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Abstract In this study, we investigated the effects of various malaria control interventions mortality (deaths) in 

the Northern Region of Ghana through intervention analysis. A model for predicting the number of deaths due 

to malaria in the region was also determined. Data on monthly mortalities due to malaria were obtained from the 

Northern Regional Health Directorate. The results revealed that, ARIMAX (1, 1, 1) was the best model with the 

least Akaike Information Criterion (AIC), Akaike Information Criterion corrected (AICc) and Bayesian 

Information Criterion (BIC). Diagnostic checks of the model with the Ljung-Box test and Autoregressive 

Conditional Heteroscedasticity Lagrange Multiplier (ARCH-LM) test revealed that the model was free from 

higher-order serial correlation and conditional heteroscedasticity respectively. A cumulative sum (CUSUM) test 

on the residuals of the model also revealed that the model was structurally stable over time. A chi-square 

goodness of fit test also revealed that there was no significant difference between the predicted values from the 

model and the observed values for the year 2018. The study further revealed that the coefficient of the 

intervention variable was negative signifying that the interventions brought about a decline in the number of 

mortalities due to malaria in the region. 

 

Keywords Malaria, Intervention, Autoregressive Moving Average with an Independent variable (ARIMAX), 

Cumulative Sum (CUSUM), Lujung-Box and Heteroscedasticity 

1. Introduction 

The problem of malaria has remained an issue of concern in sub-Saharan Africa for so many years. According to 

Ghana Health Service (GHS) facility data, malaria is the number one cause of morbidity and mortality in 

children under five years of age, currently accounting for 33% of hospital deaths in children under five, about 

38% of all outpatient illnesses and 36% of all admissions. Between 3.1 million and 3.5 million annual cases of 

clinical malaria are reported in public health facilities, 900,000 cases are in children under five years and 3,000-

4,000 result in inpatient deaths [1]. Thus malaria has led to the loss of countless vital lives in the country. The 

survival of these lives could have been very beneficial to the development of Ghana through their contributions 

in various sectors of the economy. Due to the considerable loss of lives due to malaria, the government of Ghana 

through the Ministry of Health and the Ghana Health Service has been instrumental in curbing it; through the 

implementation of intervention measures. These interventions include: improving access to prompt and effective 

treatment, strengthening health systems at all levels, and creating and sustaining partnership in the health sector. 

The interventions are aimed at reducing deaths and illnesses due to malaria by 75 per cent by the year 2018 so 

that the disease is no longer of public health significance. 
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We therefore employed the Autoregressive Integrated Moving Average model with an independent variable as 

an intervention variable (ARIMAX) in this study to investigate the effects of these interventions on the number 

of mortalities due to malaria in the Northern Region of Ghana. A model for predicting the number of deaths in 

the region shall also be determined. 

The study will serve as a guiding tool to policy makers such as the Ministry of Health (MoH) and Ghana Health 

Service (GHS), and multilateral organizations in the health sector in making informed and intelligent policy 

decisions in the fight against malaria and other public health diseases in the country.Further, the information 

uncovered from this study when put into better and effective use in combating malaria would have the economic 

benefit of saving cost in the region and the nation at large. Lastly, the Regional Health Directorate (RHD) would 

benefit immensely from accurate forecasts of the malaria disease burden within this part of the country.  

Myriad of researches have been carried out all over the world on malaria morbidity and mortality. [2] modelled 

and forecasted malaria mortality rate in the AbohMbaise General Hospital, Imo State in Nigeria. They employed 

the Box-Jenkins methodology to build an ARIMA model for the malaria mortality rate from January 1996 to 

December 2013.They used the fitted model to forecast monthly malaria mortality rate for the year 2014.  

Further, [3] used time series analysis to investigate the relationship between falciparum malaria in the endemic 

provinces and imported malaria in the non-endemic provinces of China. Several Autoregressive Integrated 

Moving Average (ARIMA) models were fitted to the predictor variable and tested, and it was revealed that 

ARIMA (1, 1, 1) and (0, 1, 1) models for malaria incidence fitted the data best according to the AIC and 

goodness-of-fit criteria. 

