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Abstract We propose the square root operator formalism for description of motion for a dark particle candidate. 

It turns out that such type particle moves randomly and fills in whole space. It seems that such particles do not 

create material structure of universe, like atoms, molecules, stars, planets and etc. due to their stochastic motion. 
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1. Introduction   

Recently, concept of dark particles and dark energy plays a vital role in the cosmological theory. In last decates 

many experimental and theoretical studies are carried out in this direction and have obtained many interesting 

results. However, nature of dark particles and dark energy is unclear and does not understood very well. 

Dark matter is a hypothetical type of matter distinct from baryonic matter (ordinary matter such as protons and 

neutrons), electrons, neutrinos and dark energy. Dark matter has never been directly observed; however, its 

existence would explain a number of otherwise puzzling astronomical observations [1], and its properties are 

inferred from its gravitational effects such as the motions of baryonic matter [2], gravitational lensing, its 

influence on the universe’s large-scale structure, on the formation of galaxies, and its effect on the cosmic 

microwave background (CMB). 

The standard model of cosmology indicates that the total mass- energy of the universe contains 4.9% ordinary 

matter, 26.8% dark matter and 68.3% dark energy [3]. Thus, dark matter constitutes 84.5% of total mass, while 

dark energy plus dark matter constitute 95.1% of total mass-energy content [4]. 

The dark matter hypothesis plays a central role in current modeling of cosmic structure formation, galaxy 

formation and evolution, and on explanations of the anisotropies observed in the cosmic microwave background 

(CMB). 

The most widely accepted hypothesis on the form for dark matter is that its composed of  weakly interacting 

massive particles that interact only through gravity and the weak force. 

In this article, we propose the square-root operator formalism for the description of a dark matter particle 

which possesses random properties with random momentum or random mass with the definite probabilistic 

measure:  

 𝜔(𝜌) =
1

𝜋

1

 1−𝜌2
 (1) 

 with properties:  

  
1

−1
𝑑𝜌𝜔(𝜌) = 1, (2) 

   
1

−1
𝑑𝜌𝜌𝜔(𝜌) = 0, (3) 

   
1

−1
𝑑𝜌𝜌2𝜔(𝜌) =

1

2
. (4) 
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2. The Green Functions of the Usual Particles 

We know that ordinary particles such as scalar, spinor, vector fields obey the usual differential equations [5,6]  

2.1. Scalar particle 

The homogeneous Klein-Gordon equation  

 (𝑚2 − ▭)𝒟(𝑥) = 0 (5) 

 has the solution  

 𝒟(𝑥) =
1

2𝜋
𝜖(𝑥0)𝛿(𝜆) −

𝑚

4𝜋 𝜆
𝜖(𝑥0)𝜃(𝜆)𝐽1(𝑚 𝜆), (6) 

 where 𝜆 = 𝑥0
2 − 𝑥 2,        ▭ =△ −

1

𝑐2

𝜕2

𝜕𝑡2. 

Moreover, the fundamental solution (the causal Green function) of the Klein-Gordon-Fock operator  

 (𝑚2 − ▭)𝐺𝑐(𝑥) = 𝛿4(𝑥) (7) 

 is given by  

 𝐺𝑐(𝑥) =
1

(2𝜋)4  𝑑4𝑘
𝑒−𝑖𝑘𝑥

𝑚2−𝑘2−𝑖𝜖
. (8) 

 An explicit form of this function is  

 𝐺𝑐(𝑥) =
1

4𝜋
𝛿(𝜆) −

𝑚

8𝜋 𝜆
𝜃(𝜆)[𝐽1(𝑚 𝜆) − 𝑖𝑁1(𝑚 𝜆)] 

 +
𝑚𝑖

4𝜋2 −𝜆
𝜃(−𝜆)𝐾1(𝑚 −𝜆). (9) 

Here 𝐽1(𝑥), 𝑁1(𝑥) and 𝐾1(𝑥) are the Bessel, the Bessel function of the second kind or the Neumann one (also 

denoted by 𝑌1(𝑥)) and the modified Bessel function of the second kind (sometimes 𝐾1(𝑥) is called the Mac’ 

Donald function), respectively.  
 

