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Abstract Over the year’s nature has favoured the formation of hydrocarbon sources of energy for human and its 

development. However, the formation of these hydrocarbons involves the absorption of solar energy by the 

sunlight gatherers (autotrophs) to the transformation process of organic materials through the process of 

diagenesis, catagenesis and metagenesis. The materials become readily available as petroleum oil or crude oil. 

Critical observations revealed the variations in colour, odour, flowed properties, different molecular weight and 

other trace elements and heavy metals. With the increasing demand for petroleum products around the world, 

this has become a global concern and a challenge. Because the spillage of the hydrocarbons to the environment 

may modify the natural conditions that sustain life forms on earth. Spilt hydrocarbon such as diesel in the 

ecosystem could bind aquatic sediment and soil thereby leading to contaminations of land and underground 

water. Plant-assisted remediation by encouraging large numbers of microorganisms around the plant root zones 

can bioremediate polycyclic aromatic hydrocarbon (PAH) compounds found in diesel contaminated land. 
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Introduction 

The evolution of human society and their culture has been linked with the progressive development of energy 

sources alongside the associated conversion technologies [1]. In the pre-industrial era and early stage of 

industrialization, energy source wasmajor generated by the physical strength of humans, animals, tide-power, 

and wind-power technologies. Major [2] reported how machines are been drive by the muscle power of both 

humans and animals in 780-330 BC. Hall et al. [1] also mentioned the principal sources of energy in the ancient 

times as humans and animals muscle power, wood, the wind and flowing water. But in the middle of the 

industrial revolution, energy sources were replaced by fossil hydrocarbons: coal in the nineteenth century, oil 

since the twentieth century and now, increasingly natural gas [1].  

Petroleum hydrocarbons 

Most of the developed and developing nations of the worlddepend on hydrocarbons as sources of energy to 

maintain, increase, and to further develop their economic activities. This strong relationship between energy and 

economic activity for industrialised [3] and developing economies [4] is as old as the journey in the industrial 

revolution. 

Petroleum 

Over the years nature has favoured the formation of hydrocarbon sources of energy in the chemical bond that 

linked hydrogen and carbon atoms in the organic matters [1]. Even though the formation of this type of 

hydrocarbons involves complex step-wise biochemical processes, the important basic knowledge is the 

absorption of solar energy by the sunlight gatherers (autotrophs) leading to the formation of hydrocarbon 

sources of energy in organic matters.  
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However, the change process is complex and is not well understood. It is known that organic matters derived 

from plants and algae are best conserved in the fine-grained sediments deposited in the absence of oxygen [5]. 

The transformation process of organic materials to hydrocarbons can be divided into three stages: diagenesis, 

catagenesis and metagenesis. At the early stage of hydrocarbon generations, the low- temperature chemical and 

biological reactions of the organic matter bring about the formation of mostly larger molecules called kerogens 

[5]. At the organic diagenesis stage, as a result of increased temperature, the kerogens were decomposed to 

smaller molecules forming the precursors of petroleum called bitumen [5]. Then smaller gas molecules were 

formed at the final change stage. Once formed, oil and gas molecules can be ejected from the source rock into 

more porous carrier beds or channels [5]. These materials may become readily available as petroleum oil or 

crude oil.  

 

Petroleum Composition and Properties 

Petroleum (often called crude oil) is a word derived from the Latin petra and oleum, meaning rock oil [6]. It is 

an extremely complex mixture of hydrocarbon compounds that occur naturally in the sedimentary rocks in the 

form of gasses, liquids, semisolids, or solids that contains nitrogen-, oxygen-, and sulphur-containing 

compounds as well as traces of metals [7-9]. Critical observations revealed the dramatic variations in colour, 

odour and flowed properties of the rich fluid that reflect the diversity of its origin [10]. Further investigations 

have also shown variation in the molecular types present in the petroleum including compounds of nitrogen, 

oxygen, sulfur, heavy metals as well as other trace elements [11]. These differences in compositions and 

properties of crude oils may be the source of variation in the petroleum types that originated from different oil 

fields in the world. Cockerham and Shane [12] described the unique variations in compositional properties of 

petroleum concerning the individual reservoir and also different depth. 