Moreover, [4] formulated a model for short term malaria prediction in Sri Lanka. Exponentially moving average 

models, ARIMA models with seasonal components and seasonal multiplicative ARIMA models were compared 

on monthly time series of district malaria cases for their ability to predict the number of malaria cases one to 

four months ahead. The results showed that the best model for forecasting and forecasting error varied 

significantly among the districts. 

Also, [5] carried out a research using Generalized Seasonal Autoregressive Integrated Moving Average 

(GSARIMA) models for count data with application to malaria time series with low case numbers in Sri Lanka. 

The models were applied to monthly malaria case time series in a district in Sri Lanka, where malaria had 

decreased drastically in recent years. The results revealed that the malaria series showed long-term changes in 

the mean, unstable variance and seasonality. They concluded that GSARIMA models may be particularly useful 

in the drive towards malaria elimination, since episode count series are often seasonal and non-stationary, 

especially when control is increased.  

Again, [6] conducted a research on the topic: “Forecasting malaria incidence from historical morbidity patterns 

in epidemic-prone areas of Ethiopia: a simple seasonal adjustment method performs best”. The aim of this study 

was to assess the accuracy of different methods of forecasting malaria incidence from historical morbidity 

patterns in areas with unstable transmission. Five methods were tested using incidence data reported from health 

facilities in 20 areas in central and north-western Ethiopia. The study showed that simple seasonal adjustment 

methods outperformed a statistically more advanced ARIMA method. In particular, a seasonal adjustment 

method that uses mean deviation of the last three observations from expected seasonal values consistently 

produced the best forecasts.  

Also, a research was carried out by [7] on the development of temporal modelling for forecasting and prediction 

of malaria infections using time-series and ARIMAX analyses in endemic districts of Bhutan. The study was 

carried out retrospectively using the monthly reported malaria cases from the health centres to Vector-borne 

Disease Control Programme (VDCP) and meteorological data from Meteorological Unit, Department of Energy, 

and Ministry of Economic Affairs. Time series analysis was then performed on monthly malaria cases, from 

1994 to 2008, in seven malaria endemic districts. The time series models derived from a multiplicative 

SARIMA was employed to identify the best model using data from 1994 to 2006. Hence the best-fit model was 

selected for each individual district and that of the overall endemic area was also developed. In developing the 

prediction model, the monthly reported malaria cases and the meteorological factors from 1996 to 2008 of the 

seven districts were analysed. The method of ARIMAX modelling was then employed to determine predictors 

of malaria of the subsequent month. 
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Also, [8] assessed the steep decline of malaria morbidity and mortality trends in Eritrea between 2000 and 2004. 

This study examined the impact of Eritrea’s Roll Back Malaria Programme (2000-2004) and the effects and 

possible interactions between the public health interventions in use. The study employed cross-sectional survey 

to collect data from households, community and health facilities on coverage and usage of ITNs, IRS, larvicidal 

activities and malaria case management. An ARIMA model was used to assess association. The study showed 

thatin the period 2000-2004, there was a substantial increase in IRS coverage, distribution of ITNs, and also the 

number of health workers and community health agents trained had risen significantly. The correlation between 

malaria case fatality and ITNs, IRS, population protected and annual rainfall was however not statistically 

significant. 

Also, [9] employed the SARIMA intervention time series analysis to investigate the effect of malaria control 

intervention in the KwaZulu-Natal Province in South Africa. The intervention was the re-introduction of 

dichlorodiphenyltrichloethane (DDT) on confirmed malaria cases. The result showed an abrupt and permanent 

decline of malaria cases following the implementation of the intervention policy. 

