Journal of Scientific and Engineering Research, 2020, 7(1):57-64

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

Genetic Diversity of *Morinda officinalis* Based on *ITS* and *matK*, *rbcL* and Interspace *trnH-psbA* Genes on the Chloroplast

Pham Van Kien¹, Doan Cao Son¹, Bui Hong Cuong², Tran Minh Ngoc³, Tran Ngoc Thanh³, Tran Dang Khanh⁴, Pham Thi Minh Tam⁵, Tran Viet Hung^{5*}

¹National Institute of Drug Quality Control, Vietnam

²Hanoi University of Pharmacy, Vietnam

³National Institute of Medicinal Materials, Vietnam

⁴Agricultural Genetics Institute, Vietnam

⁵Institute of Drug Quality Control, Ho Chi Minh City, Vietnam

*Corresponding author: tran.viethung168@gmail.com

Abstract The species of Morinda is native to China and Vietnam. Among them, *Morinda officinalis* How., is traditionally used as ailments for many diseases and developed into various healthy food for human health. The DNA barcoding is a useful and reliable method for the identification of species, especially the processed material, including *Radix Morindae officinalis*. In this study, the internal transcribed spacer (*ITS*) region of nuclear ribosomal RNA genes and three other chloroplast genes including maturase K (*matK*), ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (*rbcL*), *psbA-trnH* intergenic spacer region (*psbA-trnH*) were sequenced. The results showed that the *matK* and *ITS* genes regions are very similar in the four *M. officinalis* samples, suggesting that they may stem from ordinary roots in a common origin. The *rbcL* and *trnH-psbA* sequences are useful to analyze the variation under species and geographic impacts. The combination of these genes is suitable for the identification *Baiji tian* at species and sub-species level.

Keywords Morinda officinalis, ITS, chloroplast, DNA barcoding

Introduction

The *Morinda* genus is estimated over 102 species and is widely distributed tropical, subtropical and temperate areas [1]. Among this genus, *Baji tian*, radix *Morindae officinalis* How., is one of the four traditional Chinese medicinal herbs and availably growing in southern China and in Vietnam. *M. officinalis* is a lianoid shub with stiff, slender bristles and protected with fine soft hair. The branches covered with a tiny leaf-like appendage. The root succulent hypertrophy, irregular, cylindrical and intermittent swelling with a rosary. The flower is merged for the half receptacle, the corolla is white, bell-shaped or urn inside, and hair finely hirsute outside. The aggregate fruit is orbicular to flatten and fully fused with red and subglobose as shown in Fig 1 [1,2]. This plant is traditionally used as an ailment for many diseases such as diabetes, hypertension, impotence, spermatozoa, irregular menstruation, male infertility, cold uterine infertility, cold-induced lower abdominal pain and weak tendon disease. Moreover, some reports have shown that this plant has had great biological activities potential including antioxidant, antitubercular, analgesic, antibacterial, anticancer, anti-inflammatory, cancer-chemopreventive and cardiovascular actions [3-5]. Numerous secondary metabolite compounds which involve in pharmacological activities have been isolated and identified from the roots which belong to the iridoid glycosides, anthraquinones, saccharides, organic acids, volatile oils and homogeneous polysaccharides [2, 3].

Figure 1: Dried roots and panorama of M. officinalis [6]

In Vietnam, *Baji tian*, *M. officinalis* mainly grows wild in the hills and low mountains of the midland and mountainous areas of northern Vietnam provinces such as Quang Ninh, Lang Son, Bac Giang, Cao Bang, Ha Giang and Tuyen Quang and are also distributed in central Vietnam like Quang Nam province. The application of the three-dimensional medicinal identifier and genetic diversity analysis using molecular biology methods in Vietnam has been carried out in a number of previous studies, but only based on the *ITS* gene sequence [7]. At present, over 120 genes of *Morinda officinalis* which are available in the database of NCBI. There are about 90 sequences related to the *ITS* region and 34 sequences on chloroplast including 15 sequences in the *matK* gene, 7 sequences in the genome *rcbL*, 5 trnH, 6 trnL and 1 trnT. Thus, the sequences on chloroplast have not been studied as much as *ITS*. The objective of this paper was to study on species diversity and identify the scientific names of the *Baji tian* samples collected by a geometric method combining gene sequencing method in order to find an appropriate gene region for the establishment of DNA barcoding. The gene regions selected for research are *ITS* on chromosomes and *matK*, *trnH-psbA*, *rbcL* on the chloroplast.