2.2. An even solution of the inhomogeneous D’Alembert equation 

 ▭𝐺0(𝑥) = −𝛿4(𝑥) (10) 

 is  

 𝐺0(𝑥) = 𝐺𝑐(𝑥)|𝑚=0 =
1

4𝜋
(𝛿(𝜆) −

𝑖

𝜋𝜆
) =

1

4𝜋
𝛿+(−𝜆) ≡

1

4𝜋2  
∞

0
𝑑𝑥𝑒𝑖𝑥(−𝜆). (11) 

 In this case, the photon Green function can be represented in the well-known form  

 𝐺𝜇𝜈
𝑝

(𝑥) =
𝑔𝜇𝜈

(2𝜋)4𝑖
 𝑑4𝑘

𝑒−𝑖𝑘𝑥

𝑘2+𝑖𝜖
 (12) 

2.3. The fundamental solution of the Green function for vector field 

satisfies the Prock equation  

  𝑔𝜇𝜈 +
1

𝑚2

𝜕2

𝜕𝑥𝜇 𝜕𝑥𝜈 𝐺𝜇𝜈
𝑐 (𝑥) = 𝛿4(𝑥), (13) 

 where  

 𝐺𝜇𝜈
𝑐 (𝑥) =  𝑔𝜇𝜈 +

1

𝑚2

𝜕2

𝜕𝑥𝜇 𝜕𝑥𝜈 𝐺𝑐(𝑥) (14) 

 or  

 𝐺𝜇𝜈
𝑐 (𝑥) =

1

(2𝜋)4  𝑑4𝑘𝑒−𝑖𝑘𝑥 (𝑔𝜇𝜈 −
𝑘𝜇 𝑘𝜈

𝑚2 ) ×
1

𝑚2−𝑘2−𝑖𝜖
. (15) 

 Here 𝐺𝑐(𝑥) is the Green function (9) for the Klein-Gordon equation (7). In this case, homogeneous equation of 

(13) has the solution  

 𝒟𝜇𝜈 (𝑥) = (𝑔𝜇𝜈 +
1

𝑚2

𝜕2

𝜕𝑥𝜇 𝜕𝑥𝜈
)𝒟(𝑥), (16) 

 where 𝒟(𝑥) is given by the formula (6). 

2.4. The fundamental solution or the Green function for the Dirac equation 

  𝑖𝛾𝜇 𝜕

𝜕𝑥𝜇 + 𝑚 𝑆𝑐(𝑥) = 𝛿4(𝑥) (17) 

 is given by the formulas  

 𝑆𝑐(𝑥) =
1

(2𝜋)4  𝑑4𝑝𝑒−𝑖𝑝𝑥 𝑚+𝑝 

𝑚2−𝑝2−𝑖𝜖
, (18) 

 where 𝑝 = 𝑝0𝛾
0 − 𝑝 𝛾 ,    𝛾𝜇  are the Dirac 𝛾-matrices.  
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3. The fundamental solution of the Green function for the Weyl equation  

  𝑚2 − ▭𝑊𝑐(𝑥) = 𝛿4(𝑥). (19) 

Long time ago H.Weyl [7] proposed the square-root operator formalism, like (19) in the field theory. However, 

because of mathematical difficulty how to work with the differential operator under the square-root, this 

formalism did not developed and instead of which Klein-Gordon formalism was accepted. 

It turns out that the Weyl equation (19) has remarkable properties and gives stochastic solutions over 

momentum variables 𝑝𝜇 ⇒ 𝜌𝑝𝜇  or equivalently over mass value 𝑚 ⇒ 𝜌𝑚, where 𝜌 is random variable with the 

measure (1). To get these properties, we consider the Green function 𝑊 𝑐(𝑝) in the momentum space [8]  

 𝑊 𝑐(𝑝) =
1

 𝑚2−𝑝2
 (20) 

and use the Feynman parametrization formula  

 
1

𝑎𝑛1𝑏𝑛2
=

Γ(𝑛1+𝑛2)

Γ(𝑛1)Γ(𝑛2)
 

