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Abstract The method of characteristics is used to exactly the problem of unsteady convection boundary layer 

flow along a horizontal surface embedded in an anisotropic porous medium saturated by a non-Newtonian fluid. 

The porous medium is anisotropic in permeability with its principal axes oriented in a direction that is oblique 

to the gravity vector. A step increase in wall temperature or in surface heat flux is considered. The modified 

Darcy power-law model proposed by Pascal [22, 23] and the generalized Darcy’s law describing the saturating 

flow through the porous matrix, are used characterize the non-Newtonian fluid behavior. Scale analysis is 

applied to predict the order of magnitudes involved in the boundary layer regime. Analytical expressions are 

obtained for the boundary layer thickness and the mean Nusselt number in terms of the modified-Darcy 

Rayleigh number, the power-law exponent, the anisotropic permeability ratio, and the orientation angle of the 

principal axes. It is demonstrated that both the power-law exponent and the anisotropic properties have a strong 

influence on the heat transfer rate. 
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Introduction   

The study of convective heat transfer in porous media is of great pratical importance and  has thermal 

engineering applications in several areas such as geothermal engineering, cooling of electronic systems, porous 

journal bearings, thermal insulation systems, petroleum recovery, filtration processes ceramic processing, 

chromatography and ground water pollution. In a review article, Cheng [1] has discussed various works done in 

this field as applied to geothermal. 

A cursory inspection of the existing references on convective external flow in porous media reveals that, in 

general, steady-state phenomena have been extensively studied, whereas unsteady phenomena have received 

relatively much less attention. The mechanism causing an unsteady flow may either act at the boundaries, and 

this may be through a change in one or more of the dependent variables, or it may be present within the fluid 

volume. Examples of the former include unsteadiness resulting from the movement of the system boundaries 

relative to the fluid and changing the upstream or the inlet conditions. Unsteadiness of the latter type results 

from changing the body forces, wall and internal energy generation rates, or the pressure gradients. More 

complex unsteadiness may include several of these effects simultaneously. Johnson and Cheng [2] have done a 

systematic analysis on the basis of the boundary-layer and Darcy approximations, regarding the possibility of 

similarity solutions for various wall temperature functions. These authors were the first to show that only very 

specific solutions exist for unsteady free convection about an inclined flat plate in a porous medium, and to 

summarize all the physical realizable similarity solutions. Raptis [3] has studied analytically unsteady two-

dimensional free convective flow through a porous medium bounded by an infinite vertical plate, when the 
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temperature of the plate is oscillating with the time about a constant non-zero mean value. The effects of the 

parameter of frequency on the velocity field were considered. Singh et al. [4] have extended theses analyses in 

solving the problem by asymptotic expansions development in powers of the frequency parameter, and 

discussed the effects of physical parameters on the velocity and temperature fields. Cheng and Pop [5] have 

used the method of integral relations to study the transient free convection about a vertical flat plate embedded 

in a porous medium and demonstrated the growth of the boundary-layer thickness for the case of a step increase 

in wall temperature. 

In all the studies discussed earlier, the fluid saturating the porous medium was assumed to be Newtonian. 

However, in several of the engineering applications listed at the beginning of this section (such as oil recovery, 

food processing, the spreading of contaminants in the environment and in various processes in the chemical 

materials industry) the fluid saturating the porous matrix is necessarily Newtonian. For example, in the 

literature, the number of existing works in the limit of thermal convection in a porous medium saturated with a 

non-Newtonian fluid driven by temperature gradients alone is very limited. To this end, Chen and Chen [6] 

studied numerically the problem of boundary layer free convection about an isothermal vertical plate in a porous 

medium saturated by a power -law index fluid. Poulikakos and Spatz [7] investigated the effect of non-

Newtonian natural convection at a melting front in a permeable matrix. Their results documented the 

dependence of the local heat transfer rate at the melting front on the type of power-law fluid saturating the 

porous matrix. Recently, Gorla et al. [8] presented a no similar boundary layer analysis for the problem of mixed 

convection in power-law type non-Newtonian fluids along horizontal surfaces with variable temperature 

distribution. A discussion of their work is provided for the effect of viscosity index on the surface heat transfer 

rate. Also, Gorla and Kumari [9] have presented a similarity solution for the problem of free convection 

boundary layer in power-law type non-Newtonian fluid along a horizontal plate with variable wall temperature 

or heat flux distribution. Numerical solutions were obtained for the flow and temperature fields for cases of 

variable surface temperature and variable surface heat flux and for the viscosity index. 

Moreover, in all the above studies the porous media were assumed to be isotropic whereas, in several 

applications, the porous materials are anisotropic. Despite this fact, natural convection in such anisotropic 

porous media has received relatively little attention. The effects of an anisotropic permeability on thermal 

convection in a porous medium began with the investigation of Castinel and Combarnous [10], concerning the 

onset of motion in a horizontal layer heated from below, and continued with the works of Epherre [11], 

Kvernvold and Tyvand [12] and Nilsen and Storesletten [13]. Natural convection within enclosures heated from 

the side was investigated by Kimura et al [14] and Ni and Beckermann [15], for the case when one of the 

principal axes of anisotropy of permeability is aligned with gravity and by Zhang [16], Degan et al. [17] and 

Degan and Vasseur [18] when the principal axes are inclined with respect to gravity. It was demonstrated by 

these authors that the effects of the anisotropy considerably modify the convective heat transfer. Recently, the 

effects of anisotropy on the boundary-layer free convection over an impermeable vertical plate, for the case 

when one of the principal axes of anisotropy is along the plate, were investigated by Ene [19], using the method 

of integral relations. It was concluded that, if the permeability in the direction normal to the plate is greater than 

the permeability along the plate, then there is an increase in the temperature field. This investigation was 

extended by Vasseur and Degan [20] for the case when the porous medium is anisotropic in permeability with 

its principal axes oriented in a direction that is oblique to the gravity vector. Within the framework of boundary-

layer approximations, similarity solutions are obtained for the case where wall temperature varies as a power 

function of distance from the leading edge. Solving numerically the full governing equations by using a finite-

difference procedure, these authors demonstrated that the anisotropic parameters greatly influence the local heat 

transfer rates. Recently, Degan et al. [21] have investigated transient free convection boundary layer flow along 

a vertical surface embedded in an anisotropic porous medium saturated by a non-Newtonian fluid. Considering a 

step increase in wall temperature or surface heat flux, and using the method of characteristics, it was seen that 

both the power-law index and the anisotropic properties of the porous matrix have a strong influence on the 

leant transfer rate. 