Materials and Methods

Materials

A total of 6 samples of *Baji tian* root were collected from the different provinces including Bac Giang, Quang Ninh, Quang Nam, Ha Giang, and numbered from BK1 to BK 6 (BK1: *Baji tian* of Luc Ngan, Bac Giang, BK2: *Baji tian* of Ha Giang, BK3: *Baji tian* Van Don, Quang Ninh, BK 4: *Baji tian* Hoanh Bo, Quang Ninh, BK 5: *Baji tian* Quang Nam, BK6: *Baji tian* Quan Ba, Ha Giang, respectively). In this study, some chemicals, reagents and equipment were used such as Dneasy Plant Miniki Qiagent extraction kit (Germany); RunSafe DNA Loading Dye; TBE buffer (Tris base 10.4 g, boric acid 5.5 g, EDTA 2 ml 1M in 100ml); Plant direct Master Mix 2x, Transilluminator UV gel scanner; Veriti PCR instrument (AB Aplied BioSystems); AIB 3130XL sequencing instrument.

Methods

Total DNA extraction: The sample was cleaned, crushed with a mortar and extracted DNA whole by Dneasy Plant Miniki Qiagent-Germany extraction kit. DNA extraction test: DNA extracted by dyeing of RunSafe DNA Loading Dye, electrophoresis on Agarose gel in TBE buffer (Tris base 10.4 g, boric acid 5.5 g, EDTA 2 ml 1M in 100ml), with DNA ladder 1 kbp / 100 bp and read the results on the transilluminator UV gel scanner. Amplification and DNA sequencing: Amplification of *ITS*1-5,8S-*ITS*2, *matK*, *rbcL* and gene bullets inserted between trnH and psbA with the primers in Table 1.

Name	Sequences	Reference	Place	
<i>ITS</i> U4- <i>ITS</i> P5	RGTTTCTTTTCCTCCGCTTA	[8]	1751 5 85 1752	
	CCTTATCAYTTAGAGGAAGGAG	[0]	1151-5,65-1152	
122CD 200E	TCT AGC ACA CGA AAG TCG AAG T	[0]		
1320K- 390F	CGA TCT ATT CAT TCA ATA TTT C	[9]	matK	
<i>rbcL</i> a-F	ATGTCACCACAAACAGAGACTAAAGC	[10]	rbcL	

Table 1: The information of the sequence of primers was used in this study

 ${}^{igodysymbol{\mathbb{N}}}$ Journal of Scientific and Engineering Research

<i>rbcL</i> a-R	GTAAAATCAAGTCCACCRCG	[10]	
nch A ten II	CGAAGCTCCATCTACAAATGG	[11]	tun II mah A
psbA- trnH	ACTGCCTTGATCCACTTGGC	[11]	trnH-psbA

The PCR reaction was performed with the following reaction component: Plant direct Master Mix 2x (0.05 U / μ L Phire Hot Start II DNA polymerase, reaction buffer: 4 mM MgCl₂, 0.4 mM per dNTP (dATP, dCTP, dGTP and dTTP): 10 μ l; primer (10 μ M): forward primer: 1 μ l; reverse primer: 1 μ l; DNA template (template) 8-20 ng / μ l: 3 μ l; sufficient water 23 μ l, respectively.