1

0
𝑑𝑥𝑥𝑛1−1(1 − 𝑥)𝑛2−1 ×

1

[𝑎𝑥+𝑏(1−𝑥)]𝑛1+𝑛2
 (21) 

 In our case 𝑛1 = 𝑛2 = 1/2,    Γ(1/2) =  𝜋,    𝑚2 − 𝑝2 = (𝑚 − 𝑝 )(𝑚 + 𝑝 ),    𝑝 = 𝛾𝜇𝑝
𝜇 . The result reads  

 𝑊 𝑐(𝑝) =
1

𝜋
 

1

−1
𝑑𝜌

1

 1−𝜌2

𝑚+𝑝 𝜌

𝑚2−𝑝2𝜌2 . (22) 

 An another equivalent representation (20)  

 𝑊 1
𝑐
(𝑝) =

−1

𝑖 𝑝2−𝑚2
 

gives stochasicity over mass value 𝑚:  

 𝑊 1
𝑐
(𝑝) =

1

𝜋
 

1

−1
𝑑𝜌

1

 1−𝜌2

1

𝑖

𝑚𝜌+𝑝 

𝑚2𝜌2−𝑝2. (23) 

 These two representations (22) and (23) are absolutely equivalent and only have different physical 

interpretation. The first case (22) gives the well-known spinor propagator or the causal Green function  

 𝑊𝑠𝑝
𝑐 (𝑥) =

1

𝜋
 

1

−1

𝑑𝜌

 1−𝜌2
×

1

(2𝜋)4  𝑑4𝑝𝑒−𝑖𝑝𝑥 𝑚+𝑝 𝜌

𝑚2−𝑝2𝜌2−𝑖𝜖
 (24) 

with stochastic momentum 𝑝𝜇 → 𝜌𝑝𝜇  and stochastic energy value  

 𝜔1 =
1

|𝜌|
 𝑚2 + 𝑝 2𝜌2. (25) 

Moreover, due to property  

 
1

𝜋
 

1

−1
𝑑𝜌

𝜌

 1−𝜌2
= 0, 

the case (22) includes also scalar particles with stochastic momentum and its Green function takes the form  

 𝑊𝑠𝑐
𝑐 (𝑥) =

𝑚

𝜋
 

1

−1
𝑑𝜌

1

 1−𝜌2

1

(2𝜋)4 ×  𝑑4𝑝𝑒−𝑖𝑝𝑥 1

𝑚2−𝑝2𝜌2−𝑖𝜖
. (26) 

The case (23) leads to the spinor propagator with the random mass 𝑚 → 𝑚𝜌:  

 𝑊1𝑠𝑝
𝑐 (𝑥) =

1

𝜋
 

1

−1

𝑑𝜌

 1−𝜌2

1

(2𝜋)4𝑖
×  𝑑4𝑝𝑒−𝑖𝑝𝑥 𝑚𝜌+𝑝 

𝑚2𝜌2−𝑝2−𝑖𝜖
 (27) 

with stochastic energy  

 𝜔2 =  𝑚2𝜌2 + 𝑝 2 . (28) 

 Averaged energy (25) for the first case gives singular value:  

 < 𝜔1 >=
2

𝜋
 

1

0

𝑑𝜌

𝜌

 𝑚2+𝑝 2𝜌2

 1−𝜌2
. (29) 

In contrary, the second case (23) gives a finite value for an averaged energy  

 < 𝜔2 >=
2

𝜋
 

1

0
𝑑𝜌

1

 1−𝜌2
 𝑚2𝜌2 + 𝑝 2 =

2 𝑚2+𝑝 2

𝜋
𝐸  

𝜋

2
,

𝑚

 𝑚2+𝑝 2
  (30) 

and  

 < 𝜔2
2 >=

1

2
𝑚2 + 𝑝 2. (31) 

Here 𝐸  
𝜋

2
,

𝑚

 𝑚2+𝑝 2
  is the elliptic integral of the second kind  

 𝐸(𝜑, 𝑘) =  
𝜑

0
 1 − 𝑘2sin2𝛼𝑑𝛼. 

Notice that the first case leads to interesting consequences that in the square-root formalism averaged rest mass 

goes to infinite  
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 < 𝜔1 > |𝑝 =0 = ∞. 