The present paper describes an analytical procedure for obtaining an exact solution for unsteady natural 

convection from a horizontal plate embedded in an anisotropic porous medium saturated by a non-Newtonian 
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fluid. A step increase in wall temperature or in surface heat flux is considered. The porous medium is 

anisotropic in permeability with its principal axes oriented in a direction that is oblique to the gravity vector. 

Combining the modified Darcy power-law model proposed by Pascal [22,23] and the generalized Darcy’s law 

proposed by Bear [24], a characterization of the saturating flow through the porous matrix is used to describe the 

non-Newtonian fluid behavior. In the large Rayleigh number limit, the boundary layer equation are solved 

analytically upon introducing a scale analysis to predict the order-of- magnitudes involved in the boundary layer 

regime. 

          

2. Mathematical Formulation  

We consider here the problem of unsteady heating of a horizontal impermeable plate embedded in a saturated 

porous medium characterized by an anisotropic permeability. The 𝑥  and 𝑦 axes are aligned with the horizontal 

and the vertical respectively. The saturating fluid is a non-Newtonian fluid of power-law behavior and the 

porous medium is at a uniform temperature 𝑇∞ .          

                  
Figure 1: Physical model and coordinate system 

At  𝑡 = 0, the temperature of the surface is suddenly increased to the constant value 𝑇𝑤 . The anisotropy of the 

porous medium is characterized by the anisotropy ratio 𝐾∗ = 𝐾1 𝐾2  and the orientation angle 𝜃, defined as the 

angle between the horizontal direction and the principal axis with the permeability 𝐾2. It is assumed that the 

fluid and the porous medium are everywhere in local thermodynamic equilibrium. The pressure and the 

temperature are such that the fluid remains in the liquid phase. The thermophysical properties of the fluid are 

assumed constant, except for the density in the buoyancy term in the momentum equation (i.e., the Boussinesq 

approximation).  

In accordance with previous reports given by Pascal [22,23] and following Bear [24], the model of laminar flow 

of a non-Newtonian power-law fluid through the porous medium, describing the generalized Darcy’s law, can 

be written as follows. 

                                                                           𝑽 = −
𝑲

𝜇𝑎
𝛁𝑃                                                                               (1) 

                                                                     𝜇𝑎 =  𝜖(𝑢2 + 𝑣2)(𝑛−1) 2                                                               (2) 

                                                          𝜀 =
2𝜇

8 𝑛+1 2 (𝛾 𝐾1𝐾2)(𝑛−1) 2 (1 + 3𝑛)𝑛
                                            (3) 

Many of the inelastic non-Newtonian fluid encountered in engineering processes are known to follow a power-

law model in which the pressure drop is proportional to the mass flow rate. 

In the above equation, 𝑽 is the superficial velocity, 𝛾 the porosity of the porous medium, 𝜇a the apparent 

viscosity, 𝜇  the consistency index and 𝑛 the power-law index. In the above model, the rheological parameters 𝜇  
and  𝑛 are assumed to be temperature independent. 

The equations describing conservation of mass, momentum and energy for the present problem are, respectively 

                                                                 ∇.𝐕 = 0                                                                                               (4) 

                                                                       𝐕 = −
𝐊

𝜇𝑎
 ∇𝑃 + 𝜌𝑔                                                                     (5) 

𝐓𝐰  or  𝐪𝐰 

𝐓∞  ,  𝐮∞ 
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                                                                  𝜍
𝜕𝑇

𝜕𝑡
+ ∇.  𝐕𝑻 − 𝛼𝛁𝑻 = 𝟎                                                              (6) 

                                                                  𝜌 = 𝜌∞ 1 − 𝛽 𝑇 − 𝑇∞                                                                     (7) 

In the above equations, 𝑇 is the local equilibrium temperature of the fluid and the porous matrix, 𝑔 the 

gravitational acceleration, 𝑃 the pressure, 𝑡  the time, 𝛼 = 𝑘  𝜌𝑐𝑝 𝑓  the thermal diffusivity (𝑘 the thermal 

conductivity of fluid/porous matrix combination.  𝜌𝑐𝑝 𝑓  the heat capacity of the fluid), 𝜍 =  𝜌𝑐𝑝 𝑝   𝜌𝑐𝑝 𝑓   the 

heat capacity ratio, 𝛽 the coefficient of thermal expansion of the fluid and 𝜌 the density. The symmetrical 

second-order permeability tensor K is defined as  

                                             𝐊 =   
𝐾1 cos2 𝜃 +𝐾2sin2 𝜃  𝐾1 − 𝐾2 sin 𝜃 cos𝜃

 𝐾1 − 𝐾2 sin 𝜃 cos 𝜃 𝐾2 cos2 𝜃 + 𝐾1sin2 𝜃
                                       (8) 

           Eliminating the pressure term by taking the curl of equation (5) and making use of equation (4), we 

obtain a single momentum, which reads 

      𝑎
𝜕𝑢

𝜕𝑦
+ 𝑐  

𝜕𝑣

𝜕𝑦
−
𝜕𝑢

𝜕𝑥
 − 𝑏

𝜕𝑣

𝜕𝑥
=

1

𝜇𝑎
 
𝜕𝜇𝑎
𝜕𝑥

 𝑏𝑣 + 𝑐𝑢 −
𝜕𝜇𝑎
𝜕𝑦

 𝑎𝑢 + 𝑐𝑣    + 𝐾1  𝑔𝜌∞𝛽
𝜕𝑇

𝜕𝑥
                       (9)  

Where 

                                                                            

𝑎 = cos2 𝜃 + 𝐾∗ sin2 𝜃
𝑏 = sin2 𝜃 +𝐾∗cos2 𝜃

𝑐 =
1

2
 1 − 𝐾∗ 𝑠𝑖𝑛2𝜃

                                                                  (10) 

 

3. Scale Analysis  

In this section, as 𝑡 increases, the convection effect increases and we consider the boundary layer regime for 

which most of the fluid motion is restricted to a thin layer 𝛿 along the horizontal plate. From the momentum 

equation, equation (9), it is clear that we may use the boundary-layer hypothesis only when the following 

conditions 

                                                                             

  𝑎
𝜕𝑢

𝜕𝑦
≫   𝑐

𝜕𝑣

𝜕𝑦
                                                                           (11)