 Again, [10] carried out a research on forecasting future malaria incidence in the Kumasi Metropolis, Ghana 

using ARIMA models. Trends of malaria prevalence was analysed and compared by years and months. It was 

revealed that July had the highest number of cases whereas January recorded the lowest number of cases. The 

predicted numbers of cases for the first and second halves of the year 2018 were 61, 371.8 and 77,842.0 

respectively.  

Also, [11] used the Box-Jenkins SARIMA model approach to investigate monthly malaria infections in the Kass 

Zone, South Darfur State, Sudan. An ARIMA forecasting model was obtained from the analyses to predict the 

monthly malaria infections. 

 Furthermore, [12] researched on time series analysis of malaria cases in the KasenaNankana Municipality, 

Navrongo, Ghana. They developed an ARIMA model that can adequately forecast future trends of malaria cases 

in the Municipality.  

Additionally, [13] also used time series ARIMA models to predict future trends in malaria incidence in 

Afghanistan. Two (2) predictive models were obtained that can accurately forecast malaria incidence in that 

country. Enhanced vegetation index was also found to have increased the predictive accuracy of the models in 

the long-term.  

Additionally, [14] used vector autoregression (VAR) to model the impact climatic variability malaria in Ghana. 

The study revealed that malaria is highly influenced by three (3) main climatic variables that include maximum 

temperature, rainfall and humidity. Again, Perez and Ceballos [15] conducted a study to develop an appropriate 

model that could predict the weekly reported malaria incidence in the Philippines using the Box-Jenkins 

method. Based on the results of their analysis, ARIMA (2, 1, 0) was selected as the model for predicting the 

weekly malaria incidence in the Philippines.  

It can be observed from the above review that several approaches have been used to model and forecast malaria 

morbidity and mortality in various parts of the world. There is however no known research conducted on 

malaria mortality using time series intervention analysis models in the Northern Region of Ghana. This research 

will therefore employ the intervention analysis models developed by [16] to assess the effects of the various 

malaria control intervention programmes in the northern region of Ghana and to obtain a monthly mortality 

forecasting model. 

 

2. Methodology 

Data on monthly mortality cases to due malaria was obtained from the Northern Regional Health Directorate 

and used to undertake this study. The data covered the period of January 2004 to December 2018. January 2004 

to December 2007 was considered as the pre-intervention period whereas January 2008 to December 2018 was 

the post intervention period. The data from January 2004 to December 2017 was used to carry out the analyses 

whilst that of 2018 was used for cross validation. The data was ran using Minitab, R and Grtl, and was modelled 

using ARIMAX models. Preliminary tests to determine the presence or absence of stationarity and unit roots 

were then carried out and results were finally modelled using an ARIMAX model.  
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2.1 Unit Root Test 

Stationarity is an indispensable aspect of time series analysis. Several approaches have been developed to test 

for the stationarity or otherwise of a time series data which include both graphical and quantitative approaches. 

In this study however, we employed two quantitative methods including the Augmented Dickey-Fuller (ADF) 

[17] test and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) [18] test. The presence of a unit root signifies that 

the time series is not stationary and that differencing needs t0o be done in order to reduce it to stationarity. 

 

2.1.1 Augmented Dickey Fuller (ADF) Test 

The ADF test tests the null hypothesis that a unit root is present in a time series sample. It has the advantage of 

handling a larger and more complicated set of time series models. The ADF test was developed to deal with 

serial correlations in the time series since it does not suffer size distortions under over parametizations, extreme 

autocorrelation, and increased sampling frequency. The test is based on the regression of the observed variable 

𝑌𝑡  on its one-period lagged value 𝑌𝑡−1, and sometimes includes an intercept and a time trend. The ADF model is 

given as: 

∆𝑌𝑡 = 𝛼 + 𝛽𝑡 + 𝛿𝑌𝑡−1 + 𝛾1∆𝑌𝑡−1 + ⋯ + 𝛾𝑝−1∆𝑌𝑡−𝑝+1 + 𝜀𝑡             (1) 

Where ∆ is the difference operator, implying that ∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1, 𝛿 = 𝜙 − 1, 𝛼 is a constant, 𝛽 the coefficient 

on time trend series, 𝛾1∆𝑌𝑡−1 + ⋯ + 𝛾𝑝−1∆𝑌𝑡−𝑝+1 is the sum of the lagged values of the dependent variable ∆𝑌𝑡  

and p is the lag order of the AR process. The ADF test is concerned with the value of the parameter 𝛿. If 𝛿 = 0, 

it presupposes that the series contains unit root and hence non-stationary.  