Physical and chemical properties have been used in categorising petroleum oils and their products into various 

classes. Physical properties such as boiling point and density (gravity) have been used to describe crude oil as 

light or heavy oil, while the odour is used to differentiate between low and high sulfur oils [10,13]. On the other 

hand, chemical properties such as molecular composition are used to categorise the petroleum oils into three 

classes of compounds: saturates, aromatics and compounds bearing heteroatoms (nitrogen, oxygen, sulfur, and 

metals) [10]. The saturates alkanes with straight, branched and cyclic hydrocarbons, while aromatic are 

compounds that contain one or more aromatic benzene rings. In petroleum, alkynes are not present, but alkenes 

can be found at lower proportions [14]. However, in the aromatic group, alkylated compounds dominate [15]. 

It is also important to describe petroleum into three convenient subdivisions with their related materials [13]: 

materials that are of natural origin, materials that are manufactured, and materials that are integral fractions 

derived from the natural or manufactured products (Table 1) [13, 16-18]. However, in some classes of petroleum 

such as conventional (light, sweet) petroleum, the percentage of pure hydrocarbons content is high: for example, 

80% w/w for paraffin and less than 50% w/w for heavy crude oil and much lower for tar sand bitumen [10]. 

Even though carbon and hydrogen contents are nearly the same from crude oil to crude oil, the carbon content of 

the various petroleum is usually between 83 % and 87 % by weight, and the hydrogen is in the range of 11-14 % 

by weight [10].  

Table 1: Subdivision of fossil fuel into various subgroups adapted after Speight 2015 [10]  

Natural Material                                                                                               Derived Materials                                               Manufactured Materials 

Natural gas 

Petroleum 

Heavy oil 

Bitumen* 

Asphaltite 

Asphaltoid 

Ozocerite 

    (natural gas) 

Kerogen 

Coal 

 

Saturates 

Aromatics 

Resins 

Asphaltenes 

Carbenes’ 

Carboids’ 

 

 

Synthetic crude oil 

Distillates 

Lubricating oils 

Wax 

Residuum 

Asphalt 

Coke 

*Bitumen from tar sand deposits. 
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Products of petroleum processing 

However, in petroleum or heavy oil, the ratio of the hydrogen to carbon atom increases from the low- to the 

high-molecular-weight fractions due to an increase in the volume of polynuclear aromatics and multi-ring cyclo-

paraffins contents that are molecular constituents of the higher -boiling petroleum oils (Speight, 2015). These 

properties of petroleum oil are chemical characteristics and are useful as a guide in the choice of the appropriate 

exploration technology. 

 

Petroleum Products  

Petroleum oil or crude oil is used in many different forms known as petroleum products. In its raw form, it is 

hardly used because of its complex composition and molecular weight hydrocarbons [13, 16-20]. This 

complexity in molecular weight compounds results in two extremes boiling temperatures ranging from -160℃ to 

1100 ℃ [16-18, 21]. However, to separate hydrocarbon components into groups of the same molecular weight 

with the same boiling temperature, then the refinery process is inevitable.  

Different physical and chemical techniques are used in petroleum refining processes including heating, 

pressuring, catalysing and the use of chemicals during reactions to convert crude oil and other hydrocarbons into 

petroleum products [16]. The operation of the refining processes are grouped into five basic stages: distillation, 

conversion (decomposition, unification and reforming), treatment, blending and other refining operations [16]. 

These step-wise stages in refinery operations will lead to the production of petroleum products. 

The refined products belong to three classes: light distillates (liquefied petroleum gas, naphtha and gasoline), 

middle distillates (kerosene and diesel), and heavy distillates (fuel oil, lubricating oil, waxes and tar) [16]. Each 

of these classes has a specified boiling point temperature and density during the fractional distillation process. 