  𝑎
𝜕𝑢

𝜕𝑦
≫   𝑐

𝜕𝑢

𝜕𝑥
                                                                          (12)

  𝑎
𝜕𝑢

𝜕𝑦
≫   𝑏

𝜕𝑣

𝜕𝑥
                                                                          (13)

𝐾1𝑔𝜌∞𝛽
𝜕𝑇

𝜕𝑥
 ≫  𝑐𝑢 + 𝑏𝑣 

𝜕µ𝑎
𝜕𝑥

                                             (14)  

𝐾1𝑔𝜌∞𝛽
𝜕𝑇

𝜕𝑥
 ≫  𝑎𝑢 + 𝑐𝑣 

𝜕µ𝑎
𝜕𝑦

                                              (15) 

 

are satisfied. So, under the boundary-layer approximations, at large modified Darcy-Rayleigh number, the 

governing equation become  

                                                                        

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
= 0                                                                                     (16)

𝜕

𝜕𝑦
 𝑢𝑛 =  

𝑛

𝑎
 
𝐾1𝑔𝜌∞𝛽

𝜖
 
𝜕𝑇

𝜕𝑥
                                                           (17)

𝜍
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
= 𝛼

𝜕2𝑇

𝜕𝑦2
                                                         18   

 

Which are to the solved subject to the following initial condition 

𝑡 = 0:                           𝑇 𝑥, 𝑦, 0 = 0                                                                     (19) 

The boundary conditions associated with previous governing equations are  

                                                     

 𝑦 = 0 ∶ 𝑣 = 0, 𝑇  𝑥, 0, 𝑡 =  𝑇𝑤        𝑎      

𝑦 = 0 ∶ 𝑣 = 0,     
𝜕𝑇(𝑥, 0, 𝑡)

𝜕𝑦
= −

𝑞𝑤
𝑘

    𝑏     
                                       (20)   

                                                 𝑦 → ∞:                 𝑢 = 0,                  𝑇 𝑥,∞, 𝑡 = 𝑇∞                                          (21) 
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Following Bejan [25] and recognizing 𝐻 and 𝛿 as the 𝑥 and 𝑦 scales, respectively, in the boundary layer of 

interest (𝛿 ≪ 𝐻), the conservation equations, equations (16), (17) and (18), require the following balances: 

                                                                           

 
𝑢

𝐿
~
𝑣

𝛿
                                                                                           (22)

 𝑎
𝑢

𝛿
 ~

1

𝜖𝑢𝑛−1
𝐾1𝑔𝜌∞𝛽

∆𝑇

𝐿
                                                       (23)

 𝜍
∆𝑇

𝑡
,   𝑢

∆𝑇

𝐿
,   𝑣

∆𝑇

𝛿
  ~   𝛼

∆𝑇

𝛿2
                                                (24)

 

Where ∆𝑇 = (𝑇𝑤 − 𝑇∞) or [𝑞𝑤 /(k/L)] is the characteristic scale of temperature. It is noticed that the temperature 

drop across the boundary layer is of the order of one. In the next subsections, it will be distinguish the result of 

the scale analysis for two cases, according to the heating process of the wall. 

 

3.1 Isothermal wall 

Solving the balances between equations (22)-(24) for 𝛿, 𝑢, 𝑣  𝑎𝑛𝑑 𝑡, we obtain the following results 

                                                                    

 𝛿~𝐿(𝑅𝑎𝐿)−1  2𝑛+1  𝑎1  2𝑛+1                                                        (25) 

𝑢~
𝛼

𝐿
(𝑅𝑎𝐿)2  2𝑛+1   𝑎−2  2𝑛+1                                                       26 

𝑣~
𝛼

𝐿
(𝑅𝑎𝐿)1 (2𝑛+1 ) 𝑎−1  2𝑛+1                                                       27 

𝑡 ~
𝜍𝐿2

𝛼
(𝑅𝑎𝐿)−2  2𝑛+1   𝑎2  2𝑛+1                                                  (28)

 

Where the modified Darcy-Rayleigh number  𝑅𝑎𝐿  based on the length of the plate, is defined as  

                                                                         𝑅𝑎𝐿 =
𝐾1𝜌∞𝑔𝛽∆𝑇𝐿

𝑛

𝜖 𝛼𝑛
                                                              (29) 

Defining the stream function ø related to the velocity components by 

                                                                      𝑢 =
𝜕𝜓

𝜕𝑦
           𝑣 = −

𝜕𝜓

𝜕𝑥
                                                       (30) 

Such that the continuity equation, equation (4), is automatically satisfied, the scale for the stream function can 

be obtained as follows: 

                                                                         𝜓 ~  𝛼 𝑅𝑎𝐿
1 (2𝑛+1) 𝑎−1 (2𝑛+1)                                           (31) 

The average Nusselt number, 𝑁𝑢𝐿 defined as the heat transfer over the pure heat conduction through the 

horizontal plate, has the following scale:  

                                                                     𝑁𝑢𝐿 =
𝐿

𝑘
 ~ 𝑅𝑎𝐿

1 (2𝑛+1 )𝑎−1 (2𝑛+1)                                    (32) 

where  = 𝑞 (𝑇𝑤 − 𝑇∞)  is the local heat transfer coefficient, 𝑞 = −𝑘(𝜕𝑇 𝜕𝑦)|𝑦=0   the local surface heat flux 

at the heated plate. 

For the special case of an isotropic porous medium,(𝐾∗ = 1, 𝑖. 𝑒. , 𝑎 = 1),the scales above reduce to those 

predicted by Gorla and Kumari [9] while studying free convection in non-Newtonian fluids along a horizontal 

plate in a porous medium. 

The conditions of validity of the present boundary layer analysis now will be discussed. These results are 

expected to be valid only when the vertical boundary-layer is slender (𝛿 ≪ L), i.e., for  𝑅𝑎𝐿 ≫ 𝑎. Furthermore, 

from equations (11)-(15) and (25)-(27), and making use of the results of the above order-of-magnitude analysis 

developed in this section, the boundary layer hypothesis is valid only when the conditions : 

                                                                      b ≪ 𝑅𝑎𝐿
2 (2𝑛+1 )𝑎(2𝑛−1)  2𝑛+1                                                33  

and  

                                                                    c ≪ 𝑅𝑎𝐿
1 (2𝑛+1 )𝑎2𝑛  2𝑛+1                                                        34  

are satisfied.  

