provided by a terminal using the serial port of the mbed card. It serves as visualization interface

between the module and the user. Fig. 6 and 7 represent an overall view of the grafcet realized under Jgrafchart

for this application.

Figure 6: Grafcet application Figure 7: Expansion of the macro-step S3

For the step S1 at Fig. 6, we acquire the information through the Port p17 of the microcontroller LPC1768. After

this, we check the value of the information in comparison with a threshold value that has been obtained by

experimentation. And finally, we take a decision at steps S3 or S4 according to the value of information before

restarting the process. We should notice that at the steps S1, S3 and S4, a timing of 1 second is done, but this

syntax is specific to Jgrafchart.

The macro-step S3 specifies how an LED can be commanded according to the state of the sensor.

Finally, the C++ code for mbed platform obtained for this application counts less than 600 lines, and the

resulting .bin file size for LPC1768 is 70.2 kB. Fig. 8 and 9 respectively show the circuit of the application and

the terminal.

Figure 8. Board Circuit of the application Figure 9: Display terminal

Sogbohossou M & Hounkpevi C Journal of Scientific and Engineering Research, 2020, 7(2):1-7

Journal of Scientific and Engineering Research

252

5. Conclusion

This article presents a tool for the translation of grafcets into compilable C++ code, especially for the mbed

platform. We first looked for a way to represent a maximum number of elements of grafcets with the editing

software JGrafchart which is just partially a grafcet editor. Subsequently, from the JGrafchart XML file of the

grafcet and through a java program, we implement a method of translating the chart into a C++ code, compilable

under mbed platform.

Although using GRAFCET charts (or any automata-based method) as an implementation tool increases the code

size of an application, the advantages are to greatly reduce the programming and debugging stage, and to

increase flexibility in the application design, without really impairing the system performance.

There are many perspectives. Firstly, translation of GRAFCET elements that we have not taken into account in

this work such as forcing, actions on events, action on the clearing shoud be considered. It is also necessary to

think about a development of a software which will fully support the GRAFCET standard. This software will

allow editing of a GRAFCET chart (similarily to the project of S. G. Crespo [13] seeming largely unfinished) as

well as the automatic generation of C++ code for the embedded platforms. A simulation of the application (like

with JGrafchart) before code generation will also be a functionality. Secondly, the adaptation to others platforms

(such as Arduino or FreeRTOS) other than mbed may be considered easily. Finally, the formal consistency of

the proposed algorithms, based on a formal grammar of the grafcets to define, should be provided.

References

[1]. E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model checking. MIT Press, Cambridge, MA, USA,

1999.

[2]. M. Samek. Practical UML Statecharts in C/C++, Second Edition: Event-Driven Programming for

Embedded Systems. Newnes, Newton, MA, USA, 2
nd

 edition, 2008.

[3]. M. Comlan, D. Delfieu, M. Sogbohossou, and A. Vianou. Embedding Time Petri nets. International

Conference on Control, Decision and Information Technologies (CoDIT’17), Barcelona, Spain, 2017.

[4]. IEC 60848. Grafcet specification language for sequential function charts. Technical report,

International Electrotechnical Commission, 2013.

[5]. IEC 61131-3. Programmable controllers - part 3: Programming languages. Technical report,

International Electrotechnical Commission, 2013.

[6]. R. Julius, M. Schürenberg, F. Schumacher, and A. Fay. Transformation of grafcet to PLC code

including hierarchical structures. Control Engineering Practice, 64:173 – 194, 2017.

[7]. M. Sogbohossou and A. Vianou. Formal Modeling of Grafcets with Time Petri Nets. IEEE

Transactions on Control Systems Technology, 2015.

[8]. M. Sogbohossou, R. Yehouessi, T. Djara, T. Aballo, and A. Vianou. SE-LTL Model-checking on

Timed GRAFCETS via ε-TPN. Current Journal of Applied Science and Technology, 38(6), 1-12, Dec.

2019.

[9]. O. Bayo, J. Rafecas, O. Gomis-Bellmunt, and J. Bergas. A grafcet-compiler methodology for c-

programmed microcontrollers. Assembly automation, 28(1):55–60, Jan 2008.

[10]. mbed. https://www.mbed.com

[11]. JGrafchart, http://www.control.lth.se/Research/tools/grafchart.html

[12]. C. Johnsson and K.-E. Årzén. GRAFCHART and GRAFCET: A comparison between two graphical

languages aimed for sequential control applications, Lund, 1999.