The test statistic for the ADF test is given by: 

Fτ =
𝛿 

SE(𝛿 )
                                                                                                     (2) 

Where 𝛿  is the least square estimate andSE(𝛿 ) is the standard error estimate of 𝛿 . If the calculated value of the 

test statistic is greater than the critical value, we reject the null hypothesis of 𝛿 = 0. 

 2.1.2 Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test 

The KPSS test has a null hypothesis of stationarity of a series around either the mean or a linear trend; and the 

alternative assumes that the series is non-stationary due to the presence of a unit root.  

The test statistic of the KPSS test is given by; 

𝐾𝑃𝑆𝑆 =  
𝑆𝑡

2

𝜎∞
2

𝑇

𝑡=1

                                                                                                   (3) 

Where 𝑇 denotes the number of observations, 𝑆𝑡 =  𝜀𝑖
𝑡
𝑖=1  , for 𝑡 = 1,2, … , 𝑇, 𝜀𝑖  denotes estimated errors from a 

regression of 𝑌𝑡  on a constant and time and are computed as: 𝜀𝑡 = 𝑌𝑡 − 𝑌 and 𝜎 ∞
2  is an estimator of the long-run 

variance of the 𝜀𝑡  process given as:  

𝜎∞
2 = lim

𝑇→∞
𝑇−1 𝑉𝑎𝑟( 𝜀𝑡

𝑇

𝑡=1

)                                                                           (4) 

Or 

𝜎2 = 𝑙𝑖𝑚𝑇−1𝐸 𝑆𝑇
2                                                                                (5) 

The decision rule is to reject the null hypothesis of stationarity if the computed value of the test statistic is 

greater than the critical value at a given level of significance. 

 

2.2. Regression with ARIMA Errors (ARIMAX Model) 

In addition to past values of the response series and past errors, we can also model the response series using the 

current and past values of other variables, called input variables. ARIMA models with input variables are 

referred to as regression with ARIMA errors or ARIMAX model. The model therefore combines a regression 

model with an ARIMA model. The regression component describes the explanatory relationship of the variables 

whereas the ARIMA component deals with the autocorrelation in the residuals of the regression model. An 

ARIMAX model is given by: 
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𝑌𝑡 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2+. . . +𝛽𝑘𝑋𝑘 +
θ 𝐵 Θ 𝐵𝑠 

𝜙 𝐵 Φ 𝐵𝑠  1 − 𝐵 𝑑 1 − 𝐵𝑠 𝐷
𝜀𝑡            (6) 

2.3. Criterion for Model Selection 

In order to obtain the most adequate model that best describes a time series data, it is imperative for model 

selection criteria to be carried out. This is because there is the possibility of two or more models to compete in 

the selection of the best model. The AIC, AICc and the BIC [19] were the model selection criteria employed in 

this study to select the most adequate model. The best model is the one with the smallest AIC, AICc or BIC 

values, given a set of candidate models. The AIC, AICc, and BIC are generally given by; 

AIC = 2𝑘 − 2𝐼𝑛(𝐿)                                                                                                         (7) 

AICc = AIC +
2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
                                                                                               (8) 

BIC = log(𝜎𝑒
2) +

𝑘

𝑛
log(𝑛)                                                                                             (9) 

Where k represents the number of parameters in the model, L denotes the maximised value of the likelihood 

function, n is the number of observations in the data and 𝜎𝑒
2 is the error variance. 