It means that the first case gives super heavy dark particle. It is natural that in this formalism the Einstein 

formula 𝐸 = 𝑚𝑐2 for usual matter particles does changed and acquires the form  

 < 𝐸0 >=
2𝑚

𝜋
𝑐2 (32) 

 due to formula (30). 

In this paper, we propose that square-root or Weyl particles maybe played a role as dark matter particles in the 

whole Universe. Due to random diffusion, like the Brown motion detection of dark matter particles by 

experiments encountries difficults, therefore they fill in whole empty space and do not make up usual matter 

structure.  

 

4. Explicit Forms of Green functions for Square-Root Particles (Dark Particles) in x-space  

4.1. Scalar particle case with random momentum 𝒑𝝁𝝆 

In accountancy with the formulas (9) and (26), one gets  

 𝑊𝑠𝑐
𝑐 (𝑥) =

𝑚

𝜋
 

1

−1
𝑑𝜌

1

 1−𝜌2

1

𝜌2 ×  
1

4𝜋
𝛿(𝜆) −

𝑚

8𝜋 𝜆𝜌
𝜃(𝜆)  𝐽1  

𝑚

𝜌
 𝜆   − 

  −   𝑖𝑁1  
𝑚

𝜌
 𝜆  +

𝑚𝑖

4𝜋2 −𝜆

1

𝜌
𝜃(−𝜆)𝐾1  

𝑚

𝜌
 −𝜆  . (33) 

4.2. Spinor particle with stochastic momentum 𝒑𝝁𝝆 

By using the formulas (24) and (9) one gets  

 𝑊𝑠𝑝
𝑐 (𝑥) =

1

𝜋
 

1

−1

𝑑𝜌

 1−𝜌2

1

𝜌
 𝑖𝛾𝜈 𝜕

𝜕𝑥𝜈 +
𝑚

𝜌
  

1

4𝜋
𝛿(𝜆) −

𝑚

8𝜋𝜌 𝜆
𝜃(𝜆) ×  

  𝐽1  
𝑚

𝜌
 𝜆  −   𝑖𝑁1  

𝑚

𝜌
 𝜆  +

𝑖𝑚

4𝜋2𝜌 −𝜆
𝜃(−𝜆)𝐾1  

𝑚

𝜌
 −𝜆  . (34) 

4.3. Spinor particle with stochastic particle’s mass 𝒎𝝆 

Taking into account the formulas (9) and (27) it easy to find the following causal Green-Function for a dark 

particle  

 𝑊𝑠𝑝
𝑐 (𝑥) =

1

𝜋
 

1

−1
𝑑𝜌

1

 1−𝜌2
 𝑖𝛾𝜈 𝜕

𝜕𝑥𝜈 + 𝑚𝜌  
1

4𝜋
𝛿(𝜆) −

𝑚𝜌

8𝜋 𝜆
𝜃(𝜆) ×   

  𝐽1 𝑚𝜌 𝜆  −   𝑖𝑁1 𝑚𝜌 𝜆  +
𝑖𝑚𝜌

4𝜋2 −𝜆
𝜃(−𝜆)𝐾1 𝑚𝜌 −𝜆  . (35) 

From the formulas (33)-(35) one can conclude that the Green function or propagator of a dark scalar particle 

(33) and causal Green function for a dark spinor particle (34) are singular functions with respect to integration 

over random variable 𝜌 and therefore they can not play a role as causal Green functions. 

In contrary, the causal Green function (35) is finite. It means that stochasticity in mass variable for a square-root 

or dark particle has definite physical meaning. 

In conclusion, notice that from the formulas (23) and (27) one can conclude that a dark neutrino like particle 

coincides with the usual neutrino in the limit 𝑚 → 0, due to the formula (2). It means that if an usual neutrino 

possesses even extremely small mass then neutrinos play a vital role in dark matter content of the Universe. 

