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Abstract Some authors have solved the Blasius equation for particular case by analytically or numerically or 

both. None of them solved it for some special cases (like as laminar profile, linear profile, parabolic profile, 
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and then obtained phenomenal result. 
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Introduction 

The following boundary value problem with boundary condition 

      0  fff                                                                     …(1.1) 
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where 0 , plays an important role in the boundary layer theory of fluid dynamics and is known as the 

Blasius H. [1] equation when  1. The main hurdle in the solution of the above problem is the absence of the 

second derivative  0f  . Once this derivative has been correctly evaluated an analytical solution of the 

boundary value problem may be readily found. Blasius H. [2] found the following power series solution of the 

problem with 2/1  is   23
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k and   represents the unknown  0f  . Howarth [3] 

solved the Eq.(1.1) with 5.0  numerically and found 33206.0 . Asaithambi [4] solved the Blasius 

equation more accurately and obtained this number as 332057336.0 . Several authors have devised 

numerical algorithms to find good approximations to  0f  , as for example, Asaithambi [4] and references 

therein. Asaithambi [4] solved Eq. (1.1) by considering the condition 1  and found  0f   where 

  469600.00 f . Recently, Wang [5] has used an ingenious idea to find  0f   analytically for 1 . He 

used )(&)(  fyfx  to transform Eq.(1.1) to another equation for solved easily as follows, 
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)1,0[;0  x
y

x
y                                                     …(1.3) 

with boundary conditions 
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x
yfy                                                …(1.4)  

Wang [5] used the Adomian decomposition method to solve Eq. (1.3) with 1 and found  
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xy               …(1.5) 

Wang [5] solved this equation retaining six terms of the series Eq. (1.5) and found   453539.00  f . 

Recently, Hashim [6] improved this value to   453539.00 f  by finding terms of the series Eq.(1.5) up to 

24x  by the Adomain decomposition method (ADM) and then approximating this function by the {12/12} 

diagonal Pade’ Approximant. Faiz and Wafaa [7] used “Pade’ approximation” up to {23/23} pade’ approximant 

and reached the successive result   469009.00 f  which was very difficult and lengthy. Ahmad [8] has 

shown that the exact value of  0f   lies between 0.4695975 and 0.4696064. They have found the value of 

 0f   only for 1  which had no special flow. 

Now, we have found the second order boundary condition  0f   to solve the Eq. (1.1) with some special cases 

(like as laminar profile, linear profile, parabolic profile, cubic profile and sin-cos profile) by the series solution 

and used the finite difference approximation to derivative formula for numerical solution and MATLAB for 

both cases. 

In this paper, the Blasius equation of boundary layer flow over a flat plate of the problem is presented followed 

by the series solution of Blasius equation and again review this series solution for different profiles. Using the 

finite difference method, the numerical solution of second order boundary condition  0f   of the Blasius 

equation has been solved for special cases and then drawn an acceleration versus velocity graph by series and 

numerical solution. Finally, we have compared between these two results graphically and then obtained 

phenomenal result which acceleration decreases when velocity increases and acceleration exists at zero velocity. 

 

2. General Blasius equation of boundary layer flow over a flat plate 

Consider a thin infinite flat plate submerged in steady incompressible plane parallel flow, whose undisturbed 

velocity is U . The fluid has low viscosity, and the plate is at rest in such a way that its plane coincides with the 

direction of U . Since the plate is of infinite length, the flow may be considered as two-dimensional. Let the 

origin of the coordinate system coincide with the front edge of the plate, the x-axis lying along the plate parallel 

to U  and the y-axis normal to the plate. The velocity U  of the potential flow is constant in this case so that 

dx

dU
=0 and hence 0

dx

dp
(Since, for steady flow,

x

p

dx
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U





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Thus the Prandtl boundary layer equations in the case under consideration are 
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and   0









y

v

x

u
.                                                                                    ...(2.2) 

The boundary conditions to be satisfied by u  and v  are 
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




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. =ywhen  U=u

0=ywhen  0u v
                                                                                  ...(2.3) 

The integration of Eq.(2.1) and Eq.(2.2) can be simplified by reducing the number of unknown with the help of 

the stream function  . 

x
v

y
u









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
, .                                                                                    …(2.4) 

Then, Eq.(2.2) is satisfied automatically by Eq.(2.4). 

