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Abstract In a previous publication, the growth of the old end of the fission yeast cell was modeled using the 

self-similarity growth principle. This was justified since the shape of the old end and the width of the cell were 

almost constant with time. The geometry of the cell was assumed to be made of a hemisphere attached to the top 

of a tube. This simplified the integration scheme which was used to model the growth of the cell. The 

integration scheme was based on the Euler-forward scheme.  

This paper builds on the previous work. It develops a consistent integration scheme that uses the fact that the 

initial and growth configurations are self-similar. Thus, the elastic meridional strain, the elastic circumferential 

strain as well as the growth function at the self similar configuration were determined from the initial 

configuration by interpolation. This allowed the calculation of the growth strain rates at the self-similar 

configuration resulting in an expression for the growth strains as a function of time. 

The paper concludes with a comparison of the results of the above two integration schemes. 
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1. Introduction 

Fission yeast cells are subjected to high turgor pressure leading to large elastic deformations.  

Several models and experimental results were reported in the literature on the growth of fission yeast cells [1-8]. 

The cell cycle starts after cell division by instantaneous pressurization of the septum wall at the New End (NE) 

and continuous growth at the Old End (OE). The NE follows the OE in growth, first as a hemisphere and then 

into a shape similar to the OE. The cell will grow to almost double in length at which time the new septum wall 

will form followed by the cell division.  

The cell growth models in [2,3] identified three configurations:  

a) The plasmolysed configuration. 

b) The growth configuration due to material deposition. 

c) The elastically deformed cell configuration driven by the turgor pressure.  

 The growth strains were assumed to depend on the elastic strains and a growth function. 

In [1], we built on the models developed in [2,3]. The growth of the old end of the fission yeast cell was 

modeled using the self-similarity growth principle. This was justified since it was observed that the shape of the 

old end as well as the width of the cell were almost constant with time. The geometry of the cell was assumed to 

be made of a hemisphere attached to the top of a tube. This resulted in the constancy of the meridional and 

circumferential strains. This simplified the integration scheme which was developed to model the growth of the 

cell. The integration scheme was based on the Euler-forward scheme.  

This paper builds on the previous work. A consistent integration scheme was developed that takes further 

advantage of the fact that the initial and growth configurations are self-similar. Thus, the elastic meridional 

strain, the elastic circumferential strain as well as the growth function at the self similar configuration were 
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determined from the initial configuration by interpolation. This allows the calculation of the growth strain rates 

at the self-similar configuration resulting in the development of an expression of the growth strains as a function 

of time. 

The paper concludes with a comparison of the results of the two integration schemes. 

 

2. Constitutive Equations 

The fission yeast cell is assumed to experience the following strains: 

a. Meridional and circumferential elastic strains (ε
e
s,ε

e
) that depend on the turgor pressure and the elastic 

material properties ε
e
=ε

e
(P,E,) where P is the turgor pressure, E the elastic modulus and  the Poisson’s ratio. 

b. Meridional and circumferential growth strains governed by the evolution equations:  

d(ε
g
s)/dt=α.(s).ε

e
s     and   d(ε

g
)/dt=α.(s). ε

e
                                                                                (1) 

where  is a growth factor and (s) is the growth function that depends on the meridional distance, s, measured 

from the tip of the OE. The value of (s)|s=0 is 1. 

 

3. Numerical Integration Schemes 

First, the geometry used was updated from a constant-zero curvature for a sphere-tube used in [1] to a 

continuous curvature.  

Second, two schemes were considered in the numerical integration of the growth strains:  

A. A forward-Euler numerical integration scheme (discussed in [1] for constant meridional and circumferential 

strains), and  

B. A consistent numerical integration scheme.  

In both cases, the upper half of a symmetrical cell was modeled. In the following, the two integration schemes 

will be described.  