 

5. A Solution of the Square-Root Klein-Gordon Equation 

Let us consider the equation  

  (𝑚2 − ▭)Φ(𝑥) = 0. (36) 

Here we use the following formal transformation  

 
 (𝑚2−▭)⋅ (𝑚2−▭)

 (𝑚2−▭)
Φ(𝑥) =

1

𝜋
 

1

−1

𝑑𝜌

 1−𝜌2

𝑚𝜌+𝜕 

𝑚2𝜌2−▭
(𝑚2 − ▭)Φ(𝑥) = 0. (37) 

In the momentum representation a solution of equation (37) takes the form  

 Φ(𝑥) =
1

𝜋
 

1

−1

𝑑𝜌

 1−𝜌2

1

(2𝜋)4  𝑑4𝑝𝑒𝑖𝑝𝑥𝜑 (𝑝) × 𝛿(𝑚2 − 𝑝2)
𝑚𝜌+𝑝 

𝑚2𝜌2−𝑝2, (38) 

where  

 Φ(𝑥) =
1

(2𝜋)4  𝑑4𝑝𝑒𝑖𝑝𝑥 𝜑 (𝑝), 
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 𝛿(𝑚2 − 𝑝2) =
1

2𝜔𝑝
 𝛿(𝑝0 + 𝜔𝑝) + 𝛿(𝑝0 − 𝜔𝑝) , 

  𝜔𝑝 =  𝑚2 + 𝑝 2. 

 An another equivalent representation for (37) takes the form  

 
1

𝜋
 

1

−1

𝑑𝜌

 1−𝜌2

𝑚+𝜌𝜕 

𝑚2−𝜌2▭
(𝑚2 − ▭)Φ(𝑥) = 0 (39) 

 or  

 Φ(𝑥) =
1

𝜋
 

1

−1

𝑑𝜌

 1−𝜌2
×

1

(2𝜋)4  𝑑4𝑝𝑒𝑖𝑝𝑥 𝛿(𝑚2 − 𝑝2)
𝑚+𝜌𝑝 

𝑚2−𝜌2𝑝2 𝜑 (𝑝). (40) 

 Here  

 
1

𝑚2−𝜌2𝑝2 =
1

𝑚2(1+𝜌2)+2𝜌2𝑝 2 ,    𝑓𝑜𝑟    𝑝0 = −𝜔𝑝 , 

 or  

 
1

𝑚2−𝜌2𝑝2 =
1

𝑚2(1−𝜌2)
,    𝑓𝑜𝑟    𝑝0 = 𝜔𝑝  

 𝑝 = 𝛾𝜈𝑝𝜈 ,    𝜕 = 𝑖𝛾𝜈 𝜕

𝜕𝑥𝜈 . 

 

6. The Pauli-Jordan solution of the Square-Root Klein-Gordon Equation  

In this case, equation (36) takes the form  

  𝑚2 − ▭𝑃(𝑥) = 0 (41) 

where  

 𝑃1(𝑥) =
1

𝜋
 

1

−1

𝑑𝜌

 1−𝜌2  
∞

0
𝑑𝛼𝑒−𝛼(𝑚2𝜌2−▭) ×  𝑚𝜌 + 𝑖𝛾𝜈 𝜕

𝜕𝑥𝜈 𝒟𝐺𝐹(𝑥). (42) 

 or  

 𝑃2(𝑥) =
1

𝜋
 

1

−1

𝑑𝜌

 1−𝜌2  
∞

0
𝑑𝛼𝑒−𝛼(𝑚2−𝜌2▭)  𝑚 + 𝑖𝜌𝛾𝜈 𝜕

𝜕𝑥𝛾 𝒟𝐺𝐹(𝑥). 

Here 𝒟𝐺𝐹(𝑥) is given by the formula (6).  

7. Dark Photons 

An Even Solution of the Square-Root Inhomogeneous D’Alembert equation  

  ▭𝑊0(𝑥) = 𝛿4(𝑥) (43) 

is given by the following two equivalent expressions in the momentum space:  

 𝑊 0
1(𝑝) =

1

𝜋
 

1

−1
𝑑𝜌

1

 1−𝜌2

𝑝0+𝑝 𝜌

𝑝0
2−𝑝 2𝜌2 (44) 

or  

 𝑊 2
0(𝑝) =

1

𝜋
 

1

−1
𝑑𝜌

1

 1−𝜌2

𝜌𝑝0+𝑝 

𝑝0
2𝜌2−𝑝 2, (45) 

where 𝑝 = 𝜍𝑖𝑝𝑖 ,    𝜍
𝑖  are the Pauli matrices. 