 

2.4. Model Diagnostics 

After a model has been built, it is important to diagnose the model in order to ensure that it truly reflects the real 

time series observations. When these checks are done the model can be used to make meaningful generalisations 

or to draw inferences. The Ljung-Box, ARCH-LM and the CUSUM tests were employed in this study to 

diagnose the adequacy of the developed model. 

 

2.4.1. Ljung-Box Test 

The Ljung-Box [20] test was used to determine the presence or absence of serial correlation in the time series up 

to a given order say k. The test statistic is given by; 

𝑄ℎ = 𝑛 𝑛 + 2  
𝑟𝑘

2

𝑛 − 𝑘

ℎ

𝑘=1

                                                                                             (10) 

Where 𝑟𝑘
2represents the residual autocorrelation at lag k, n is the number of residuals and h is the number of lags 

being tested. We reject the null hypothesis if 𝑄ℎ  is greater than the chi-square table value. The model is 

therefore considered adequate when the p-value associated with 𝑄ℎ  is large. 

 

2.4.2. ARCH-LM Test 

The Ljung-Box test was developed by Ljung and Box [21] as a diagnostic tool to examine autocorrelations of 

the residuals of a fitted model.The test is used to deal with the issue of conditional heteroscedasticity when 

fitting models. This problem occurs when the residuals do not have a constant variance. Therefore the 

assumption of constant variance must be met in order to obtain an adequate model. The test statistic is given as: 

LM = 𝑛𝑅2                                                                                                                          (11) 

Where n is the number of observations and 𝑅2 is the coefficient of determination of the auxiliary residual 

regression. This is given by: 

𝑒𝑡
2 = 𝛽0 + 𝛽1𝑒𝑡−1

2 + 𝛽2𝑒𝑡−2
2 +. . . +𝛽𝑞𝑒𝑡−𝑞

2 + 𝑣𝑡                                                         (12) 

Where 𝑒𝑡  is the residual. The null hypothesis is rejected when the p-value is greater than the level of 

significance and hence we conclude that there is no heterosdasticity in the model residuals. 

 

2.4.3. CUSUM Test 

In fitting a good model, it is imperative also to check the stability of the model over time. The CUSUM test was 

therefore developed for the study of structural stability of models and the test statistic was constructed based on 

cumulated sums of recursive residuals. The test statistic is given by: 

CUSUM𝜏 =  
𝑢 𝑡

(𝑟)

𝜎 𝑢

𝜏

𝑡=𝐾+1

                                                                                                         (13) 
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Where 𝑢 𝑡
(𝑟)

 are the recursive residuals and 𝜎 𝑢  is the standard error of the regression fitted to all 𝑇 sample points 

and 𝜏 = 𝐾 + 1, … , 𝑇. There is evidence of structural instability of the model in question if the CUSUM wanders 

off too far from the zero line. At a 5% significance level, we reject stability given that  CUSUM𝜏  crosses the 

lines ±0.948[ 𝑇 − 𝐾 + 2(𝜏 − 𝐾)  𝑇 − 𝐾 ]  [22].  

 

2.4.4. Jarque-Bera (JB) Test 

Normality is a common assumption in many statistical analyses. Hence testing the normality of a distribution 

has become a standard feature in many statistical works [23]. This study therefore employed the JB test to 

confirm the normality of the data. The JB test is very useful when the sample size is large (greater than 2000). 

The test statistic is given as: 

𝐽𝐵 = 𝑛[
𝑆2

6
+

 𝐾−3 2

24
]                                                                                           (14) 

Where n= sample size, S= coefficient of Skewness and K= coefficient of kurtosis 

The JB test has a chi-square distribution with two degrees of freedom. Hence, we reject the null hypothesis of 

normality if 𝐽𝐵 > 𝑋2 calculated value. 

 

3. Results and Discussion 

The KPSS and ADF tests for unit roots were carried out to determine the stationarity or otherwise of the series. 

