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1. Introduction and preliminaries 

Let  and  H U  be the analytic functions in U . Denote by A  the subclass of 

 H U  functions f  given by the following expansion series 

;                                 (1.1) 

consequently, normalized by    0 0 0 1f f    . Also, let’s S  be the subclass of  A , consisting also 

univalent functions.  

It is well known that a function f S  is called starlike in U  if  f U  is starlike (with respect to the origin) 

and convex in U  if  f U  is convex. Starlike and convex in U  function classes are denoted by 
*S  and C , 

respectively, and given below (see [5, 7, 18]) 
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. 

The classes 
*S  and C  are important and well investigated subclasses of S .  

Some of the important and well investigated subclasses of S  are the class  *S   of starlike functions of order 

  and the class  C   of convex functions of order     0,1  , and given below 
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The function classes  *S   and  C   have been investigated rather extensively in [8, 17, 19, 20] and the 

references therein.  

It is easy to see that  * *0S S  and  0C C ,  * *S S   and  C C   for each  0,1  . Also, 

     * *f C f C zf S zf S        [5].  

Among the important tools in the theory of analytic functions are Hankel determinant, which defined by 

coefficients of the function f S  [3]. The Hankel determinants  qH n , 1,2,3,...,n   1,2,3,...q   of 

the function f S  are defined by (see [15]) 
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Generally, this determinant was investigated by researchers with 2q  . It is well known that the functional 

  2

2 3 21H a a   is known as the Fekete-Szegö functional and one usually considers the further generalized 

functional    2

2 3 21,H a a   , where   is a real  number (see [6]). Finding estimating for the upper 

bound of 
2

3 2a a  is known as the Fekete-Szegö problem, in the theory of analytic functions.  

In 1969 Koegh and Merkes [9] solved the Fekete-Szegö problem for the classes of starlike and convex functions 

for some real  . The Fekete-Szegö problem has been investigated by many mathematicians for several 

subclasses of analytic functions ([2, 4, 11, 12, 14 -16, 21]). One can see the Fekete-Szegö problem for the 

classes of starlike functions of order   and convex functions of order   in special cases in the paper of Orhan 

et al. [16].  

The object of this paper is to find the upper bound for the Fekete-Szegö functional for the subclasses of 

univalent functions defined as follows. 

 

Definition 1.1. A function f S  given by (1.1) is said to be in the class  M  , 0  , 0   if the 

following condition is satisfied 
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Definition 1.2. A function f S  given by (1.1) is said to be in the class M  , 0   if the following 

condition is satisfied 

 
 

 

  
 

Re 1 0,  
zf zzf z

z U
f z f z

 

     
 
  

. 

Note 1.1. It is clear that    *

0M S  ,    1M C  . 

To prove our main results, we shall require the following lemmas related the functions with positive real part 

(see e. g. [1, 10]).  

Denote by   the set of functions p  analytic in U  with expansion series  

 
1

1 n

n

n

p z p z




    

and satisfying  Re 0p z   for z U .   

Lemma 1.1.  Let p , then 2np   for every 1,2,3,...n   . These inequalities are sharp for each 

1,2,3,...n  .  

Moreover,  

 2 2

2 1 12 4p p p x   , 

      23 2 2 2 2

3 1 1 1 1 1 14 2 4 4 2 4 1p p p p x p p x p x z          

for some complex ,  x z  with 1x  , 1z  .    

 

2. Fekete-Szegö problem for the class  M   

In this section, we investigate Fekete-Szegö problem for the function classes defined by Definition 1.1. 

Firstly we prove the following theorem on upper bound of the Fekete-Szegö functional 
2

3 2a a  when 

 for the function belonging to the class  M  . 

Theorem 2.1. Let the function  f z  given by (1.1) be in the class  M  , 0  ,  0,1   and .  

Then, 
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Proof. Let  f M  , 0  ,  0,1   and . Then,  
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,                           (2.1) 
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where the function p .  