PCR was performed on the Veriti machine of AB Aplied BioSystems with the program set as follows: Starting 5 min at 98°C; follow 30 repetition cycles including 98°C for 30 sec (for *ITS*, *matK*), 15 sec (for *trnH-psbA*, *rbcL*), 55°C (for *ITS*, *rcbL*) for 40 sec (for *ITS*, *matK*) 30 seconds (for *ITS*, *matK*) *rbcL* and *trnH-psbA*), 72°C for 40 sec - 60 sec; finishing with a period of 72°C for 10 min.

Sequencing and searching, evaluating results: Sequencing at Nam Khoa Service and Trading Co., Ltd. (Ho Chi Minh City) by Sanger method on AIB 3130XL.The amplified DNA sequence was assembled by DNA STAR, searched on NCBI (Blast Search on National Center for Biotechnology Information Genbank database), aligned by MEGA 6. Other gene sequences used for comparison, alignment and drawing tree subspecies in the article taken from NCBI.

Results and Discussion

Results of sequencing and searching on NCBI. The sequencing and identification results on the *ITS* gene segment showed that only 4 of the 6 initial samples (BK1, BK3, BK4 and BK5) were *Morinda officinalis*. The other two samples (BK2 and BK6) are one species of the genus Polygala. The sequencing of three genes *matK*, *rbcL* and *trnH-psbA* on chloroplast also confirmed that BK2 and BK 6 were not *Morinda officinalis*.

Results of sequencing and identification of 4 samples BK1, BK3, BK4, BK5 on *ITS* and 3 genes *matK*, *trnHpsbA* and *rbcL* on chloroplast, comparing coverage and similarity with *ITS* segment of *Morinda officinalis* AY 551330 and genes on chloroplast of *Morinda officinalis* KR869730, showed in Table 2.

		Officinalis AT 551550									
Sample		Genes									
	ITS		matK		rbcL		trnH-psb	A			
	Query cover	Ident	Query cover	Ident	Query cover	Ident	Query cover	Ident			
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)			
BK1	98	99.07	100	100.00	89	99.62	93	93.80			
BK3	99	99.38	100	100.00	90	99.81	98	99.50			
BK4	98	99.42	100	99.66	85	97.7	99	99.75			
BK5	98	97.27	99	99.33	100	98.19	98	99.19			

 Table 2: Results of similarity and coverage of the three halves compared with *M. officinalis* KR869730 and *M. officinalis* AY 551330

The results in Table 2 show that the *ITS* gene region of all four triggers is quite similar and coincides with the *ITS* gene of *M. officinalis* AY 551330 and the sequence on the *matK* gene of all four triggers is similar coincide with *matK* gene of *M. officinalis* KR869730. This proves that the three sizes of BK1, BK3, BK4, and BK5 can be from one origin. The gene regions *rbcL* and *trnH-psbA* are highly variable and can be distinguished by species or geographic influences.

Genetic Diversity Analysis

Gene ITS

The alignment results showed that, on *ITS*, all 4 samples have had 1 wrong position (133/520) compared to *M. officinalis* AY 551330. BK 1 has 2 more wrong positions (519/520 and 520 / 520), BK3 has had 1 more position (520/520), BK4 possessed 4 more wrong positions (1/520, 3/520 10/520 and 520/520), respectively, and BK 5 was more than 11 wrong positions compared to *M. officinalis* AY 551330. Thus, if considering the genetic diversity of the *ITS* gene, there were 4 different varieties of the same species.