 

A. Forward-Euler Integration Scheme 

Integrating the meridional and circumferential growth strains using the Euler-forward integration scheme for a 

time increment Δt from time tm to time tm+1 results in: 

 (ε
g
s)m+1= (ε

g
s)m+α.(s).ε

e
s.Δt  and  (ε

g
)m+1= (ε

g
)m+α.(s).ε

e
.Δt                      (2) 

To develop the solution, the initial shape was discretized into n elements with n+1 nodes (A1,An+1). Their 

corresponding locations in the self-similar configuration are designated as (a1,an+1). Segment (an,an+1) becomes 

vertical, representing the growth of the cell. This vertical growth of the cell was assumed to be caused by the 

viscous growth strains. 

To determine the growth function  and the growth parameter  we proceed as follows: Since the radius of the 

cell is almost constant during growth, node An+1 is assumed fixed. The time t and the location of node an are 

determined as shown below: 

 

1) Calculation of time t   

The integration scheme described in [1] was modified to include the non-constant values of meridional and 

circumferential strains. 

When  node An with coordinates (RAn, ZAn) moves to an(RAn+1,height), as shown in Fig. 1, the radial motion ur  of 

An and the extension of (An,An+1) are given by: 

ur=RAn*ε
g
θ(n)=RAn*α*(sAn)*ε

e
θ(n)*t=RAn+1-RAn=>α*(sAn)=(RAn+1/RAn-1)/(ε

e
θ(n)*t)                      (3) 

and, 

     an+1an = An+1An*(1 + (ε
g
s)av)=An+1An*(1 + α*(½)((sAn+1)ε

e
s(n+1)  +(sAn)ε

e
s(n) )*t)=v*t            (4) 

where v is the velocity of tip growth of the OE. 

Replacing eq. (3) into eq. (4) and noting that (sAn+1) =0, we get  

 AnAn+1*(1 + (½)*(RAn+1/RAn - 1)*(ε
e
s(n)/(ε

e
θ(n)))= v*t  or  

t =(AnAn+1/v)*(1 + (½)*(RAn+1/RAn - 1)*(ε
e
s(n)/(ε

e
θ(n)))                                                                   (5)  

Similar procedure as in [1] could be followed to determine the locations of nodes an and ai for i<n. 
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B. Consistent Numerical Integration Scheme 

In the previous section, the growth strains at time “m+1” were determined using the forward-Euler integration 

scheme. The self-similarity principle allows the development of a consistent numerical integration scheme that 

uses the fact that the distribution of the strains and growth function are the same at the initial and self-similar 

configurations for steady state growth. 

 
Figure 1: Self-Similarity of Growth 

 
Figure 2: Meridional positions Si and si at theinitial and self-similar configurations, respectively 

At time tm , for a node “A” at distance “Si” from the tip in the meridional direction, the meridional and 

circumferential elastic strains (ε
e
s,ε

e
) due to the turgor pressure can be determined from the finite element 

solution.  

Due to material deposition and cell growth, node “A” will move to node ‘a’ with the new meridional distance 

“si” from the tip, as shown in Fig. 2. For the distance “si”, the elastic meridional and circumferential strains at 

time “m+1” can be determined by interpolation from the previous distribution (ε
e
s,(S), ε

e
(S)) since the new 

shape is similar to the one  at time “m” with an additional vertical part that will have little effect on the strain 

distribution. 
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Mathematically, this could be expressed as follows with tm=0 and tm+1=t : 

At t=0, dε
g
s/dt(Si,t=0)  = α(Si)*ε

e
s(Si)   and   ε

g
s(Si,t=0)  = 0 (updated configuration)                        (6) 

     At t=0+t,  dε
g
s/dt(si,t=0+t)i  = α(si)*ε

e
s(si)                                                                                      (7) 

 The growth strain at time t=0+t can be determined by fitting a second degree polynomial to the  

     values of ε
g
s and dε

g
s/dt at times t=0 and t=0+t. This gives:  

