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Abstract For any positive integer n , let ( )n  and ( )n denote the Euler function and the number of distinct 

prime divisors of n  respectively. Further, for any positive a  such that a >1 and gcd(a,n)=1, the positive 

integer of the form 
( )( 1) /na n   is called an Euler quotient. In this paper, using some elementary number 

theory methods, the squares in Euler quotients are discussed and all squares with ( ) 2n   are determined. 
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1. Introduction 

Let   denote the set of all positive integers. For positive integer n , let ( )n  and ( )n  denote the Euler 

function of n  and the number of distinct prime factors of n . According to the famous Euler theorem of number 

theory: when a  and n  coprime and a  is an integer, there must be 
( ) 1(mod )na n  (following the theorem 

2.3.2 as used in [1]). Therefore, if a >1 and a  is an integer relatively prime with n , 
( )( 1) /na n   must be 

positive integer, which is called Euler quotient. When n p , p is prime number and ( ) 1p p    is given, 

thus in the condition of a >1 and a  is not divisible by p  ,  1 1 /pa p   is also positive integer, which is 

called Fermat quotient. Obviously, Fermat quotient is an exceptional case of Euler quotient. Among the 

discussions of number theory including Fermat conjecture, the arithmetic property of Fermat quotient and Euler 

quotient is a remarkable research subject (following the arguments as used in [1] and [2]). 

This paper discusses the squares in Euler quotient. According to the definition of Euler quotient, it can be stated 

as the solution of following equation 

( ) 21 ,nx ny      ,x y                              (1.1)  

For that, [3] figures out the situation when n  is greater than 3 and n is odd prime number, this paper works out 

the situation when ( ) 2n  further, it proves:  

Theorem When ( ) 2n  , equation (1.1) only has following solution: 

 ⅰ     2, , 1, 1,n x y t t  , where t  is positive integer. 

 ⅱ     2, , 2,2 1,n x y t t  , where t  is positive integer. 

 ⅲ     , , 3, ,k kn x y u v , where ku  and kv  satisfy  3 2 3
k

k ku v   , k is positive integer. 

 ⅳ     , , 5,3,4n x y  . 
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 ⅴ     , , 6, ,k kn x y u v  , where ku  and kv  satisfy 6 (5 2 6)k

k ku v    , k  is positive integer. 

 ⅵ     , , 7,2,3n x y  . 

From the theorem above, it implies that when ( ) 2n  ,the equation(1.1) has no solution  ,x y  if 7n  . 

Therefore, this paper presents the following conjecture: 

Conjecture When 7n  , equation(1.1) has no solution  ,x y . 

 

2. Lemmas 

Lemma 2.1 if kr

k

r
ppn 1

1  is canonical decomposition of positive n , then 

)1()1()( 1

11

1
1 



k

r

k

r
ppppn k  . 

Demonstration Following the theorem 2.5.4 as used in [1]. 

Lemma 2.2 when 2n , )(n must be even number. 

Demonstration According to the definition of Euler function, )(n  is equal to the number of positive integer 

which is not greater than n  and coprime with n . When 2n , if positive integer a  satisfies na 1  and 

1),gcd( na , there must be nan 1  and 1),gcd(  nan . Because 2/n  is not integer or 

coprime with n , thus ana  . Hence the number of positive integer which is not greater than n  and 

coprime with n  is even number.This completes the proof. 

Lemma 2.3 When n >1 and n  is square, equation (1.1) has no solution  yx, . 

Demonstration when n >1 and n  is square, 4n , then lemma 2.2 implies that )(n  is even number. 

Therefore, 
       11 2/

222/2)(  ynxynxnyx nnn 
 is contradictory from (1.1), which 

is not possible. This completes the proof. 

Lemma 2.4 Let D  denote non-square positive integer. Equation 

122 Dvu , vu,                                  (2.1) 

must has solution  ,u v , and it has the only one solution  1 1,u v which satisfies 1 1u v D u v D   , 

where  ,u v  is all solutions of this equation. Then  1 1,u v  is the minimal solution of equation (2.1). Here, 

    , , 1,2,k ku v u v k    is all solutions of equation (2.1), where 1 1( )k

k ku v D u v D   . 

Demonstration Following the theorem 10.9.1 and 10.9.2 as used in [1]. 

Lemma 2.5 When  6,3,2,1D , equation 

23 1 DYX  ,  ,X Y                                (2.2) 

has no solution ),( YX ; equation 

23 1 DYX  ,  ,X Y                                (2.3) 

only has solution    3,2,1,, YXD , (2,1,1) and (2,23,78). 

Demonstration Following the theorem 6.2.5 as used in [4]. 

Lemma 2.6 For prime number p , equation 

124  pYX , ,X Y                                (2.4) 

only has solution    4,3,5,, YXp  and (29,99,1820). 

Demonstration Following the arguments as used in [5]. 

Lemma 2.7 For odd prime number p , equation 



Liu Z                                                          Journal of Scientific and Engineering Research, 2019, 6(2):262-266 

 

Journal of Scientific and Engineering Research 

264 

 

12 24  pYX , ,X Y                               (2.5) 

only has solution    20,7,3,, YXp . 

Demonstration Following the arguments as used in [6]. 

Lemma 2.8 Equation 

mYX 12
, , ,X Y m    , 1m                     (2.6) 

Only has solution    3,2,3,, mYX . 

Demonstration Following the arguments as used in [7] and [8]. 