#Morinda_officinalis_AY_551330 #BR1 #BR3 #BR4 #BR5	GRGCCCAACC TAACTCCCGG	CGCGGAATGC GCCA	AGGAAT ACTCAAACGG ;	AIGGCCGGCC GGCCCGCGG	TICCGCGGGG CGAGCCGAG	C GTCTGATCGT [100] [100] [100] [100] [100]
#Morinda_officinalis_AY_551330 #BR1 #BR3 #BR4 #BR5	TTAACCAAAA CGACTCTCGG	CAACGGATAT CTOG	GCTCTC GCATCGATGA 2	AGAACGTAGC GAAATGCGAI	ACTTGGTGTG AATTGCAGA	A TCCCGTGAAC [200] [200] [200] [200] [200]
#Morinda_officinalis_AY_551330 #BR1 #BR3 #BR4 #BR5	CATCGAGTIT TIGAACGCAA	GTTGCGCCCG AAGC	CCATTAG GCTGAGGGCA (CGTCTGCCTG GGCGTCACG	ATCGGTCGCC ACCCCTCC	I CGCCTTAGGA [300] [300] [300] [300]
#Morinda_officinalis_AY_551330 #BR1 #BR3 #BR4 #BR5	ATTCCGACGE GCGGGGGTGA	CGGATGTTGG CCCC	CCGIGC CCICGCGGCG (CGGCCGGCCT AAATGCGAG1	CCTCGGCCCG GGACGTCAC	G ACGAGTGGTG [400] [400] [400] [400] [400]
#Morinda_officinalis_AY_551330 #BR1 #BR3 #BR4 #BR5	GTTGAACCCT TCAACTCGAG	AGCCGTCGAG ACGA	ACGCCCG ACGGGGAACT (dTAACGACCC TAGGGdTGTC	GGCCCCGAGA GGAGCCGCG	A GCCTTCGACC [500] [500] [500] [500] [500]
<pre>#Morinda_officinalis_AY_551330 #BK1 #BK3 #BK4 #BK5</pre>	GCGACCCCAG GTCAGGGGAT	[520] [520] [520] [520] [520]				

Figure 2: ITS alignment analyses among the M. officinalis samples **Table 3:** Genetic distances of the samples in *ITS* gene regions

No.	Species	1	2	3	4	5
1	M. officinalis_AY_551330					
2	BK1	0.0125				
3	BK3	0.0078	0.0078			
4	BK4	0.0116	0.0115	0.0057		
5	BK5	0.0658	0.0317	0.0286	0.0254	

Figure 3: The neighbour-joining tree subspecies on ITS

Tree subspecies were drawn to compare the *ITS* sequence of 11 species of Ba size of Vietnamese origin [7] and some other species stored on NCBI. From subspecies, it can be observed that BK1, BK3 and BK4 have had similar sequences to *M. officinalis* AY 551330 with 93% bootstrap. BK5 and *G. officinalis* BK4 KX 709846 [7] which are close to each other and close to *G. officinalis* MH 714873 but the degree of seed is not large (bootstrap <50%).

Gene *matK*

Gene man														
#Gynochthodes_officinalis_KR069730 #BR1 #BR3 #BK4 #BK5	GCTTTAGCCA	ATGATCTAAT	AAGAGGAATA	ATTGGAACAA	GCATATCCAA	тттсттаата	GCATTATTGA	TTAGAAATGA	ATTTTCTAGC	ATTTGACCCC	GTACCATTGC	CGGATTTAGT	CGCACACTTG	[260] [260] [260] [260] [260]
#Gynochthodes_officinalis_KR869730 #BK1 #BK3 #BK4 #BK5	AACAATAGCC	CACAAAGTCA	AGTGAATGAT	TGGAAAATTG	ATTTATATAA	ACCCTTCCCG	AGTGAAACCA	CAGATCAAAG	TGATATTGCC	AAAAATTGAC	AAGATAAGAT	TTCCATTTAT	TCATCAAAAG	[390] [390] [390] [390] [390]
#Gynochthodes_officinalis_KR069730 #BR1 #BK3 #BK4 #BK5	AGGTGTACCC	TTTGAAACCA	AAATGGATTT	TCCTTGATAC	CTAACATAAT	GCATGAAAGG	GTCTGTGAAC	AGCCATAGAC	ТААСССДААА	ATCCTTAGCA	ACAACTTCTA	CAAGACGTTC	TTTTTTTCCA	[520] [520] [520] [520] [520]
#Gynochthodes_officinalis_KR869730 #BR1 #BK3 #BK4 #BK5	TAAAAATAGA	GTCGTTCGAG	AAAGAATACA	AAAGATGTTG	ATCGCAAATG	CGAAGATTGG	TTACGGAGAA	AGGCCAAAAT	GGATTCGTAT	TCATATGCAT	GAGAATTATA	TAATAAGAAA	AAAAATCTTT	[650] [650] [650] [650] [650]
#Gynochthodes_officinalis_KR869730 #BK1 #BK3 #BK4 #BK5	GATTTCTTTT	TGGTGAAAAA	TGGGGTTTCT	TTGTAGCACT	AAGAGTATTC	CAACTCCAAT	ATTCGTGGAA	AAATAATCGT	AATAAATGCA	AGGCGGAGGC	ATCTTTTACC	CAATAACGAA	GGGTTTGAAC	[780] [780] [780] [780] [780]
<pre>#Gynochthodes_officinalis_KR069730 #BK1 #BK3 #BK4 #BK5</pre>	CAGAATTTCC	AGATGGACGG	CGCGGGGTAT	TAGTATATCT	AACACAGAAT	TAAAATGTGA	AAAATTGTTC	TCTAAGAAAG	GAAATA [86 	6] 6] 6]				