      ε
g
s(si,t=0+t)  = ε

g
s(Si,t=0)+ dε

g
s/dt(Si,t=0) *t+(1/(2*t))*(dε

g
s/dt(si,t=0+t) - dε

g
s/dt(Si,t=0) )*t

2
                 

     Using the strain and strain rates from eqs. (6) and (7) in the above equation, we get at t=0+t,  

      ε
g
s(si, t=0+t)i  = (½)( α(Si)*ε

e
s(Si,t=0)i + α(si)*ε

e
s(si,t=0+t)i )*t                                               (8)             

     ε
g
s(si+1, t=0+t)i+1  = (½)( α(Si+1)*ε

e
s(Si+1,t=0)i+1 + α(si+1)*ε

e
s(si+1,t=0+t)i+1)*t                 

In this case, the time t and the location of node an are determined as follows: 

 

1) Determination of time t   

When  node An with coordinates (RAn, ZAn) moves to an(RAn+1,height), the radial motion ur  of An and the 

extension of (An,An+1) are given by: 

ur=RAn*ε
g
θ(sn)=RAn*(½)*α*(Sn)*ε

e
θ(Sn)*t=RAn+1-RA 

=>α*(SAn)=2*(RAn+1/RAn-1)/(ε
e
θ(Sn)*t)                                                                                                                                     (9a)                          

     and, 

     an+1an = An+1An*(1 + (½)*(ε
g
s(sn) + ε

g
s(sn+1)) ) 

     = An+1An*(1 + (½)*{(½)α*(Sn)ε
e
s(Sn) }*t)=v*t                                                                          (9b) 

     where v is the velocity of tip growth. Note that the values of α*(Sn+1) =α*(sn+1) =α*(sn) =0 were used in the 

above equations. Replacing eq.(9a) into eq.(9b) , we get  

 AnAn+1*(1 + (½)*(RAn+1/RAn - 1)*(ε
e
s(Sn)/(ε

e
θ(Sn)))= v*t  or  

t =(AnAn+1/v)*(1 + (½)*(RAn+1/RAn - 1)*(ε
e
s(Sn)/(ε

e
θ(Sn)))                                                              (10)  

 

2) Location of node an 

From the above derivations, we conclude that:  

α*(Sn)=2*(RAn+1/RAn-1)/(ε
e
θ(Sn)*t) , Ran = RAn  + RAn*(½)*α*(Sn)*ε

e
θ(Sn)*t and 

 zan =  height =  v*t                                                                                                                           (11)           

 

3) Location of node ai, i<n 

In general, two cases need to be considered: 

a. Case I:  Si < si < Si+1 

b. Case II: Si+1 < si < Si+2 

However, for small time increments the meridional growth length is limited and case II is seldom needed. This 

was the situation for the time step used in this analysis. 

 

a. Case I:  Si < si < Si+1 

Assume   Si < si < Si+1 , then,  

ε
e
s(si) = ε

e
s(Si)*(si-Si+1)/(Si-Si+1) + ε

e
s(Si+1)*(si-Si)/(Si+1-Si)                                                               (12) 

ε
e
(si) = ε

e
(Si)*(si-Si+1)/(Si-Si+1) + ε

e
(Si+1)*(si-Si)/(Si+1-Si)      

(si) = (Si)*(si-Si+1)/(Si-Si+1)  + (Si+1)*(si-Si)/(Si+1-Si)     

For i<(n-1), si = Stotal -  
i+2

j=n (aj-1aj) - aiai+1                                                                                                                                 (13) 

where Stotal is the total length of the tip section that is continually reproduced (San=Stotal) 

with  

aiai+1 = AiAi+1 *{ 1 + (½)*(  ε
g
s(t=0+t)i    +   ε

g
s(t=0+t)i+1    ) }                                                      (14) 