The order of the boundary layer thickness is 2
1

)/( Ux  approximate, i.e.  2
1

)/( Ux . Then  c

2
1

)/( Ux                               … (2.5) 

where c is arbitrary constant which is not equal to zero. 

The unknown numerical factor remaining in the Eq.(2.5) can be determined from the different profile flows. 

Hence, we take the new dimensionless distance parameter 



y

  so that 


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 .                                                                                               …(2.6) 

In accordance with the procedure of the law of similarity, let the velocity profile be 

)(F
U

u
 .                                     …(2.7) 

Using Eq.(2.4), Eq.(2.6) and Eq.(2.7), the stream function is given by 

)()(
/




 fxUcdF
xU

Uc
dyu                                          …(2.8) 

where f(   dF )() . Then from Eq.(2.4), Eq.(2.6) and Eq.(2.8), we have 

)(fUu                                   …(2.9) 
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Substituting  Eq.(2.9) to Eq.(2.13) in Eq.(2.1), we get after simplification, the following ordinary differential 

equation is obtained 

0 fff                                                                                                  …(2.14) 

where
2

2c
 , which is known as  general Blasius equation. 

Since c is not equal to zero and 
2

2c
 , then 0  
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Using Eq.(2.6), we see that .00   yandy Then from Eq.(2.9) and Eq.(2.10), we 

find that u =0, v =0 at y=0 00,0  atff . Furthermore, Eq.(2.9) shows that u =U  

.1 f  Hence the boundary conditions Eq.(2.3) may be re-written as 
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                                                                        ...(2.15) 

Finally, we have 

0 fff          … (2.16) 

where 0  and with boundary condition 
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           … (2.17) 

This implies that the Eq.(2.16) with Eq.(2.17) is called general Blasius equation. 

 

3. The series solution of the general Blasius equation: 

The Blasius equation is of the following form 

0 fff                                                                                                  ...(3.1) 

With boundary conditions 
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Since Eq.(3.1) is a third-order non-linear equation, the three boundary conditions Eq.(3.2) are sufficient to 

determine the solution completely, but the general solution of Eq.(3.1) has not been possible in closed form. The 

power series solution like as Blasius H [2] as follows 
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k  and   represents the unknown  0f   which is 

analytic(series) solution of general Blasius equation. 

Where   represents the unknown  0f  . Howarth [3] solved the Eq.( 3.1) with 5.0  numerically and 

found 33206.0 . 

Recently, Wang [5] has used ingenious idea to find    0f  analytically for 1  and also used 

)(&)(  fyfx  to transform Eq.( 3.1) to another equation for solved easily as follows, 

)1,0[;0  x
y

x
y                                                                    …(3.5) 

with boundary conditions 
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&0)0(,)()0()0( 
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 xy

x
ysayfy                                     …(3.6) 

We see that the Eq.( 3.5) is a non-linear equation, the three boundary conditions in Eq.( 3.6) are sufficient to 

determine the solution completely, but the general solution of Eq.(3.5) has not been possible in closed form. 

Then, to solve the Eq.( 3.5) with Eq.( 3.6) for  . Let us consider the series solution of Eq.( 3.5) be of the form 

0;)( 0

0






axaxy
i

i

i
                                                                      …(3.7) 

Using the Eq.( 3.7) in Eq.( 3.5), we get 
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which is an identity, and hence all coefficients of the various powers of x  must vanish identically. Thus, we 

obtain all coefficients by using “MATHLAB”. Then, substituting these values in Eq.(3.7), we get 