Figure 4: Results alignment on matK

The alignment results revealed that, on matK, BK3, and BK4 genes, the deviation from M. officinalis KR869730 was 2/866 nucleotides (BK3: 863/866 and 866/866, BK4: 399/866 and 422/866 positions), BK 5 has had 1 wrong position (81/866), BK 1 closely matched KR869730. Thus, when evaluated on matK gene, it can be confirmed that 4 samples BK1, BK3, BK4 and BK5 are different varieties of the same species.

Table 4: Spacing betw	veen samp	les on the	matK	
Species	1	2	3	4
Current the day officinglis VD8607	20			

No.	Species	1	2	3	4	5
1	Gynochthodes officinalis KR869730					
2	BK5	0.0023				
3	BK4	0.0035	0.0058			
4	BK3	0.0023	0.0046	0.0058		
5	BK1	0.0000	0.0023	0.0035	0.0023	

Species distance also shows that BK1 completely coincides with G. officinalis KR869730 on matK.

Figure 5: The neighbour-joining tree on the matK

The subspecies show all four specimens collected in Vietnam in the same branch as G. officinalis KR869730 on matK, but the bootstrap between samples is quite small, the largest being about 66%, indicating that these varieties have differences in genetic.

Gene rbcL

#Morinda_officinalis_KR869730 #BK5 #BK4 #BK3 #BK1	AATAGTACAT	CCCAACAGGG	GACGACCATA	CTTGTTCAAT	TTATCTCTCT	CGACTTGAAT	GCCATGAGGC	GGGCCTTGGA	AGGTTTTAAC	ATAAGAAATG	[136] [136] [136] [136] [136]
<pre>#Morinda_officinalis_KR869730 #BK5 #BK4 #BK3 #BK1</pre>	GGAATTCGCA	AATCTTCCAG	ACGCAGAGCG	CGCAGGGCTT	TGAACCCAAA	TACATTACCT	ACAATGGAAG	TAAACATGTT	AGTAACAGAA	CCTTCTTCAA	[236] [236] [236] [236] [236]
<pre>#Morinda_officinalis_KR869730 #BK5 #BK4 #BK3 #BK1</pre>	AAAGGTCTAA G	CGGGTAAGCT	ACATAAGCAA	TAAATTGCTC	TTCTTCTCCA	GGAACTGGCT	CGATGTGGTA	GCATCGCCCT	TTGTAACGAT	CAAGACTGGT	[336] [336] [336] [336] [336]
#Morinda_officinalis_KR869730 #BK5 #BK4 #BK3 #BK1	AAGTCCATCC C	GTCCATACAG	TTGTCCATGT	ACCAGTAGAA	GACTCGGCAG	CTACCGCGGC	CCCTGCTTCT	TCCGGTGGAA	CTCCAGGTTG	GGCAGTTACT	[436] [436] [436] [436] [436]
#Morinda_officinalis_KR069730 #BK5 #BK4 #BK3 #BK1	CGGAATGCTG	CCAAGATATC	AGTATCTTTG	GTTTCGTATT	CAGGAGTATA	ATAAGTCAAT .GG.AAGC	TTGTACTAAC 	ACCASCTTTG T .TATCCC. I	AATC [524] [524] .G [524] [524] [524]		