The KPSS test results shown in Table 1 revealed that the calculated value is greater than the critical value at 5% 

level of significance. We therefore reject the null hypothesis of stationarity indicating that the series is not 

stationary. 

Table 1: KPSS test for Mortality cases 

Case Test Statistic Critical value 

Death 1.3538 0.4650 

Also, the ADF test carried out with only a constant term and a constant with quadratic trend affirmed the 

presence of unit roots in the series, since the p-value was greater than the 0.05 level of significance as illustrated 

in Tables 2. 

Table 2: ADF test for Mortality cases 

Case Constant Constant + Quadratic Trend 

 Test Statistic P-value Test Statistic P-value 

Death -0.3795  0.9104 -1.9699 0.8285 

There was no evidence of seasonality observed in the ACF plot of the series since there were no significant 

spikes. Hence it was transformed logarithmically and then differenced non-seasonally before being tested again 

for stationarity. The transformed and non-seasonal differenced series for the Death cases revealed stationarity in 

the series as illustrated in Tables 3 and 4. 

Table 3: KPSS test for non-seasonal differences of Mortality cases 

Case Test Statistic Critical value 

Death 0.0348 0.4650 

 

Table 4: ADF test for non-seasonal differences of Mortality cases 

Case Constant Constant+ Quadratic Trend 

 Test Statistic P-value Test Statistic P-value 

Death -5.0960 0.0013 -5.5933 0.0070 

The time series plot of the transformed and non-seasonal differenced series for the Deaths shown in Figure 1 

also affirms that the series is now stationary in the mean and variance due to the fluctuations about the zero line. 
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Figure 1: Time series plot of Transformed series of Mortality 

 

3.1. Estimating the ARIMAX model  

The ACF plot of the differenced series for the Deaths shown in Figure 2 revealed significant spikes at the non-

seasonal lags 1, 3 and 56. Also, the PACF plot revealed that there were significant spikes at the non-seasonal 

lags 1, 3, 5 and 9.  

 
Figure 2: ACF and PACF plot of differenced series for Mortality 

The lower significant lags of the ACF and PACF plots in Figure 3 were used to fit tentative ARIMAX models 

shown in Table 5. It was observed that ARIMAX (1, 1, 1) had the least AIC, AICc and BIC values and hence 

was considered as the best model. 

Table 5: Tentative ARIMAX models 

Model AIC AICc BIC 

ARIMAX (1, 1, 1) 171.4890
* 

171.5916
* 

179.8264
* 

ARIMAX (3, 1, 3) 175.2242 175.3268 194.6781 

ARIMAX (3, 1, 1) 171.7322
 

171.8348
 

185.6279
 

ARIMAX (1, 1, 3) 173.0347 173.1373
 

186.9303
 

                                             *: Means best based on the selection criteria 
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It was further observed from Table 6 that the p-values of the model parameters were both significantly high at 

the 5% level of significance. The model was therefore considered as the best compared to other models. 

Table 6: Estimated parameters for ARIMAX (1, 1, 1) 

Variable Coefficient Standard error z-statistic P-value 

Dummy -1.8809 0.0338 -0.2639 0.0072 

 𝜙 0.3629 0.1147 3.1637 0.0016 

𝜃 0.8724 0.0619 -14.0957 0.0000 

In terms of the backshift operator, the parameters of ARIMAX (1, 1, 1) shown in Table 7 can be expressed as: 

ln 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑖𝑒𝑠 = −1.8809𝐷 +
(1 + 0.8724𝐵)

(1 − 0.3629𝐵)(1 − 𝐵)
𝜀𝑡                              (15) 

Where D= Dummy 

In order to further buttress the selection of the model, a diagnostic test was carried out on the residuals of the 

model. It was observed from the diagnostic plot in Figure 4 that the standardised residuals of the model had a 

zero mean and constant variance. Again, the ACF plot of the model residuals revealed that all the residual 

autocorrelations were within the significance bounds implying that they were uncorrelated. Moreover, the 

Ljung-Box statistic clearly shows that the p-values of the test statistic exceed the 5% level of significance for all 

lag orders which implies that there is no significant departure from white noise for the residuals. The model is 

therefore considered as the best. 