Lemma 2.9 Equation 

221 YX m  , , ,X Y m    , 1X , 4m                  (2.7) 

only has solution    5,11,3,, mYX . 

Demonstration Following the arguments as used in [9]. 

Lemma 2.10 When p  is greater than 3 and p is odd prime number, equation 

21 1 pYX p 
, ,X Y                               (2.8) 

only has solution    4,3,5,, YXp  and (7,2,3); equation 

21 21 pYX p 
, ,X Y                              (2.9) 

has no solution ),( YX . 

Demonstration Following the arguments as used in [3]. 

 

3. Demonstration of Theorem 

Because     121   is known from lemma 2.1, thus equation (1.1) only has solution  ⅰ  and  ⅱ  of this 

lemma respectively when 1n and 2. 

When 3n , because   23  , thus (1.1) deduces 13 22  yx  . Hence equation (1.1) only has solution

 vuYX ,),(   here, where  vu,  is the solution of equation (2.1) when 3D . Since the minimal solution 

of equation (2.1) is    1,2, 11 vu  when 3D , so equation(1.1) only has solution  ⅲ  here in accordance 

with lemma 2.4. Likewise, when 6n , because   26   and equation(2.1) has the minimal solution

   2,5, 11 vu  when 6D , thus equation(1.1) only has solution  v  here. 

When 4n and 9, lemma 2.3 deduces that equation (1.1) has no solution. When 5n  and 7, lemma 2.10 

deduces that equation (1.1) has solution  ⅳ  and  ⅵ  respectively. 

It can be seen from the analysis above: if equation (1.1) has no solution can be proved when   2nw , 8n  

or 10n , then this lemma holds. Let  yx,  denote a set of solution of equation (1.1), thus 1x  because of 

02 ny . The solution will be proved does not exist through the following four conditions. 

Condition Ⅰ: 
rn 2 , where r  is greater than 2 and r is positive integer. 

From lemma 2.1, 
12)2(  rr  is known. Because 21r , then (1.1) deduces 

  2
4

2 21
3

yx rr




 , 1x  .                                (3.1) 

However, according to lemma 2.6 and 2.8, (3.1) doesn’t hold. 

Condition Ⅱ: 
spn  ,where p  is odd prime number, s  is positive integer. 

Because  1)( 1   ppp ss , then (1.1) deduces 
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  2
1

1
1

ypx s
p

ps




 , 1x  .                               (3.2) 

On account of 8sp , (3.2) doesn’t hold when 3p  according to lemma 2.8 and 2.10. 

When 3p , because 83 s
, thus 2s , and (3.2) deduces 

  2
3

32 31
2

yx ss




 , 1x  .                               (3.3) 

However, according to lemma 2.5 and 2.8, (3.3) doesn’t hold. 

Condition Ⅲ: 
sr pn 2 , where p  is odd prime number, r  and s  are positive integer. 

When 1r  and s  is even number, then (1.1) deduces 

  22/
)1(

)(21
2

ypx s
pp

ps




 , 1x  .                        (3.4) 

Whereas, because  pp 1  is even number and greater than 4, then lemma 2.9 implies that (3.4) doesn’t hold. 

When 1r  and s  is odd prime number, (1.1) deduces 

  22/)1(
1

)(21
1

yppx s
p

ps 





 , 1x                        (3.5) 

According to lemma 2.10, 3p  and 1s  are known from (3.5). Here, (3.5) deduces  

  2
3

32 321
2

yx ss




 , 1x  .                           (3.6) 

However, （3.6）doesn't hold in accordance with lemma 2.5. 

When 1r , (1.1) deduces 

  2
4

2/)1(2 21
12

ypx srppsr



 , 1x .                       (3.7) 

However, (3.7) is not established is known from lemma 2.6 and 2.7. Hence, equation (1.1) has no solution here. 

Condition Ⅳ: 
srqpn  , where p  and q  are distinct odd prime number, r  and s  are positive integer. 

Here lemma 2.1 deduces 

  )1)(1(11   qpqpqp srsr .                          (3.8) 

(3.8) deduces that  srqp  is the multiple of 4, then 

  fqp sr 4   f                                  (3.9) 

Because qp  , thus   4srqp , 1f  is known from （3.9）. Then (1.1) and (3.9) deduce 

24 1 yqpx srf   , 1x .                           (3.10) 

Because   111 224  fff xxx , where 12 fx  and 12 fx satisfy the positive integer of  

2 2
1, 2

gcd( 1, 1)
2, 2

f fx x


   


如果 ︱x,

如果 x,Œx 
                             (3.11) 

Moreover, due to 42 f , then lemma 2.8 and 2.9 deduce 

22 1 zx f   或 
22z ， z  ,                               (3.12) 

Thus (3.10), (3.11) and (3.12) deduce 

2

2

2

,
1

2 ,

r

f

r

p a
x

p a


  


       

2

2

2

,
1

2 ,

s

f

s

q b
x

q b


  


=，    

, 2

2 , 2

ab
y

ab


 


如果 ︱x,

如果 x,Œx 
 

               ,a b    ， 1),gcd( ba                                  (3.13) 

From the second equality of (3.13), )4(mod1q  is known, thus f  is even number from (3.8) and (3.9), that 

is, gf 2 , where g  is positive integer. However, (3.13) doesn’t hold here according to lemma 2.6 and 2.7. 
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In conclusion: when   2n , if 8n  or 10n , equation(1.1) has no solution ),( yx . This completes the 

proof. 
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