However, the boiling range of petroleum products are stated (Table 2) [18, 22]. Because the products formed are 

groups of hydrocarbons each with its own standard boiling temperature with a tendency of influencing the 

adjacent hydrocarbons [18].  

Table 2: General boiling ranges of petroleum fractions by Speight and Ozum [18] 

Fraction  Boiling Range
a 

℃ ℉ 

Light naphtha                          

Gasoline                                                 

Heavy naphtha 

Kerosene 

Stove oil 

Light gas oil 

Heavy gas oil 

Lubricating oil 

Vacuum gas oil 

Residuum 

-1-150 

                   -1-180 

                  150-205 

                  205-260 

                  205-290 

                  260-315 

                  315-425 

> 400 

                  425-600 

> 600 

30-300 

      30-355   

     300-400  

     400-500  

     400-550    

     400-600   

     600-800   

> 750    

    800-1000   

> 1000 
a
 For convenience, boiling ranges are interconverted to nearest 5°. 

 

Toxicity of Petroleum Hydrocarbons 

At every stage of petroleum production and consumption, humans, animals and plants are exposed to the toxic 

components of petroleum hydrocarbons at different concentrations. With the increasing demand for petroleum 

products around the world, this has become a global concern and a challenge. However, it has been reported that 

the toxicity levels in hydrocarbons increase as their molecular weight decreases [23-24]. In the case of diesel oil, 

a middle distillates product with more aromatics proved to be more toxic than other products of petroleum [25]. 

This was further explained by the amount of polycyclic aromatic hydrocarbons or polynuclear aromatic 

hydrocarbons (PAHs) discovered in diesel spills and they are quite persistent in the ecosystem [26]. The 

existence, persistence, and disposition of PAHs in the ecosystem is of toxicological concern [27]. Some hundred 

different groups of PAHs exist, but about 28 compounds were currently listed as priority contaminants in 

January 2008 by the U.S. Environmental Protection Agency (US EPA) [28]. 
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One of the main characteristics of these toxic compounds is that they are highly hydrophobic. So it will be easier 

for PAHs to be adsorbed onto the organic material of solid particles, creating persistent micropollutants in the 

ecosystem [29]. Different ecosystem types act as sinks for PAHs, however, a preliminary record of PAHs in the 

United Kingdom (UK) environment displayed that soil was the main source [30]. The presence of these 

compounds in the environment has been associated with mutagenicity and carcinogenicity [31-32]. Therefore, 

PAHs in the environment present potential threats to human and ecological health [29]. 

To have a good understanding of the toxic component of hydrocarbon products, the toxicity assessment of 

biological indicators is important. Hentati et al [33] described the significance of eco-toxicity analysis that 

comprises of various techniques to use soil-inhabiting organism and plants as testing devices. Earthworm in soil 

has been extensively used as an indicator of toxic potential in infiltrated soil [34]. Avoidance reaction from both 

earthworms and collembolans can serve as a signal for early screening [33]. While in plants, toxicity assessment 

includes the study of root elongation, seed germination and plant growth as a standard technique by ISO11269-1 

(1993) and Organisation for Economic Co-operation and Development [35]. Most of the reports show a relative 

sensitivity of plants in response to contaminants [36]. There were also reports on the use of Microtox to evaluate 

total petroleum hydrocarbon (TPH) toxicity [37]. It seems that the relative sensitivity shown by biological 

indicators to toxicity is useful. 

 

Impact of Petroleum Hydrocarbon Contamination 

Petroleum hydrocarbons are a source of energy that has been driving industrial and societal development since 

the last century but pollution also results and revealing the fragility of our environment [1, 38-39]. A statistical 

report from International Tanker Owners Pollution Federal confirmed that about 5.74 million tonnes of oil was 

spilt accidentally between 1970 – 2014 [40]. Molina-Barahona et al [41] reported that a significant portion of 

the land and water resources on earth are adversely polluted by diesel, a petroleum hydrocarbons fuel. Toxic 

waste in ecosystems is commonly linked to petroleum products, resulting from cracks in storage facilities, 

conduit seeps, and tanker collisions [42].  