Using Eqs. (8) and (14) into si , we get: 

si = Stotal -  
i+2

j=n (aj-1aj) - AiAi+1 *{ 1 + (½)*[  ε
g
s(si)   +   ε

g
s(si+1)   ] }                                              (15) 

si = Stotal - 
i+2

j=n (aj-1aj) - AiAi+1 *{1 +(½)*[ (½)(α(Si)*ε
e
s(Si)+α(si)*ε

e
s(si) )*t+ε

g
s(si+1)   ] }      (16) 

si -Stotal + 
i+2

j=n (aj-1aj) +AiAi+1*{1+(½)*[ ε
g
s(si+1)] } 
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=- (¼)*AiAi+1*t*{α(Si)*ε
e
s(Si) + α(si)*ε

e
s(si)}                                                                            (17) 

Let  Wi = Stotal -  
i+2

j=n (aj-1aj) - AiAi+1 *{ 1 + (½)*[ ε
g
s(si+1)   ] }                                                       (18) 

then                                                           

 si - Wi = - (¼)*AiAi+1 *t*{  α(Si)*ε
e
s(Si) + α(si)*ε

e
s(si)  }                                                          (19) 

And,  

{si - Wi }/{- (¼)*AiAi+1 *t} ={  α(Si)*ε
e
s(Si) + α(si)*ε

e
s(si)  }                                                     (20) 

The above equations could be expanded to give: 

{si -Wi }/{- (¼)*AiAi+1 *t} = 

{  α(Si)*ε
e
s(Si) + [ (Si)*(si-Si+1)/(Si-Si+1)  + (Si+1)*(si-Si)/(Si+1-Si)]*ε

e
s(si)  }                          (21) 

 

After some simplifications, one gets: 

α(Si)=[{si-Wi}/{-(¼)*AiAi+1*t} 

                                       -(Si+1)*ε
e
s(si)*(si-Si)/(Si+1-Si)]/[ε

e
s(Si)+ε

e
s(si)*(si-Si+1)/(Si-Si+1)]            (22) 

For a given si, we can calculate α(Si). If node “i” is on the self-similar configuration, the solution is reached. 

Otherwise, the nonlinear iteration scheme on si is continued until compatibility is satisfied. 

 

4. Simulation Results 

For the Euler-forward numerical integration scheme, the resulting distributions of d(ε
g
s)/dt and d(ε

g
)/dt are 

shown in Fig. 3.  These plots matches better the results of [2]. For the consistent numerical integration scheme, 

the distributions of d(ε
g
s)/dt and d(ε

g
)/dt at Si and si are shown in Fig. 4.     

The growth functions , for both the Euler-forward and Consistent integration schemes, are plotted in Fig. 5. 

For small time steps, the two schemes are close with a relative error w.r.t. (1) less than 3%. 

     

Figure 3: d(ε
g

s)/dt and d(ε
g
)/dt versus node             Figure 4: d(ε

g
s)/dt and d(ε

g
)/dt versus node number at 

number, Euler-forward scheme (min
-1

).              Si and si using consistent integration scheme (min
-1

) . 

 

5. Conclusions 

In a previous publication, a simplified method to model the growth of a fission yeast cell using the self-

similarity principle was introduced. In this case, the old end of the yeast cell was modeled as an independent 

hemisphere on the top of a tube. This resulted in the meridional and circumferential elastic strains being 

constant in the hemisphere, thus simplifying the approach to finding the growth function. An improvement on 

the previous modeling took further advantage of the similarity of the initial and growth configurations resulting 

in a consistent numerical integration scheme. The elastic meridional strain, the elastic circumferential strain as 

well as the growth function at the self similar configuration were determined from the initial configuration by 
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interpolation. This allowed the calculation of the growth strain rates at the self-similar configuration resulting in 

an expression for the growth strains as a function of time. 

For small time steps, the growth function as well as the rate of the meridional and circumferential growth strains 

from the Euler-forward and consistent integration schemes were close. 

 

Figure 5:  for Euler-forward and Consistent integration schemes (min
-1

) 
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