These two formulas (44) and (45) in x-space take the forms  

 𝑊0
1(𝑥) =

1

𝜋
 

1

−1
𝑑𝜌

1

 1−𝜌2
 𝑖𝜌−1 𝜕

𝜕𝑡
+ 𝑖𝜍 

𝜕

𝜕𝑥 
 

1

4𝜋
 𝛿(𝜆′) −

𝑖

𝜋𝜆 ′
 , (46) 

  𝜆′ = 𝑥0
2𝜌2 − 𝑥 2, 

 and  

 𝑊0
2(𝑥) =

1

𝜋
 

1

−1
𝑑𝜌

1

𝜌 1−𝜌2
 𝑖𝜌

𝜕

𝜕𝑡
+ 𝑖𝜍 

𝜕

𝜕𝑥 
 

1

4𝜋
 𝛿(𝜆′′) −

𝑖

𝜋𝜆 ′ ′
 , (47) 

  𝜆′′ = 𝑥0
2/𝜌2 − 𝑥 2. 

 Here  

 𝐺0(𝑥) =
1

4𝜋
 𝛿(𝜆) −

𝑖

𝜋𝜆
  (48) 

corresponds to the Green function (the causal function ) for a massless particle, like the photon, which can be 

represented in the well-known form  

 (𝐺0
𝑝

(𝑥))𝜇𝜈 =
𝑔𝜇𝜈

(2𝜋)4

1

𝑖
 𝑑4𝑝

𝑒−𝑖𝑝𝑥

𝑝2+𝑖𝜖
 (49) 

Averaged energy for a dark photon for the second case takes the form  
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 < 𝐸20
𝛾

>=
1

𝜋
 

1

−1
𝑑𝜌

1

 1−𝜌2

1

|𝜌 |
|𝑝 | =

2

𝜋
 

1

0

𝑑𝜌

𝜌 1−𝜌2
|𝑝 |. (50) 

This integral is diverged and therefore the second case does not accepted. Moreover, the first case leads to the 

finite energy form  

 < 𝐸10
𝛾

>=
1

𝜋
 

1

−1
𝑑𝜌

1

 1−𝜌2
|𝜌||𝑝 | =

2

𝜋
 

1

0
𝑑𝜌𝜌

1

 1−𝜌2
|𝑝 | =

2

𝜋
|𝑝 | (51) 

for the dark photon. 

Thus, family of dark matter particles consist of dark scalar, dark spinors, dark photons and dark neutrinos which 

coincide with usual neutrinos. All these particles possess stochastic properties with respect to the probabilistic 

measure (1).  

Appendix A 

It turns out that the probabilistic measure (1) plays a role as a filter or an intermediate mathematical trick in the 

square-root differential calculus. Due to this filter solutions of square-root differential equations describe wave 

properties of dark matter particles. To show this we consider very simple system-harmonic motion defining by 

the differential equation  

  𝑎2 +
𝑑2

𝑑𝑡2 𝑥(𝑡) = 0, (52) 

 solution of which is  

 𝑥(𝑡) = 𝐴sin𝑎𝑡. (53) 

 Now let us turn to the square-root equation  

  𝑎2 +
𝑑2

𝑑𝑡2 𝑋(𝑡) = 0, (54) 

 where the probabilistic measure (1) appears:  

 
1

 𝑎2+
𝑑2

𝑑𝑡2

𝑓(𝑡) =
1

𝜋
 

1

−1

𝑑𝜌

 1−𝜌2  
∞

0
𝑑𝛼𝑒

−𝛼(𝑎2+𝜌2 𝑑2

𝑑𝑡2)
 𝑎 + 𝑖𝜌

𝑑

𝑑𝑡
 𝑓(𝑡). (55) 

Here  

 𝑒
−𝛼𝜌2 𝑑2

𝑑𝑡2 = 1 − 𝛼𝜌2 𝑑2

𝑑𝑡2 +
𝛼2𝜌4

2!