Figure 6: Results of alignment on rbcL

The alignment results on the *rbcL* gene showed a large difference between BK5 (7/524 nucleotides) and BK4 (17/524 nucleotides) compared with *G. officinalis* KR869730.

Figure 7: Neighbour-joining tree in rbcL

On the tree, all four samples of the jackets still belong to the branch with *G. officinalis* KR869730, although BK4 and BK5 have changed positions. The *rbcL* gene may have a mutation from some original root. The bootstrap in this branch is about 45% largest, indicating that these individuals have a big difference in *rbcL*. This is probably due to the large cumulative mutations in this region.

Gene trnH-psbA

<pre>#Morinda_officinalis_KR869730</pre>	GATCAGCTGC TATAGATGTC CCATCTATAA TEGATAACAC ATTCETETTA TEGTATAGGA GTTATTGAAA AATAAAGTAG CAATAAGGAC CTCTTAACTT TATTTTTTT [141
‡BK5	[14]
‡BK4	ACTC.TCC.CTACTITTGT TAA.AT C.TCAA. TT.CC .T.TTCC.TT .TTAA.T TCT.AA.CGAAC.C [141
#BK3	
#BK1	
<pre>#Morinda_officinalis_KR869730</pre>	TCTTITTAIT TIGTITAGTA TITTACATTI AAAATGAATI ICTAITTITI TATAITTATA CTACTAGACG TACCTAAAAT AGAGAATICI AGAIT [272]
‡BK5	
‡BK4	.AAGG. ACC G.AA.AGGTAA .AACAA G.AC.A. AA. A.ATAG .A.AAAAA.GA [272]
#BK3	
‡BK1	
	Figure 8: Results of alignment on trnH-psbA

This gene segment only has about 300 nucleotides but there is a big difference between BK4 *G. officinalis* KR869730 and samples BK1, BK3, BK5 (with a genetic distance of 1.3173; 1.4444; 1.3740; and 0.9738, respectively.

	Table 6: Spaces between strains on trnH-psbA							
No.	Species	1	2	3	4	5		
1	Morinda officinalis KR869730							
2	BK5	0.0041						
3	BK4	1.3173	0.9738					
4	BK3	0.0053	0.0122	1.3740				
5	BK1	0.0058	0.0047	1.4444	0.0143			

Figure 9: The neighbour-joining tree subspecies on trnH-psbA

On a sub-tree based on *trnH-psbA* gene, BK4 was completely separated from *G. officinalis* KR869730 and grouped with *G. officinalis* MF 358867 with 64% bootstrap. The results also suggest that the gene is highly variable and unstable at the species level, which is suitable for subspecies evaluation or for further understanding the influence of geography. In our previous studies, we have been successfully identified genetic diversity and genetic relationship of some medicinal plants by using molecular markers including *ITS*, *mat*K, *rbcL* and *trnH-psbA* [12-16].

Conclusions

By use of the *ITS* region which is possible to identify *M. officinalis* and its genetic relationship. Chloroplast genes such as *matK* have the potential to make pharmaceutical identification barcode because chloroplast is small in size and less likely to be damaged as gene regions in chromosomes. The results showed that the *matK* and *ITS* genes regions are very similar in the four *M. officinalis* samples, suggesting that they may stem from ordinary roots in a common origin. The *rbcL* and *trnH-psbA* sequences begin to accumulate mutations and on the *trnH-psbA*, as a sample has separated from the group. In this case, the *rbcL* and *trnH-psbA* sequences are useful to analyze the variation under species and geographic impacts. The combination of these genes is suitable for the identification *Baiji tian* at species and sub-species level.