)8.3(.....
0000096000000005685180456538694748981632120471802824103

74502591035922021272239315758794267030

00000000009123989504318345681489897555067222407811

31437302776381692146942931782294879

00000009041920000706523604812798346732056962808

11852386201227217255282583436469

000008384000000123194859690182960417115280153

9794189234833357136984578942574

000000000559246540855169057124493246284

20141957064840001492881937

0000386240000070755909819976911676

5316791054191726145156

000351703040063468158321955474688

09915542934950267407

800000070636187646548924122

91263914517960881

000086204672001205175583

77013935387602

20672000009564885586

731486455967

224000007472566864

5575396901

8640002748530340

99956627

80001388146636

2923513

5588352000

7159

359251200

3037

299376000

2099

1900821601806
)(

39

6020

37

5719

35

5418

33

5117

31

4816

29

4515

27

4214

25

3913

23

3612

21

3311

19

3010

17

279

15

248

13

217

11

186

9

155

7

124

5

93

3

623



















































































x

x

x

x

x

x

x

xx

xx

xxx

xxxxxx
xy





















where   represents the unknown )0(f  , which is the series solution of general Blasius equation of boundary 

layer flow over a flat plate. 

Let us truncate the series Eq.( 3.8) after twenty one terms & substituting x=1 and using Eq.( 3.6) in Eq.( 3.8). 

We obtain an approximate value of   after solving the equation by using MATLAB. 
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If we use “ MATHLAB” in Eq.(3.9), then the value of   have forty values in the Eq.(3.9), one of them to be 

0.33091167180944538659606143291563 for
2

1
  

i.e.   = 0.3309117 and 0.46797977422047225176527652357888 for 1  i.e.   =0.4679798 which is more 

accuracy without loss time than by using “Pade’ approximation” method. 

 

4. The value of  0f   from the series solution of the Blasius equation for some special case on boundary 

layer flow over a flat late 

We know that the boundary layer thickness for the laminar boundary layer flow at a plate at zero incidence 

which is 

 
U

x
x


 599          … (4.1) 

Comparing Eq.(2.5) and Eq.(4.1), we get 5c                 … (4.2) 

Then we get from Eq.(4.2) and 
2

2c
  which is 5.12                           … (4.3) 

Therefore, the general Blasius equation of boundary layer flow over a flat plate which is Eq.(4.1) with Eq.(4.3) 

becomes 

05.12  fff                                                                                                              … (4.4) 

with boundary condition 


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ff
 

which is Blasius equation of laminar boundary layer flow over a flat plate. 
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If we use “ MATHLAB” in Eq.(3.9) for 5.12 , then the value of   have forty values, one of them to be 

1.6545583590472269329803071645781 i.e.  0f  =1.6545584  for laminar boundary layer flow over a flat 

plate. 

Similarly, we get the value of   0f   for some special cases as below 

Table 4.1: for the values of  , we find out the values of  0f  by using MATLAB after the series solution. 

Type of boundary layer flow Boundary layer thickness ( ) The value of   The value of  0f   

laminar profile 

U

x
5  

12.500 1.6545584 

linear profile 

U

x
46.3  

5.986 1.1449735 

 

parabolic profile 

U

x
48.5  

15.015 1.8133839 

cubic profile 

U

x
64.4  

10.765 1.5354445 

 

sin-cos profile 

U

x
795.4  

11.496 1.5867206 

 

 

5. The numerical solution of second order boundary condition of Blasius equation for some special case 

on boundary layer flow over a flat late 

The Blasius equation after using Wang [5] transformation is of the following form 

)1,0[;0  x
y

x
y                                                                         …(5.1) 

with boundary conditions 

0)(
1

lim
&0)0(,)()0()0( 


 xy

x
ysayfy                                           …(5.2) 

We know that the term y   can be expressed by numerically. The finite difference approximation to derivative 

formula as below 

h

yy
y ii

2

11  
 and

2

11 2

h

yyy
y iii  
                                                        ….(5.3) 

where nixxh ii .........4,3,2,1;1    

Using Eq.( 5.3) in Eq.( 5.1), we get 

0
2

2

11 
 

i

iiii

y

x

h

yyy
  

  2

11 2 hxyyyy iiiii                                                                      …(5.4). 

We subdivide the interval [0,1) into six equal parts so that h=0.17 and 

 1..1&5,4,3,2,1;,0 6610   xeixihxxx ii  and 0& 60  yy     … (5.5). 
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Now, we solve the Eq.(5.4) with Eq.(5.5) by using “MATLAB” in the computer, we get the 32 values of   for

5.12  in which one value of   is equal to 1.6378570758116367275156635865643 i.e. )0(f   = 

1.6378571 for 5.12 . 