This may imply that without proper containment methods of petroleum products, pollution levels would 

continue to increase in ecosystems. Environmental pollutions of complex origin may modify the natural 

conditions that sustain life forms on earth. Therefore, any element or chemical compound that pollutes 

ecosystems can alter the structural features of humus which in turn disrupts soil-plant relationship [43]. 

However, a decrease in biological productivity on land is mostly caused by the presence of contaminants, which 

pose a negative impact on the environment [44]. Therefore, whether these contaminants are simple or complex, 

they will likely interfere with the physicochemical properties of soils and the resultant effects may impact 

adversely on ecosystems.  

 

Effect of Diesel on Plants 

Pollution problems related to diesel fuel may likely have been caused by different combinations of elements or 

compounds that may be present in the diesel fuel contaminant. It has been reported that diesel fuels are universal 

pollutants with a combination of low molecular weight alkanes and volatile alkanes [26]. It was also confirmed 

that diesel contains higher concentrations of persistent polycyclic aromatic hydrocarbons (PAHs), paraffin’s and 

total aromatic hydrocarbon than other distillate oils [45-46]. Studies revealed that spilt diesel oil in the 

ecosystem could bind aquatic sediment and soil thereby leading to land and groundwater contamination [45]. 

Therefore, the presence of this kind of pollutants in ecosystems may elevate the level of trace metals and PAHs 

in the soil.  

Natural trace elements take part in vital biological functions as indispensable micro-elements but can also be as 

environmental pollutants [47]. Micro-concentrations of trace metals support plant growth and development but 

the high bioavailability of excess metal ions in soil could affect plant development [48]. PAHs can undergo 

biotransformation and could alter root morphology resulting in alterations that could affect the influx of water 

and mineral elements needed for normal plant development [49]. Metabolic pathway redirection and cellular 

structural changes are some of the changes that result from elevated concentrations of PAHs and trace elements 

[50]. However, their mechanisms of action are not well understood [50]. Doran [51], reported that plant-assisted 
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remediation is limited by the knowledge of different enzymes involved and their metabolic pathways. This was 

also shown by the inadequate understanding of the molecular processes of plants in response to stress agents in 

vitro [52].  

The report by Zeng et al [53] further confirmed that morphological and physiological changes due to 

contaminant toxicity in plants are not well understood at the molecular levels. Some plant root cultures have 

been shown to be useful in the study of xenobiotic decontamination through identifying metabolic pathways 

without the possible complications in interpretation of findings resulting from microbial associations [54-57]. 

The in vitro synergistic strategy of using two different ornamental plants together was successful in the 

treatment of simulated textile dyes through their activated enzymes machinery [58].  

A biological remediation is an alternative approach that is offering the opportunity to degrade or at least reduce 

the environmental pollutants to less toxic materials using natural biological processes [59] that include the use 

of microbes, plants, and animals [60]. It is commonly considered a non-toxic, cost-efficient method [61] and is 

frequently carried out on site. As such, it has attracted a lot of attention from all over the world. The concept 

behind the use of microbes, plants, and animals for environmental clean-up can be based on certain biological 

principles and activities. However, the use of microbes and plants for the clean-up of PAH-contaminated sites 

has been experimentally tested with varying degrees of success [62]. 

Microbial remediation is a type of degradation that involves the use of microorganisms with their associated 

enzymes to dissipate most organic contaminants under controlled situations to a harmless state [63]. This 

technology depends upon many factors, including the concentrations of organic contaminants, mobility of the 

contaminants, access by the microbes to other nutrients, presence of activated enzymes (e.g. laccase 

(E.C.1.10.3.2) [64] manganese peroxidise [65]), and the ability to stimulate the numbers of microflora or 

microbial groups native to the contaminated sites that are capable of performing the required activities [66-67].  