3.2 Wall with uniform heat flux  

Solving the balances between equations (22)-(24) for, 𝛿, 𝑢 , 𝑣  and 𝑡, we obtain the following results    
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𝛿 ~ 𝐿 𝑅𝐿
−1  2 𝑛+1   𝑎1  2 𝑛+1                                                                 35  

𝑢  ~  
𝛼

𝐿
𝑅𝐿

1  𝑛+1  𝑎−1  𝑛+1                                                                     (36) 

𝑣 ~  
𝛼

𝐿
 𝑅𝐿

1  2 𝑛+1   𝑎−1  2 𝑛+1                                                               37  

𝑡  ~  
𝜍𝐿2

𝛼
 𝑅𝐿

−1  𝑛+1  𝑎 1  𝑛+1                                                               (38) 

𝜓  ~  𝛼 𝑅𝐿
1  2(𝑛+1)  𝑎−1  2(𝑛+1)                                                           39  

𝑁𝑢𝐿 =
𝐿

𝑘
 ~  𝑅𝐿

1 2(𝑛+1 )𝑎−1 2(𝑛+1)                                                    (40) 

Where the modified Darcy-Rayleigh number   𝑅𝐿, based on the heat flux applied at the plate, is defined as:  

                                                                        𝑅𝐿  =
𝐾1𝜌∞𝑔𝛽𝐿

𝑛+1𝑞𝜔
𝜖 𝛼𝑛𝑘

                                                               (41) 

Taking into account the previous scales obtained in this case, the condition of existence of the horizontal 

boundary-layer hypothesis formulated by (𝛿 ≪ 𝐿) becomes 𝑅𝐿 ≫ 𝑎. Moreover, making use of equations (11)-

(15) and (36)-(38). The boundary-layer hypothesis is valid only when the conditions: 

                                                                        b ≪ 𝑅𝐿
1 (𝑛+1 )𝑎𝑛  𝑛+1                                                               (42) 

and 

                                                                      c ≪ 𝑅𝐿
1 2 𝑛+1  𝑎 2𝑛+1  2 𝑛+1                                               (43)  

are satisfied . 

4. Resolution   

On the one hand, taking 𝐿, 𝐿 𝑅𝑎𝐿
1/(2𝑛+1) , 𝛼𝑅𝑎𝐿

2/(2𝑛+1)
/L, 𝛼𝑅𝑎𝐿

1/(2𝑛+1)
/L, ∆𝑇 and 𝜍L²/[ 𝛼𝑅𝑎𝐿

2/(2𝑛+1)
]  as 

respective dimensional scales for length, velocities in 𝑥 and 𝑦 directions, temperature and time, concerning the 

case of isothermal wall and on the other hand, setting 𝐿,  𝐿 𝑅𝐿
1/2[ 𝑛+1 ] , 𝛼𝑅𝐿

1/(𝑛+1)
/L, 𝛼𝑅𝐿

1/[2 𝑛+1 ]
/L, ∆𝑇 and 

𝜍𝐿²/[𝛼𝑅𝐿
1/(𝑛+1)

] as respective dimensional scales for length, velocities in x and y directions, temperature and 

time, for the case of wall with uniform heat flux, it is found that the dimensionless boundary-layer equations are 

𝜕𝑈

𝜕𝑋
+
𝜕𝑉

𝜕𝑌
= 0                                                                              44  

𝜕

𝜕𝑌
 𝑈𝑛 =

𝑛

𝑎
  
𝜕Θ

𝜕𝑋
                                                                       45  

𝜕Θ

𝜕𝜏
+ 𝑈

𝜕Θ

𝜕𝑋
 + 𝑉

𝜕Θ

𝜕𝑌
   =

𝜕2Θ

𝜕𝑌2
                                                 (46) 

Integrating equation (45) from 𝑌 =  0 to 𝑌 = ∞  (region situated is the free stream), one can have 

                                                                       𝑈 =   
𝑛

𝑎
 

1 𝑛 

 
𝜕

𝜕𝑋
 Θ𝑑𝑌
∞

0

 

1 𝑛 

                                                47  

Making use of continuity equation, equation (44), the integration of equation of energy, equation (46), yields 

                                                            
𝜕

𝜕𝜏
 Θ 𝑑𝑌
∞

0

+
𝜕

𝜕𝑋
 𝑈Θ 𝑑𝑌
∞

0

=  − 
𝜕Θ

𝜕𝑌
 
𝑌=0

                                 (48) 

Substituting equation (47) into equation (48) and rearranging the resulting expression, we obtain finally 

                         
𝜕

𝜕𝜏
 Θ 𝑑𝑌
∞

0

+  
𝑛

𝑎
 

1 𝑛 𝜕

𝜕𝑋
  

𝜕

𝜕𝑋
 Θ 𝑑𝑌
∞

0

 

1 𝑛 

Θ 𝑑𝑌
∞

0

  = − 
𝜕Θ

𝜕𝑌
 
𝑌=0

                     49  

The problem of unsteady natural convection in a porous medium about a vertical or a horizontal, semi-infinite 

flat plate with a step increase in wall temperature or surface heat flux, considered here, gives rise, as the 

classical problem of a viscous boundary- layer in a free fluid, to the singularity problem in passing from the 

initial stage when the leading edge is not felt to the steady state defined for large time. For small values of time, 

the solutions for velocity and temperature are independent of time, for large values of time the solutions are 

independent of time. The singularity value of time depends on the horizontal  𝑋. As pointed out by Ene and 

Polisevski [26], the heat transfer characteristics change suddenly from transient, one-dimensional heat 
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conduction to steady two-dimensional natural convection. So, equation (49) is to be solved subject to the initial 

condition (19) which becomes 

                                                         𝜏 = 0 ∶                     Θ 𝑋,𝑌, 0 = 0                                                           (50) 

and the dimensionless boundary conditions prevailing at the horizontal plate are: 

                                                             

𝑌 = 0:              Θ 𝑋, 0, 𝜏 = 1     (𝑎)
                                                                    

                        
𝜕

𝜕𝑌
Θ 𝑋, 0, 𝜏  = −1   (𝑏)

                                                (51)   

In the following subsections, equation (49) will be differentially solved by considering the two kinds of 

boundary conditions (51) imposed in the present analysis. 