𝑑4

𝑑𝑡4 − ⋯ =  ∞
𝑛=0

(−1)𝑛

𝑛 !
𝛼𝑛𝜌2𝑛 𝑑2𝑛

𝑑𝑡2𝑛 , 

 and we use the following calculations   

 
1

𝜋
 

1

−1

𝑑𝜌

 1−𝜌2
𝜌2𝑛 =

1

 𝜋

Γ(𝑛+
1

2
)

Γ(𝑛+1)
. 

   
∞

0
𝑑𝛼𝛼𝑛𝑒−𝛼𝑎2

= (𝑎2)−1−𝑛Γ(𝑛 + 1). 

 
1

𝜋
 

1

−1

𝑑𝜌

 1−𝜌2
𝜌2𝑛+1 = 0. 

 Then, we have nice formula  

 𝒟 𝑓(𝑥) =
1

 𝑎2+
𝑑2

𝑑𝑡2

𝑓(𝑡) =
1

𝑎 𝜋
 ∞

𝑛=0 (−1)𝑛
Γ(𝑛+1/2)

𝑛 !

1

𝑎2𝑛  
𝑑2

𝑑𝑡2 
𝑛

𝑓(𝑡). (56) 

In particular:  

 𝒟 𝐶 =
1

𝑎
𝐶,        𝒟 𝑡 =

1

𝑎
𝑡,  

 𝒟 𝑡2 =
1

𝑎
𝑡2 −

1

𝑎3 , 

 𝒟 sin𝑏𝑡 = Λ(𝑎, 𝑏)sin𝑏𝑡, 

 𝒟 cos𝑏𝑡 = Λ(𝑎, 𝑏)cos𝑏𝑡, 

 𝒟 𝑒𝑖𝑏𝑡 = Λ(𝑎, 𝑏)𝑒𝑖𝑏𝑡 , 

 𝒟 𝑒−𝑖𝑏𝑡 = Λ(𝑎, 𝑏)𝑒−𝑖𝑏𝑡 , 

 𝒟 𝑒𝑏𝑡 = Λ′(𝑎, 𝑏)𝑒𝑏𝑡 , 

 𝒟 𝑒−𝑏𝑡 = Λ′(𝑎, 𝑏)𝑒−𝑏𝑡 , 

 and so on. Here  

 Λ(𝑎,𝑏) =
1

𝑎 𝜋
 ∞

𝑛=0
Γ(𝑛+1/2)

𝑛 !
 
𝑏2

𝑎2 
𝑛

=
1

𝑎
 1 −

𝑏2

𝑎2 
−1/2

, (57) 
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  Λ′(𝑎, 𝑏) =
1

𝑎 𝜋
  ∞

𝑛=0
(−1)𝑛Γ(𝑛+1/2)

𝑛 !
 
𝑏2

𝑎2 
𝑛

=
1

𝑎
 1 +

𝑏2

𝑎2 
−1/2

. (58) 

 So that  

 𝒟 sin𝑏𝑡 =
sin 𝑏𝑡

 𝑎2−𝑏2
, 

 𝒟 cos𝑏𝑡 =
cos 𝑏𝑡

 𝑎2−𝑏2
. 

Finally, equation (54) takes the form  

 𝑁 𝑋(𝑡) =  𝑎2 +
𝑑2

𝑑𝑡2 𝑋(𝑡) =
 𝑎2+

𝑑2

𝑑𝑡2 

 𝑎2+
𝑑2

𝑑𝑡2

𝑋(𝑡) = (59) 

 =  𝑎2 +
𝑑2

𝑑𝑡2 𝒟 𝑋(𝑡) = 𝒟  𝑎2 +
𝑑2

𝑑𝑡2 𝑋(𝑡). 

In particular,  

  𝑎2 +
𝑑2

𝑑𝑡2 sin𝑏𝑡 =
𝑎2−𝑏2

 𝑎2−𝑏2
sin𝑏𝑡, 

  𝑎2 +
𝑑2

𝑑𝑡2 cos𝑏𝑡 =
𝑎2−𝑏2

 𝑎2−𝑏2
cos𝑏𝑡. 