Similarly, we get the value of  0f   for some special cases in numerical solution as below 

Table 5.1: for the values of  , we find out the values of  0f    by using MATLAB after numerical method. 

Type of boundary 

layer flow 

Boundary layer 

thickness ( ) 

The value of   The value of  0f   

laminar profile 

U

x
5  

12.500 1.6378571 

linear profile 

U

x
46.3  

5.986 1.1334160 

parabolic profile 

U

x
48.5  

15.015 1.7950794 

 

cubic profile 

U

x
64.4  

10.765 1.5199455 

sin-cos profile 

U

x
795.4  

11.496 1.5707041 

 

 

 

6. Compare these results with graphically 

We see that the Table 4.1 and the Table 5.1 are probably same and for finding the error between the series 

solution and the numerical solution, we combine the above two table as below 

Table 6.1: for the values of  , we compare the values of  0f   between the Series solution and Numerical 

solution. 

Table 6.2: This table of several accelerations with velocities by using series solution 

Type of 

boundary 

layer flow 

Boundary layer 

thickness ( ) 

The value of 

  

The value of

 0f   for series 

solution 

The value of

 0f   for 

numerical solution 

Error between 

the series 

solution and the  

numerical 

solution 

laminar 

profile 
U

x
5  

12.500 1.6545584 1.6378571 0.0167013 

linear 

profile 
U

x
46.3  

5.986 1.1449735 

 

1.1334160 0.0115575 

parabolic 

profile 
U

x
48.5  

15.015 1.8133839 1.7950794 

 

0.0183045 

cubic 

profile 
U

x
64.4  

10.765 1.5354445 

 

1.5199455 0.0154990 

sin-cos 

profile 
U

x
795.4  

11.496 1.5867206 1.5707041 0.0160165 
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Velocity [

 f  ] 

Acceleration 

of  laminar 

profile [

 f  ] for 

 =12.500 

Acceleration of  

linear profile [

 f  ] for 

=5.986 

Acceleration of  

parabolic 

profile [  f  ] 

for  =15.015 

Acceleration 

of  cubic 

profile [

 f  ] for 

 =10.765 

Acceleration of  

sin-cos profile [

 f  ] for 

=11.496 

0 1.654558 1.144974 1.813384 1.535444 1.586721 

0.17 1.648368 1.140689 1.806599 1.529699 1.580784 

0.34 1.604768 1.110518 1.758814 1.489239 1.538972 

0.51 1.483976 1.026928 1.626427 1.377142 1.423132 

0.68 1.236967 0.855996 1.355707 1.147916 1.186251 

0.85 0.783198 0.541982 0.85838 0.726815 0.751087 

0.999 8.39E-03 5.84E-04 9.24E-04 7.79E-03 8.05E-03 

Table 6.3: This table of several accelerations with velocities by using numerical solution 

Velocity [

 f  ] 

Acceleration 

of  laminar 

profile [

 f  ] for 

 =12.500 

Acceleration of  

linear profile [

 f  ] for 

=5.986 

Acceleration of  

parabolic 

profile [  f  ] 

for  =15.015 

Acceleration 

of  cubic 

profile [

 f  ] for 

 =10.765 

Acceleration of  

sin-cos profile [

 f  ] for 

=11.496 

0 1.637857 1.133416 1.795079 1.519945 1.570704082 

0.17 1.637857 1.133416 1.795079 1.519945 1.570704082 

0.34 1.600361 1.107469 1.753984 1.485149 1.534745782 

0.51 1.486118 1.02841 1.628774 1.37913 1.425185915 

0.68 1.247901 0.863562 1.367691 1.158063 1.196736615 

0.85 0.812834 0.562491 0.890861 0.754317 0.779507772 

0.999 0 0 0 0 0 
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Figure 6.1: Effect of parabolic, laminar, sin-cos, cubic and 

linear profiles for series solution 
Figure 6.2: Effect of parabolic, laminar, sin-cos, cubic and 

linear profiles for numerical solution 
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Figure 6.3: Effect of laminar profile ( 5.12 ) for series and 

numerical Solution. 