 

4.1 Isothermal wall  

Following Cheng and Pop [5], with the boundary condition (51a), we assume a temperature profile of the form 

                                                                                  Θ = 𝑒𝑟𝑓𝑐 𝜂                                                                   (52) 

Where erfc is the complementary error function and ç is expressed by 

                                                                                 𝜂 =
𝑌

𝐴
𝑅𝑎𝐿

−1 (2𝑛+1) 
                                                        (53) 

Where 𝐴 =  𝛿/𝐿 is the dimensionless boundary-layer thickness. Substituting equations (52) and (53) into 

equation (49) and after integrating yields 

                             
𝜕𝐴

𝜕𝜏
+  

𝑛

𝑎 𝜋
 𝑅𝑎𝐿

1 (2𝑛+1) 
 

1 𝑛 𝜕

𝜕𝑋
 𝐴  

𝜕𝐴

𝜕𝑋
 

1 𝑛 

 =
2

𝐴
𝑅𝑎𝐿

−2 (2𝑛+1 )                          (54) 

Subject to the initial and boundary conditions 

                                               

𝜏 = 0             𝐴 𝑋, 0 = 0                                         (𝑎)
      
   

𝜏 ≥ 0           𝐴 𝑋, 𝜏    = 0   𝑎𝑡   𝑋 = 0                   𝑏 

                                       (55) 

Equation (54) is a partial differential equation of the hyperbolic type in 𝐴 𝑋, 𝜏 . It will be solved exactly by the 

method of characteristics. Solving by the method of characteristics, the differential system equivalent to 

equation (54) is expressed as  

                                                   
𝑋 1 (2𝑛+1)  𝑑𝑋

2 𝜁𝑛
−2  

2𝑛 + 1
𝑛 + 1

 𝑎−2 (2𝑛+1) 
= 𝑑𝜏 = 𝑅𝑎𝐿

 2 (2𝑛+1  ) 𝐴𝑑𝐴

2
                      (56) 

which has the characteristics     

                                                        𝑋 1 (2𝑛+1)  𝑑𝑋 = 2 𝜁𝑛
−2  

2𝑛 + 1

𝑛 + 1
 𝑎 −2 (2𝑛+1)  𝑑𝜏                             (57) 

where  

                                                      𝜁𝑛 =  
 𝜏(2)𝑛

𝑛 + 1
 

2𝑛 + 1

𝑛
 
𝑛+1

 

 1 (2𝑛+1)  

                                               (58) 

On each characteristic, 𝐴 is related by  

                                                             𝑅𝑎𝐿
 2 (2𝑛+1 ) 𝐴𝑑𝐴 = 2𝑑𝜏                                                               (59) 

or 

                                 𝑅𝑎𝐿
 2 (2𝑛+1 )  𝜁𝑛

−2   
2𝑛 + 1

𝑛 + 1
  𝑎 −2  2𝑛+1   𝐴𝑑𝐴 = 𝑋 1  2𝑛+1    𝑑𝑋                     (60) 

depending on whether the characteristic intercepts the 𝜏 − or 𝑋 − axis. Integrating equation (59) with the initial 

condition (55(a)) gives 

                                                                 𝐴 = 2 
𝜏

𝑅𝑎𝐿
 2 (2𝑛+1)  

                                                                 (61) 

and solving equation (60) subject to be boundary condition (55(b)) yields 

                                                 𝐴 = 𝜁𝑛  𝑅𝑎𝐿
 −1 (2𝑛+1)  

𝑎  1 (2𝑛+1)   𝑋  (𝑛+1) (2𝑛+1)                                       (62) 
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 As shown by Cheng and Pop (5) and revisited by Ene and Polisevki [26] in their analyses when studying the 

same problem along a vertical surface in the case of Newtonian fluid saturating an isotropic porous medium, the 

expression for 𝐴 changes from equation (61) to equation (62) along the limiting line characteristic  

                                                 𝜏 = 𝜏𝑠 =
1

4
 𝜁𝑛

2  𝑎 2 (2𝑛+1)  𝑋 2(𝑛+1) (2𝑛+1)                                   (63) 

so that, equation (63) is a straight line or a curved line which divides the 𝑋 −  τ plane into two regions: a lower 

region for which 𝐴 is given by equation (61) and an upper region for which 𝐴 is given by equation (62). That 

limiting line characteristic provides the limit time reached in steady-state regime 𝜏𝑠 expressed by equation (63). 

Under these considerations, we have two expressions of temperature profile corresponding to the two regions. 

For 𝜏 < 𝜏𝑠   (in the lower region), one can find  

                                                                            Θ = 𝑒𝑟𝑓𝑐  
𝑌

2 𝜏
                                                                      (64) 

And for 𝜏 > 𝜏𝑠  (in the upper region), the temperature distribution is expresses as  

                                                         Θ = 𝑒𝑟𝑓𝑐  
𝑌

𝜁𝑛  𝑎 1 (2𝑛+1)  
𝑋− (𝑛+1) (2𝑛+1)                                       (65) 

As expected, equation (64) is independent of  𝑋, and this explains that the solution represents the transient heat 

conduction in a semi-infinite porous medium while equation (65), however, is independent of  𝜏, and its solution 

represents steady-state natural convection. 

The local Nusselt number, 𝑁𝑢𝑥  through the plate is defined, in physical variables, by 

                                                                       𝑁𝑢𝑥 =
𝑞𝑤  𝑥

𝑘 𝑇𝑤 − 𝑇∞ 
                                                             (66) 

Making use of  equations (52), (53), (61) and (62), one can rewrite 𝑞𝑤  as 

                                                                       𝑞𝑤 =
2𝑘 𝑇𝑤 − 𝑇∞ 

𝐴𝐿 𝜋
                                                             (67) 

which becomes, after substitution of  equation  (61) valid in the lower region where transient heat conduction is 

predominant, what follows. 

                                                                                 𝑄𝑤 =
1

 𝜋𝜏
                                                                          (68)  

where  𝑄𝑤 = 𝑞𝑤𝐿  𝑘∆𝑇𝑅𝑎𝐿
1 (2𝑛+1) 

    is the dimensionless local surface heat flux. 