[13]. S. G. Crespo. Graphic GRAFCET diagram editor based on GeCé, Master in Information Technology-

MTI, Universitat Politècnica de Catalunya, 2011

Sogbohossou M & Hounkpevi C Journal of Scientific and Engineering Research, 2020, 7(2):1-7

Journal of Scientific and Engineering Research

253

A. The different algorithms

A.1. Expansion

Algorithm 2 executes the grafcet of an expansion

A.2. Enclosure

Algorithm 3 executes the grafcet of an enclosure.

Algorithm 3. Enclosure Algorithm

end

end

Call DeactiverSteps;

Variable Order⇐= False;

end

whileEnclosing Step associated is activated do if Variable

Order has a value "True" then

if Variable Stability has a value "False" then

Call ComputeTransition;

If Exists Fireable Transitions then Call

ComputeNextSituation; for Each New

Activated Step do

Call Actions onActivation;

end

forEach New Deactivated Stepdo

Call Actions onDeactivation;

end

end

end

Variab le Order⇐= False;

If Enclosing Step associated is activated then

Call Initialization of Situation;

For Each New Activated Step do

Call Actions onActivation;

end

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1 while True do

Algorithm 2. Expansion Algorithm

end

end

Call DeactiverSteps;

Variable Order⇐= False;

end

While Test End Expansion returns "False" do if

Variable Order has a value "True" then

If Variable Stability has a value "False" then

Call ComputeTransition;

If Exists Fireable Transitions then Call

Compute Next Situation; for Each New

Activated Step do

Call Actions on Activation;

end

forEach New Deactivated Stepdo

Call Actions onDeactivation;

end

end

end

Variable Order⇐= False;

If Macro-step associated is activated and following transitions are not validated then

Activate the Enter Step of the expansion; Execute Actions on

activation of this Enter Step;

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25 end

1 while True do

Sogbohossou M & Hounkpevi C Journal of Scientific and Engineering Research, 2020, 7(2):1-7

Journal of Scientific and Engineering Research

254

A.3. Ordinary partial grafcet

Algorithm 4 executes an ordinary partial grafcet (i.e. which is not an expansion or an enclosure).

A.4. Main process

Algorithm 5 executes the main thread which controls all the threads executing the partial grafcets.

Algorithm 5. Main Process Algorithm

Call Test Stability() if Variable Stability has a value "True" then

Execute Continue and Conditionnal Actions;

end

Put back all variables VariableOrder at a value "True";

end

Do Nothing; 4

5

6

7

8

9

10 end

1 Create and Start all process;
2 while True do
3 while All variables Variable Orderd on ’thaveavalue "False" do

7 end

6 Variable Stability⇐=False;

5 else

4 Variable Stability⇐=True;

1 Function Test Stability
2 Variable VariableStability: Boolean;
3 If There is no Fireable Transition then

Algorithm 4. Ordinary partial grafcet algorithm

end

Variable Order⇐= False

end

whileTrue do

if Variable Order has a value "True" then

if Variable Stability has a value "False" then

Call ComputeTransition;

if Exists Fireable Transitions then Call

ComputeNextSituation; for Each New

Activated Stepdo

Call Actions onActivation;

end

forEach New Deactivated Stepdo

Call Actions onDeactivation;

end

end

end

Call Initialization of Situation;

for Each New Activated Step do

Call Actions on Activation;

end

VariableOrder⇐= False;

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24 end

1 while True do

Sogbohossou M & Hounkpevi C Journal of Scientific and Engineering Research, 2020, 7(2):1-7

Journal of Scientific and Engineering Research

255

A.5. Function to setup the value of transition conditions

Algorithm 6 is used to setup the value of the transition conditions.

Algorithm 6. Algorithm for setting up of the value of transitionconditions

end

end

end

end

end

Setup the attribute of the transition associated to the value of transition condition (as "False");

else

Setup the attribute of the transition associated to the value of transition condition (as "True");

If The time of activation of this step ≥ timing value then

For Each transition of the grafcet do

If The transition condition is timed then if The transition condition

is Truethen

Setup the attribute of the transition associated to the value of transition condition (as "True");

else

Setup the attribute of the transition associated to the value of transition condition (as"False");

end

else

forEach step of a grafcetdo

ifThe Step is corresponding to the timed one then

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 end

1 while True do

Sogbohossou M & Hounkpevi C Journal of Scientific and Engineering Research, 2020, 7(2):1-7

Journal of Scientific and Engineering Research

256

B. Class diagram for C++ codes for mbed platform

Fig. 10 gives the class diagram for the mbed code to generate.

Figure 10: Class diagram (UML)