 
Figure 3: Diagnostic plot of ARIMAX (1, 1, 1) 

An ARCH-LM test was conducted on the residuals of the model based on the assumption of constant variance 

and zero mean in order to confirm the information shown in Figure 3. Table 7 revealed that there was no ARCH 

effect in the residuals of the model. The Jarque-Bera normality test was also carried out and it was revealed that 

the residuals of the model were normally distributed. It was therefore concluded that the selected model, 

ARIMAX (1, 1, 1) is the best model since it satisfies all the diagnostic conditions. 

Table 7: ARCH-LM test of residuals of ARIMAX (1, 1, 1) 

Lag Chi-squared df P-value 

12 18.2315 12 0.7491 

24 34.4269 24 0.9379 

36 42.8077 36 0.9052 

JB Test: Chi-squared= 12.3732, p-value=0.3124 
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 Again, the CUSUM test was conducted in order to test the stability of the model parameters over time. From 

Figure 4, it was revealed that the cumulative residuals of the model fall within the 95% confidence band. Hence 

it can be concluded that the parameters of the model were structurally stable. 

 
Figure 4: CUSUM plot of ARIMAX (1, 1, 1) 

The model was cross validated by a chi-square goodness of fit test to determine whether there was a significant 

difference between the monthly expected numbers of Deaths and that of the observed for the year 2018. The test 

gave a chi-square calculated value of 10.35 and a critical value of 19.675 at 11 degrees of freedom and 5% 

significance level. We therefore fail to reject the null hypothesis of no significant difference between the 

observed and the expected values since the calculated value is less than the table value. It can therefore be 

concluded that there is no significant difference between the predicted values from the model and the observed 

values for the year 2018. 

 

4. Conclusion 

This study investigated the effects of malaria control interventions on mortality due to malaria in the Northern 

Region of Ghana. A model for predicting the number of deaths in the region was also determined. We observed 

that, the coefficient (-1.8809) of the intervention variable and p-value (p<0.0072) were negative and significant 

respectively, signifying a decrease in the number of mortalities for the period of the study. The decline in the 

number of mortality cases is an indication that the intervention was well implemented and its plans were also 

executed well. Based on the results, it is concluded that ARIMAX (1, 1, 1) is the best model for predicting the 

monthly number of mortality cases due to malaria in the region since the model had the least AIC, AICc and 

BIC. Diagnostic checks of the model with the Ljung-Box test and ARCH-LM test revealed that the model was 

free from higher-order serial correlation and conditional heteroscedasticity respectively. A steep decline in the 

number of cases recorded was observed from 2012 onwards. It is therefore recommended that the Government 

of Ghana through the National Malaria Control Programme (NMCP), other local and international agencies such 

as the AngloGold Ashanti Malaria Control Programme and the United States President’s Malaria Initiative 

(PMI) should strengthen the current preventive measures (through indoor residual spraying, scale-up of the 

distribution of insecticide treated nets, intermittent preventive treatment for pregnant women, improving 

sanitation, increasing access to healthcare and improving data reporting) in order to maintain the steady decline 

in the number of cases. On the use of LLINs, follow ups should frequently be done to replace missing and worn 

out nets. The distribution of LLINs should be followed with mass education on the use and need to sleep under 

treated nets. Larviciding is a good measure used in the prevention of malaria which is practice only in the 
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southern part of the country. Hence it will not be out of place if conscious efforts are made to implement it in the 

north.   

It is further recommended that this study be replicated in other regions of the country to help identify which 

regions are making progress in terms of reducing the malaria burden, so that more attention will be given to 

regions that still have a high incidence of malaria. 
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