Taking into account equations (52), (53), (57) and (62), equation (59) becomes  

                                                                𝑞𝑤 =
2𝑘 𝑇𝑤 − 𝑇∞ 

𝑥 𝜋
 

1

𝜁𝑛
  
𝑅𝑎𝑥
𝑎
 

1 (2𝑛+1) 

                                     (69) 

valid in the upper zone where convection heat transfer is predominant (i.e., for 𝜏 > 𝜏𝑠). So, substituting equation 

(69) into equation (66), we can express the local Nusselt number 𝑁𝑢𝑥  as  

                                                                  𝑁𝑢𝑥 =
2

𝜁𝑛 𝜋
 
𝑅𝑎𝑥
𝑎
 

1 (2𝑛+1) 

                                                  (70) 

where  𝑅𝑎𝑥 = 𝐾1𝜌∞𝑔𝛽 𝑇𝑤 − 𝑇∞ 𝑥
𝑛  𝜖 𝛼𝑛    is the modified Darcy-Rayleigh number, based on the distance 𝑥  

from the edge of the plate. 

On the other hand, the convective flow is described by the stream function which can be expressed from 

equations (30), (47), (52), (53) and (62) as  

                 Ψ = 𝜁𝑛
(𝑛+1) 𝑛  

𝑛(𝑛 + 1)

(2𝑛 + 1) 𝜋
 

1 𝑛 

 
𝑅𝑎𝑥
𝑎
 

1 (2𝑛+1) 

                              (71) 

Where  Ψ = 𝜓 𝛼 . 

It is obvious that by setting  𝑛 = 1 in the limit of the same problem in a steady regime with a Newtonian Fluid 

saturating the porous matrix assumed isotropic in permeability for which the value of the anisotropic parameter 

a equals to unity, the results presented in the present analysis are found to be in a good agreement with those 

obtained by Gorla and Kumari [9]. 
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4.2. Wall with constant heat flux  

The problem given by equation (49) with the conditions, equation (50) and (51b) may be treated for the case of 

constant plate heat flux in similar fashion. Seeking the analogous form as previously of the solution which 

satisfies conditions evoked in this case, one can find after algebraic manipulations what follows 

                                                               Θ =  
𝐴 𝜋

2
𝑅𝐿

1  2(𝑛+1)  
 𝑒𝑟𝑓𝑐 𝜂                                                        (72) 

where erfc is the complementary error function and 𝜂 is expressed by 

                                                                  𝜂 =
𝑌

𝐴
𝑅𝐿
−1  2(𝑛+1)  

                                                                           (73) 

substituting equation (72) and (73) into equation (49), the equation for the boundary-layer thickness is obtained 

by the relation : 

                            
𝜕(𝐴2)

𝜕𝜏
+  

𝑛

𝑎
 
𝑅𝐿

1 (𝑛+1) 

2
 

1 𝑛 
𝜕

𝜕𝑋
 𝐴2  

𝜕(𝐴2)

𝜕𝑋
 

1 𝑛 

 = 2𝑅𝐿
−1 (𝑛+1) 

                                 (74) 

The resolution of  equation (74) subject to the initial and boundary conditions (55(a)) and (55(b)) by the method 

of characteristics yields the following line expressed by 

                                                                  
𝑎

𝑛
 

1 (𝑛+1) 

𝑑𝑋 = 𝑑𝜏 = 𝑅𝐿
1 (𝑛+1) 

𝐴 𝑑𝐴                                          (75) 

In this case, on each characteristic, 𝐴 is related by 

                                                                             𝑅𝐿
1  𝑛+1  

𝐴 𝑑𝐴 = 𝑑𝜏                                                                 (76) 

 or  

                                                                        
𝑛

𝑎
𝑅𝐿 

 1 (𝑛+1)  

𝐴𝑑𝐴 =  𝑑𝑋                                                      (77) 

Integrating equations (76) and (77) subject to conditions (55(a)) and (55(b)), respectively, 𝐴 is evaluated by  

                                                                             𝐴 =  2𝜏  𝑅𝐿
 −1 2(𝑛+1)  

                                                        (78) 

and  

                                                                        𝐴 =  
𝑎

𝑛𝑅𝐿
 

[1 2(𝑛+1)] 

 2𝑋                                                       (79) 

respectively, such that, the expression of 𝐴 changes from equations (78) to (79) along the limiting line 

characteristic given by 

                                                                              𝜏 = 𝜏𝑠 =  
𝑎

𝑛
 

1 (𝑛+1) 

𝑋                                                         (80) 

As expected, the 𝑋 −  τ  plane is divided into two regions, a lower one for which 𝐴 is calculated by equation 

(78) and an upper one for which 𝐴 is calculated by equation (79). Then, the limit time 𝜏𝑠 corresponding to the 

steady-state regime is predicted here by equation (80).  

In the other terms, one can derive the temperature profile valid for each region considered as follows. 

In a lower region (for which  τ < 𝜏𝑠): 

                                                                                     Θ =  
𝜋𝜏

2
𝑒𝑟𝑓𝑐  

𝑌

 2𝜏
                                                    (81) 

and in an upper region (for which τ > 𝜏𝑠): 

                                                              Θ =  
𝑎

𝑛
 
 1 2(𝑛+1)  

 
𝜋𝑋

2
𝑒𝑟𝑓𝑐  

𝑌

 2𝑋
 
𝑛

𝑎
 
 1 2(𝑛+1)  

                     (82) 

As in the previous case, we have a solution for transient heat conduction in a semi-infinite plane with a step 

increase in surface heat flux which is in good agreement with the temperature obtained from equations (81) and 

(72). The solution, equation (82), represents steady-state natural convection on the horizontal plate and it is also 

in good agreement with the similarity solution (see Gorla and Kumari [9]). 

The heat flux the horizontal surface in the lower region for which the transient heat conduction prevails is then, 

after substitution of  equation (78) into equation (67): 
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                                                                                     𝑄𝑤 =  
2

𝜋𝜏
                                                                     (83) 

Where 𝑄𝑤 = 𝑞𝑤 (𝑘∆𝑇𝑅𝐿
 1 2(𝑛+1)  

𝐿)   is the dimensionless local heat flux. 

Considering the situation dominated by convection pattern, when τ > 𝜏𝑠, and taking into account equation (79) 

and equation (67), the local Nusselt number, 𝑁𝑢𝑥 , defined by equation (66) is calculated here by the following 

expression  

                                                                             𝑁𝑢𝑥 =  
2

𝜋
 
𝑛𝑅𝑥
𝑎
 

[1 2(𝑛+1)] 

                                               (84) 

In the same way, from equations (30), (47), (72) (73) and (79) the stream function is calculated by the 

expression 

                                                                        Ψ = 2 (𝑛+2) (2𝑛)   
𝑛𝑅𝑥
𝑎
 
 1 2(𝑛+1)  

                                        (85) 

where Ψ = 𝜓 𝛼   and  𝑅𝑥 = 𝐾1𝜌∞𝑔𝛽𝑞𝑤𝑥
𝑛+1 (𝜖𝑘𝛼𝑛)  is the modified Darcy-Rayleigh number, based on the 

distance x from the edge of the surface, for the case of a wall heated by a constant heat flux.  