References

- [1]. Editorial Committee of Flora of China, Chinese Academy of Sciences (2015). Flora of China. Science Press, Beijing, pp. 35-37.
- [2]. Olatunde, O.Z., Yang, Y., Yong, J., and Lu, C. (2018). Progress of the components and biological activities of *Morinda officinalis* How. Biolmed. Res. Rev, 2(3): 1-10.
- [3]. Zhang, J.H., Xin, H.L., Xu, Y.M., Shen, Y., He, Y.Q., Yeh, H., Lin, B., Song, H.T., Liu, J., Yang, H.Y., Qin, L.P., Zhang, Q.Y. (2018). *Morinda officinalis* How- A comprehensive review of tradition uses phytochemistry and pharmacology. J.Ethnopharma, 213: 230-255.
- [4]. Saludes, J.P., Garson, M.J., Franzblau, S.G. (2002). Antitubercular constituents from the hexane fraction of *Morinda eitrifolia* Linn (Rubiaeeae). Phytother. Res. 16, 683–685.
- [5]. Yanine, C.B., Vaillant, F., Perez, A.M., et al., 2006. The noni fruit (*Morinda citrifolia* L.): a review of agricultural research, nutritionaland therapeutic properties. Food Compos. Anal. 19, 643–645.
- [6]. Internet link: https://lahien.com/san-pham/ba-kich-tim/
- [7]. Hien, N.T.T (2015). Research on genetic diversity of *Morinda officinalis* How. In Northern Vietnam, Master Thesis, Hanoi University of Pharmacy
- [8]. Cheng, T., Xu, C., Lei, L., Li, C., Zhang, Y., Zhang, Y., Zhou, S. (2016). Barcoding the kingdom Plantae: new PCR primers for ITS regions of plants with improved universality and specificity. Mol. Ecol. Res, 16: 138–149.
- [9]. Philippe, C., Savolainen, V., Chatrou, L.W., Powell, M., Grayer, R.J., Chase, M.W. (2002). Molecular phylogenetics of caryophyllales based on nuclear 18S rDNA and plastid *rbcL*, atpB, and matK DNA sequences. Am. J. Bot, 89(1): 132–144. 2002.
- [10]. Kress J, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding *rbcL* gene complements the non-coding trnHpsbA spacer region. PLoS One, 6:1-10.
- [11]. Levin, R.A., Wagner, W.L., Hoch, P.C, et al. (2003) Family-level relationships of Onagraceae based on chloroplast *rbcL* and ndhF data. Am.J.Bot, 90:107-115.
- [12]. Dong, D.V., Ngoan, M.T., Diep, P.N., Khoa, N.T., Trung, K.H., Khanh, T.D. (2019). Genetic diversity and genetic relationship of Camellia plants collected in Van Giang district, Hung Yen province, Vietnam. J. Sci. Eng Res, 6(10): 16-23.
- [13]. Tam, T.V., Dong, D.V., Tin, N.V et al (2019). Genetic diversity and identification of the local podocarpus samples by molecular markers at mountainous areas of Yen Tu, Quang Ninh province, Vietnam. J. Sci. Eng Res, 6(10): 24-32.
- [14]. Trang, D.H., Dong, D.V., Chung, B.H., Gioi, D.H., Khanh, T.D. (2018). Identification of Vietnamese Ochna integerrima (lour.) Merr species based on ribosomal DNA internal transcribed space sequence. Inter. Let. Nat. Sci, 68:9-18.
- [15]. Tam, T.V., Dong, D.V., Lam, D.V., Anh, T.H., Van, N.D., Trung, D.M., Duong, T.D., Trung, K.H., Duong, N.T., Khanh, T.D. (2018). Identification of Vietnamese native Rhododendron and Enkianthus species of Ericaceae family based on ribosomal DNA internal transcribed spacer (ITS) sequences. J. Horticul. Plant Res, 2:33-42.