Therefore, the square-root differential equation  

  𝑎2 +
𝑑2

𝑑𝑡2 𝑋(𝑡) = 0 (60) 

describes also harmonic oscillator 𝑋(𝑡) = 𝐴sin𝑎𝑡 due to filter properties of the probabilistic measure (1). 

Generalization of the equation (60)  

  𝑚2 − ▭𝐺𝑐(𝑥) = 𝛿4(𝑥) (61) 

 or  

 
(𝑚2−▭)

 𝑚2−▭
𝐺𝑐(𝑥) = 𝛿4(𝑥), (62) 

  ▭ = −
1

𝑐2

𝜕2

𝜕𝑡2 +
𝜕2

𝜕𝑥 2  

leads to the description of the generalized causal Green function for square-root Klein-Gordon equation, where  

 𝐺𝑐(𝑥) =
1

 𝑚2−▭
𝛿4(𝑥) =

1

𝑚 𝜋
 ∞

𝑛=0
(−1)𝑛

𝑛 !

Γ(𝑛+1/2)

𝑚2𝑛 (▭)𝑛𝛿4(𝑥) (63) 

is the particular case of Efimov’s nonlocal or generalized function [9] describing a nonlocal or extended object. 

This object is distributed in a domain determined by the length  

 𝐿 =
ℏ

𝑚𝑐
. 

It is obviously that the plane wave 𝜓(𝑥) =
1

(2𝜋)3/2 𝑒
𝑖𝑝𝑥  (𝑝𝑥 = 𝑝0𝑥

0 − 𝑝 𝑥 ) satisfies the square-root differential 

equation  

  𝑚2 − ▭𝑒𝑖𝑝𝑥 =
𝑚2−𝑝2

 𝑚2−𝑝2
𝑒𝑖𝑝𝑥 = 0, (64) 

if 𝑚2 = 𝑝0
2 − 𝑝 2, where we have used the formula (63) with the change 𝛿4(𝑥) ⇒ 𝑒𝑖𝑝𝑥 .  

Appendix B (A NEW FORCE) 

It turns out that in our scheme, a new force appears, we call it a fifth force or a dark force due to exchange of 

square-root or dark matter particles with the propagator 1/ 𝑚2 + 𝑝 2 in the momentum space in the static limit. 

We know that the Coulomb and Yukawa potentials 𝑈𝑐 , 𝑈𝛾  are related with the photon and scalar particles 

propagators in the static limit by the following formulas:  

 𝑈𝐶(𝑟) =
𝑒

(2𝜋)3  𝑑3𝑝𝑒𝑖𝑝 𝑟 1

𝑝 2 =
𝑒

4𝜋𝑟
, (65) 

 𝑈𝛾(𝑟) =
𝑔

(2𝜋)3  𝑑3𝑝𝑒𝑖𝑝 𝑟 1

𝑚2+𝑝 2 =
𝑔

4𝜋

𝑒−𝑚𝑟

𝑟
. (66) 

Then by analogous with these formulas, we obtain a new potential  

 𝑈𝐷(𝑟) =
𝜆

(2𝜋)3  𝑑3𝑝𝑒𝑖𝑝 𝑟 1

𝑚2+𝑝 2 =
𝜆

2𝜋2  
m

r
 𝐾1(𝑚𝑟), (67) 



Namsrai K                                                 Journal of Scientific and Engineering Research, 2019, 6(9):176-183 

 

Journal of Scientific and Engineering Research 

183 

 

Where 𝐾1(𝑧) is the Mac Donald function, 𝑒, 𝑔 and 𝜆 are some constants. Asymptotic behavior of this potential 

takes the form  

 𝑈𝐷(𝑟) =  

𝜆

4𝜋2 𝑚2ln
𝐶⋅𝑧

2
𝑧 = 𝑚𝑟 → 0

𝜆

4𝜋2

𝑚2

𝑧
 

𝜋

2𝑧
𝑒−𝑧 , 𝑧 = 𝑚𝑟 → ∞

  (68) 

 𝐶 = 0.57721566490 …. 

It means that a dark particle potential is short distance like the Yukawa one.  
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