 

Figure 6.4: Effect of linear profile ( 5.986 ) for series and 

numerical solution. 

Figure 6.5: Effect of parabolic profile ( 15.015 ) for series 

and numerical solution. 

 

Figure 6.6: Effect of cubic profile ( 10.765 ) for series and 

numerical solution. 
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Figure 6.7: Effect of sin-cos profile ( 11.496 ) for series and numerical solutio. 

 

7: Conclusions 

In this work, the finite difference approximation to derivative formula and “MATHLAB” are applied to solve 

the nonlinear Blasius equation. We have found the values of  0f   for some special cases (see Table 4.1 and 

5.1) after solving the nonlinear Blasius equation by series solution and then by numerical solution with help of 

“MATHLAB”  in both cases. In the Table 6.1, we may say that the error between the series solution and 

numerical solution is acceptable.  

From the Table 6.2 or Table 6.3, we observed that acceleration decreased when velocity increased for different 

flows ( like as Laminar Profile, Linear Profile, Parabolic Profile, Cubic Profile, Sin-Cos Profile). 

Figures 6.1 to 6.7 show same result obtained by the analytical solution and the numerical solution. It has shown 

that acceleration would be high when velocity is zero for each case. A question may arise how does there exist 

an acceleration when velocity is zero? We can say for the question, in case of solid body, acceleration is zero 

when velocity is zero. But there exists some acceleration when velocity is zero for fluids which are lighter than 

air. In physically, when we keep fluid anywhere, it spreads for internal pressure at that instant. For this result, 

there exists acceleration at very small time to keep it anywhere instantly. For example, we choose 

1

1 000004.0  msv  at st 000001.01   but 
1

0 0  msv  at st 00  . Therefore acceleration =
t

v




=

2

01

01 4
000001.0

000004.0 



ms

tt

vv
. This implies that there exists acceleration when velocity is zero only for 

fluid. Finally, in figures 6.1 to 6.7, we conclude that an acceleration must be existed and maximum for boundary 

layer flow (like as laminar profile, linear profile, parabolic profile, cubic profile and sin-cos profile) at zero 

velocity but an acceleration would be reduced to zero when velocity would be reached one unit. Therefore, we 

can say that an acceleration decreases when velocity increases in boundary layer flow. 

 

Reference 

[1]. Schlichtung, H, and Gersten, K. 2000. Boundary Layer Theory. 8
th

 edition. Springer, Berlin, Page 156. 

[2]. Blasius, H. 1908. Grenzschichten in Flü  ssigkeiten mit kleiner Reibung. Z. Math. Physik,Bd. 56, 1-37. 

[3]. Howarth, L.1938. On the solution of the laminar boundary layer equations. Proc. London .Math. Soc. A 

164:547-579.  

[4]. Asaithambi, A. 2005. Solution of the Falkner-Skan equation by recursive evaluation of Taylor 

coefficients. J. Appl. Math. Comput 176:203-214. 361, 422] 

[5]. Wang, L. 2004. A new algorithm for solving classical Blasius equation. Appl.Math. Comput. 157:1-9. 

[6]. Hashim, I. 2006. Comments on a new algorithm for solving classical Blasius equation by L. Wang. 

Appl. Math. Comput.176: 700-703. 

Sin-Cos Profile

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1 1.2

Velocity

A
c
c
e
le

ra
ti

o
n

series

numerical



Rahman M                                                      Journal of Scientific and Engineering Research, 2019, 6(2):1-12 

 

Journal of Scientific and Engineering Research 

12 

 

[7]. Faiz A. and Wafaa A. A. 2006. Application of Pade’ approximation to solve the Blasius problem. 

Department of Mathmatics, Faculty of Science, king Abadulaziz University, P. O. Box 80203, Jeddah 

21589, Saudi Arabia. 

[8]. Ahmad, F. 2007. Application of Crocco-Wang equation to the Blasius problem. Electronic J. Technical 

Acoustics (accepted). 