In this method, microorganisms use the pollutants as a source of nutrients or energy [66, 68-69]. These abilities 

to change and utilise the contaminant as a source of energy can increase their numbers in the contaminated site 

and so improve their effectiveness. Microorganisms have been described as having developed various 

mechanisms of reacting to different types of environmental contaminants through transport across the cell 

membrane, biosorption to cell walls, entrapment in extracellular capsules, precipitation, complexation and 

oxidation-reduction reaction [22, 70-75]. Among the many reported challenges of microbial remediation is the 

inability to create uniform spatial distribution on a polluted medium such as soil [76]. Also, it may take a long 

time to reduce the level of contaminants, which may not always be acceptable [59]. Moreover, the application of 

microbes can only be operational if the ecological conditions are optimal for their development and activity 

[63].  

Bioremediation treatment includes land farming, biostimulation, bioaugmentation, and bioreactors. There are 

various limitations associated with these different bioremediation treatment options [77-78]. For instance, in the 

biostimulation treatment, additives are used to stimulate the functioning of microorganisms to speed up the 

remediation process [76]. This may affect other organisms present in the habitat [59]. Israr et al [63]  described 

possible concerns with the use of microbes, particularly if genetically modified microorganisms are released into 

a contaminated site during bioaugmentation treatment for remediation purposes.  

Plant-assisted bioremediation (phytoremediation), however, is the in-situ clean-up of PAH-contaminated sites 

on a large scale by encouraging large numbers of microorganisms around the plant root zones [79]. It is also 

defined as an environmental clean-up by plants and their related microbes [80-82].  

In the different studies of phytoremediation of PAHs, it was reported that plants could 

accumulate/sequester/chemically transform and localise toxic contaminants in different environmental media 

[29, 83-84]. It was also found that plants release enzymes that can act as a surfactant to increase the 

bioavailability of the contaminants and enhance the nutrient status of the soil [29, 83]. 

Organic and inorganic pollutants in solid, liquid and gaseous substrates can be phytoremediated [85]. Different 

types of inorganic pollutants have been phytoremediated, including macronutrients [85], trace elements [86], 

nonessential elements [85, 87] and radioactive isotopes [88-89]. In the case of organic contaminants such as 

chlorinated solvents [90], polychlorinated biphenyls (PCBs) [91] and PAHs [92], progressive achievements 

have been recorded using phytoremediation. 
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Figure 1: Schematic representation of pollutant fates during phytoremediation [93]  

 

Pilon-Smits [93] and Flathman and Lanza [94] categorised the phytoremediation mechanisms into five different 

subcategories: phytodegradation, phytoextraction, phytovolatilisation, phytostabilisation andphytostimulation  

(Figure 1). Phytostabilisation is the use of plants to neutralise contaminants in soil [95] while phytoextraction is 

the ability of plants to remove and gather contaminants in their tissues [87]. However, in a process called 

phytostimulation, plants can also increase the rate of the biodegradation processes of organic pollutants by using 

microorganisms around their root zones [96]. Plants have shown the ability to allow some contaminants to 

escape in volatile form through their tissues and such process is called phytovolatilisation [97]. McCutcheon and 

Schnoor [96]  described the process of phytodegradation as organic contaminants are degraded directly by plants 

using their enzymatic activities. These technologies are not independent in operations but rather can also occur 

simultaneously [98].  

 

Conclusion 

Increasing in the global demand for energy sources especially petroleum hydrocarbonshas been associated with 

pollution of the environment. The lack of proper containment strategies from the exploration and refining points 

to the transportation and down to the utilisation processes of the producthas increased the chances of the 

hydrocarbon spillage. Plant and their associated microorganism have shown potential to decontaminate or 

remove of PAH contaminants in the environmental media. 
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