As a result of simple simplification from (2.1), we have (see also [13]) 

2 1

1

1
a p









,                                                                             (2.2) 
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.                                (2.3) 

From (2.2) and (2.3) for 
2

3 2a a  and , we can write 
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.                   (2.4) 

Using Lemma 1.1, we write the following expression for 2p  

 2 2

2 1 1

1
4

2
p p p x   

 
                                                     (2.5) 

for some x  with 1x  .  

Substituting the expression (2.5) in the equality (2.4) and using triangle inequality and then letting x   and 

 1 0,2p t   for 
2

3 2a a , we write: 
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,  0,1  . 

From this, we can easily write 
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.   (2.6) 

Let define the function  as follows: 
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.   (2.7) 

We now use elementary calculus to find the maximum of the function  h t .  

It is clear that   0h t   if  

    

  

 

  

2 2
1 2 1 1 3 1

4 1 1 2 4 1 1 2

   


   

    
 

   
                     (2.8) 

and   0h t   otherwise.  

Thus,  h t  is increasing function if satisfied the condition (2.8) and is decreasing otherwise. With this 

completes the proof of Theorem 2.1. 

In the special cases, from Theorem 2.1 we arrive at the following results. 

Theorem 2.2. Let the function  f z  given by (1.1) be in the class M  , 0   and .  Then, 
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Theorem 2.3. Let the function  f z  given by (1.1) be in the class  *S  ,  0,1   and .  Then, 

 
     

   

2

2

3 2

3 2 3 2 1
4 1 ,  ,

4 1 4 1 4 1

3 2 1
1 ,                                .

4 1 4 1

a a

 
  

  



 

 

  
   

  
  


    

 

Theorem 2.4. Let the function  f z  given by (1.1) be in the class  C  ,  0,1   and .  Then, 
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Corollary 2.1. Let the function  f z  given by (1.1) be in the class 
*S  and .  Then, 

2

3 2

3 4 ,   3 4 1,

1,             3 4 1.
a a

 




   
  

 

 

Corollary 2.2. Let the function  f z  given by (1.1) be in the class C  and .  Then, 
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We give the following theorem which will prove in similar to the proof of Theorem 2.1. 

Theorem 2.5. Let the function  f z  given by (1.1) be in the class  M  , 0  ,  0,1   and .  

Then, 
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From the Theorem 2.5, we arrive at the following results. 

 Theorem 2.6. Let the function  f z  given by (1.1) be in the class M  , 0  , and .  Then, 
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Theorem 2.7. Let the function  f z  given by (1.1) be in the class  *S  ,  0,1   and .  Then, 
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Theorem 2.8. Let the function  f z  given by (1.1) be in the class  C  ,  0,1   and .  Then, 
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Corollary 2.3. Let the function  f z  given by (1.1) be in the class 
*S  and .  Then, 
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Corollary 2.4. Let the function  f z  given by (1.1) be in the class C  and .  Then, 
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Taking 0   in Theorem 2.5, we obtain the following inequality for 3a , which verifies result obtained in 

[13]. 

Corollary 2.5. Let the function  f z  given by (1.1) be in the class  M  , 0  ,  0,1  .  Then, 
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Taking 1   in Theorem 2.5, we arrive at the following results for the Fekete-Szegö functional 
2

3 2a a . 

Corollary 2.6. Let the function  f z  given by (1.1) be in the class  M  , 0  ,  0,1  .  Then, 
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Corollary 2.7. Let the function  f z  given by (1.1) be in the class M  , 0  .  Then, 
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Corollary 2.8. Let the function  f z  given by (1.1) be in the class  *S  ,  0,1  .  Then, 

2

3 2 1a a    . 

Corollary 2.9. Let the function  f z  given by (1.1) be in the class  C  ,  0,1  .  Then, 

2

3 2

1

3
a a


  . 

Corollary 2.10. Let the function  f z  given by (1.1) be in the class 
*S .  Then, 

2

3 2 1a a  . 

Corollary 2.11. Let the function  f z  given by (1.1) be in the class C .  Then, 

2

3 2

1

3
a a  . 
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