 

5. Results and Discussion 

Figures 2 and 3 illustrate the effect of the power-law index on non-Newtonian fluid on the limiting line 

characteristic given by equations (63) and (80), respectively, and are expressed by the time taken to reach 

steady-state flow, 𝜏𝑠, when the transient free convection in the porous medium occurs as a result of a step 

increase in wall temperature and a step increase in surface constant heat flux. In Figures 2 and 3, it is observed 

that, when anisotropic parameters are held constant, for example, for 𝜃 = 45°, and 𝐾∗ = 0.1, each limiting line 

characteristic corresponding to a fixed power-law index 𝑛 is a line which divides, as expected, the 𝑋 −  τ  plane 

into two regions, a lower one dominated by a pure conduction regime for τ < 𝜏𝑠  and the upper one dominated 

by a convective heat transfer for τ ≥ 𝜏𝑠 . Moreover, it is seen that, as the power-law index increases from 

𝑛 =  0.6 (corresponding to a shear-thinning fluid) to 𝑛 =  1.4 attributed to a shear-thicknening fluid, the upper 

region becomes progressively larger. This behavior can be explained by the fact that the upper region where 

convection effect is considerable over the limiting time, the local heat transfer calculated for the case of an 

isothermal wall by equation (70) becomes𝑁𝑢𝑥 𝑅𝑎𝑥
0.45 = 0.454  for 𝑛 = 0.6 while 𝑁𝑢𝑥 𝑅𝑎𝑥

0.26 = 0.59  for 

𝑛 = 1.4, and when the wall is heated by a constant heat flux, the local heat transfer expressed by equation (84) 

becomes 𝑁𝑢𝑥 𝑅𝑎𝑥
0.31 = 0.81  for n = 0.6  while  𝑁𝑢𝑥 𝑅𝑎𝑥

0.21 = 0.97  for 𝑛 = 1.4 . So, convection motion is 

enhanced, taking place in the upper region which becomes more and more important than the lower one, as the 

power-law index 𝑛 is made higher.  

 
Figure 2:  Effect of power-law index 𝑛 on the limiting line characteristic for 𝜃 = 45°, 𝐾∗ = 0.1 and for step 

increase in wall temperature case 
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Figure 3:  Effect of power-law index 𝑛 on the limiting line characteristic for 𝜃 = 45°, 𝐾∗ = 0.1 and for step 

increase in wall heated by a constant heat flux case. 

The limiting steady-state time characteristic 𝜏𝑠 is presented in Figures 4 and 5 as a function of the position 𝑋 

from the edge of the horizontal surface to investigate the effect of anisotropic permeability ratio 𝐾∗ for 𝑛 =  1.2 

and 𝜃 =  30°, when the wall is heated isothermally and by constant heat flux, respectively. It is observed that, 

for a given value of the distance 𝑋 from the edge of the wall, the time taken by the heating process transfer to 

reach steady-state pattern for which convection occurs increases with an increase in permeability ratio   𝐾∗. So, 

convection becomes more and more considerable and occupies upper regions which become more and more 

large  than the lowers regions, as 𝐾∗ is made smaller. This trend comes from the fact that, according to 

equations (63) and (80), when the parameters 𝑛,𝜃 and 𝑋 are held constant, the limiting steady-state time 𝜏𝑠 

when the wall is heated isothermally depends solely on  𝐾∗ 0.99 and is proportional to the latter and this, in the 

particular case when 𝜃 = 900.  

 

Figure 4: Effect of the permeability ratio 𝐾∗ on the limiting line characteristic for 𝑛 = 1.2,  𝜃 = 30°  for the 

surface heated isothermally 
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Figure 5: Effect of the permeability ratio 𝐾∗ on the limiting line characteristic for 𝑛 = 1.2,  𝜃 = 30°  for the 

surface heated by a  constant heat flux 

In the same way, the same result is obtained when the wall is heated by a constant heat flux, a situation for 

which 𝜏𝑠 depends solely on  𝐾∗ 0.45 and is proportional to it, as 𝑛,𝜃 and 𝑋 are made constant.  

On the other hand, the same behavior is observed in Figures 6 and 7 illustrating the variation of 𝜏𝑠 versus 𝑋, for 

different values of  𝜃, 𝑛 =  0.6  and 𝐾∗ = 5 and when the two types of thermal boundary conditions are 

considered here, respectively. Therefore, the limiting time to reach steady-state regime increases with an 

increase in orientation angle of the principal axes of the porous matrix, when other parameters are held constant. 

 
Figure 6: Effect of the orientation angle 𝜃 of the principal axes on the limiting line characteristic for 𝑛 = 0.6,  

𝐾∗ = 5 for the surface heated isothermally 
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Figure 7:  Effect of the orientation angle 𝜃 of the principal axes on the limiting line characteristic for 𝑛 = 0.6,  

𝐾∗ = 5 for the surface heated by a constant heat flux. 

Figures 8 and 9 show the effect of varying the modified Darcy-Rayleigh number and the time 𝜏 (lower than the 

limiting time required to reach steady-state 𝜏𝑠) on the boundary-layer thickness 𝐴 for n = 0.6 and for the two 

types of thermal boundary conditions considered here, respectively. As expected, the boundary-layer thickness 

𝐴 decreases drastically as 𝑅𝑎𝐿  or 𝑅𝐿 is made higher, giving rise to a channeling of convective heat flow near the 

horizontal surface.  

 
Figure 8: Effect of the time 𝜏 (< 𝜏𝑠) on the boundary-layer thickness 𝐴 for 𝑛 = 0.6  and various values of 

Rayleigh number for the surface heated isothermally 
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Figure 9: Effect of the time 𝜏 (< 𝜏𝑠) on the boundary-layer thickness 𝐴 for  𝑛 = 0.6  and various values of 

Rayleigh number for the surface heated by a constant heat flux 

Moreover, it is seen that, for a given value of the time 𝜏 (lower than  𝜏𝑠), the boundary-layer thickness 𝐴 

decreases with an increase in the modified Darcy-Rayleigh number. This trend follows from the fact that, 

according to equation (61), the boundary-layer thickness 𝐴 is proportional to 𝜏1 2  and inversely proportional 

to   𝑅𝑎𝐿
1/(2n+1)  

such that, upon increasing 𝑅𝑎𝐿, 𝐴 drops progressively and becomes less and less affected by  𝜏. 

Similarly, for the heating process by a constant heat flux, according to equation (78), the boundary-layer 

thickness 𝐴 is proportional to 𝜏1 2  and inversely proportional to 𝑅𝐿
1/[2(n+1)] 

 such that, upon increasing  𝑅𝐿,  𝐴 

drops progressively and becomes less and less affected by 𝜏.  

Another view of the effects of varying of the power-law index 𝑛 and the time (𝜏 < 𝜏𝑠) for 𝑅𝑎𝐿 = 30 and for a 

step increase in wall temperature, is depicted in Figure 10 on the one hand, and for a step increase in wall 

constant heat flux in Figure 11 on the other hand.  

 

Figure 10: Effect of the time 𝜏 (< 𝜏𝑠) on the boundary-layer thickness 𝐴 for  𝑅𝑎𝐿 = 30  and for various values 

of power law index when the surface is heated isothermally 
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Figure 11:  Effect of the time 𝜏 (< 𝜏𝑠) on the boundary-layer thickness 𝐴 for  𝑅𝑎𝐿 = 30  and for various values 

of power law index when  the surface is heated by a constant heat flux 

It is observed that the boundary-layer thickness 𝐴 increases with an increase in power-law index 𝑛 of non-

Newtonian fluids. This can be explained that for a fixed value of 𝜏, according to equation (61) when 𝑛 → 0 , 

 𝑅𝑎L
−1/(2𝑛+1) 

 →  0, and therefore 𝐴 →0.  Similarly considering equation (78), when 𝜏 is held constant and 𝑛 → 

0, 𝑅𝑎L
−1/[2 𝑛+1 ]

→ 0, and therefore 𝐴 → 0. So, in Figures 10 and 11, the boundary-layer thickness drops 

progressively as 𝑛 is made weaker, and this independently of 𝜏. 

In Figures 12 and 13 the Nusselt 𝑁𝑢𝑥  and the stream function Ψ for different position on the horizontal wall are 

given as a function of  𝐾∗, 𝜃 and 𝑛 at steady-state. According to equations (70) and (71), it is observed that 

N𝑢𝑥  /𝑅𝑎𝑥
1/(2𝑛+1) 

 and Ψ/𝑅𝑎𝑥
1/(2𝑛+1)

 depend solely on n and 𝑎−1/(2𝑛+1) , where 𝑎 = cos2 𝜃 + 𝐾∗ sin2 𝜃, i.e., on 

the anisotropic properties of the porous medium, namely, the permeability ratio 𝐾∗ and the inclination angle 𝜃.  

 
Figure 12: Effect of the permeability ratio 𝐾∗ for various values of 𝑛 and 𝜃 on 𝜓 when the  surface is heated 

isothermally 
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Figure 13: Effect of the permeability ratio 𝐾∗ for various values of 𝑛 and 𝜃 on 𝑁𝑢  when the  surface is heated 

isothermally 

It is found that, for each value of 𝑛, when 𝐾∗ < 1, the heat transfer rate and the stream function increase as 

𝜃 decreases  from 90° to 0°. However, it is seen that, when 𝐾∗ >1, N𝑢𝑥 /𝑅𝑎𝑥
1/(2𝑛+1)

 and Ψ/𝑅𝑎𝑥
1/(2𝑛+1)

 decrease 

as 𝜃 increases from 0° to  90°. That reversed situation comes from the fact the two terms N𝑢𝑥 /𝑅𝑎𝑥
1/(2𝑛+1)

 and  

Ψ/𝑅𝑎𝑥
1/(2𝑛+1)

  are inversely proportional to 𝑎, thus to 𝐾∗ and to 𝜃. It is obvious that, by setting 𝐾∗= 1, the 

parameter 𝑎 becomes equal to unity (corresponding to an isotropic porous medium) and consequently, both the 

heat transfer rate and the stream function are independent to anisotropic parameter.   

 

6. Conclusions  

Transient natural convection about a porous medium adjacent to a horizontal surface with a step increase in wall 

temperature or surface heat flux is analytically studied using the method of characteristics. The porous medium 

is anisotropic in permeability whose principal axes are non-coincident with the gravity vector and is saturated by 

a non-Newtonian fluid. The momentum equation is formulated on the basis of the modified Darcy power-law 

model of Pascal [20,21] and the generalized-Darcy’s law proposed by Bear [22] .  From the results, the 

following conclusions are drawn. 

 The problem considered gives rise to the singularity problem in passing from the      initial stage when 

the leading edge effect is not felt to the steady state defined for large times. The limiting line 

characteristic represents the time required to reach the steady state 𝜏𝑠 and the singularity value of time 

for which the heat transfer characteristics change suddenly from transient one-dimensional heat 

conduction to steady two-dimensional natural convection. 

 For small values of time (𝜏 < 𝜏𝑠), the solutions for flow and temperature fields are dependent solely of 

time and the heat transfer due by pure conduction in transient regime are independent on the 

anisotropic parameters of the porous matrix and the power-law indexes of non-Newtonian fluids. 

Moreover, for a given value of the time 𝜏 (lower than 𝜏𝑠), the boundary-layer thickness 𝐴 decreases 

with an increase in the modified Darcy-Rayleigh number, such that, upon increasing 𝑅𝑎𝐿 or 𝑅𝐿, A 

drops progressively and becomes less and affected by 𝜏. 

 For large values of time over the time required to reach the steady state (𝜏 > 𝜏𝑠), the solutions for 

stream function, temperature and heat transfer rate valid in steady regime are independent of time, and 

depend greatly on anisotropic parameters on the power-law indexes, and on the horizontal distance 

from the edge of the heated surface. 

 At the steady regime the limiting line characteristic, the convection heat transfer is enhanced when the 

power-law index 𝑛 of non-Newtonian fluids is increased. 
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 It has demonstrated that, for a given value of the distance 𝑋 considered from the edge of    the 

horizontal heated wall, the time taken by the heating process transfer to reach steady-state pattern for 

which convection occurs, increases with an increase in permeability ratio 𝐾∗, when other parameters 

are held constant. Similarly, the limiting time to reach steady-state regime increases with an increase in 

orientation angle 𝜃 of the principal axes of the porous matrix when other parameters are made fixed. 
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