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Abstract In this paper, we study the dynamical behavior of an SIR epidemic model with a nonlinear incidence 

rate. By carrying out qualitative and numerical analysis, the relationship of the basic reproduction number (R0) 

with the stability of the model is proposed. It is established that the system has a stable disease free equilibrium 

point for (R0<1). For (R0> 1), conditions for the stability of the endemic equilibrium point are established. 
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1. Introduction   

In this paper, we consider an SIR model and assume a nonlinear incidence rate of the form ϕSI(1 + αI), where 

α, (0 ≤ α ≤ 1), is an inhibitory parameter. Introduction of the inhibitory parameter makes the model more 

realistic because the number of effective contacts between infective individuals and susceptible individuals is 

controlled by the inhibitory parameter. At α = 0, i.e. no inhibitory effect, the system assumes a bilinear force of 

infection, but at α = 1, we have full inhibition. Systems with this type of nonlinear incidence rates are widely 

studied [1–10]. 

Analytically, we derive a threshold value (R0) and prove that when R0< 1, the disease free equilibrium point is 

locally asymptotically stable and at R0>1, the endemic equilibrium comes into existence and is locally 

asymptotically stable. Numerical simulations support our analytical calculations and also show that we have 

global asymptotic stability of the disease free and endemic equilibria for R0 < 1 and R0>1respectively. The paper 

is organized as follows: The model is described in Section 2. The basic reproduction number and relevant results 

for the stabilities of the disease free and endemic equilibria could be found in Section 3. We have numerical 

simulations in 4 and conclusion in Section 5. 

 

2. Derivation of the Model 

We consider an SIR deterministic model with a three dimensional differential equation system. Individuals are 

assumed to be in one of the following epidemiological states: S-Susceptibles (at risk of contracting the disease), 

I-Infectives (infected and capable of transmitting the disease), and R-Recovered (population recovered from the 

infection). All recruitment is into the susceptible class, and occurs at a constant rate β. We assume a nonlinear 

incidence rate of the form ϕSI(1 + αI), where ϕ is the infection rate and α, (0 ≤ α ≤ 1), is an inhibitory 

parameter. We present the model as follows: 

𝑑𝑆

𝑑𝑡
= 𝛽 − --𝜇𝑆 − ϕSI(1 +  αI) 

𝑑𝐼

𝑑𝑡
= ϕSI(1 +  αI) −  𝜇 + ϒ 𝐼                                                                                                                                               (1) 

𝑑𝑅

𝑑𝑡
= ϒ𝐼 − 𝜇𝑅              
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This model has the death rate  which represent death rate as a result of natural causes. An infected individual 

has a recovery rate of (ϒ) into the recovery compartment. Since this model is for human population, we assume 

that all its state variables and parameters are nonnegative for all t≥ 0. The region biologically relevant is given 

by 

Ω =   𝑆, 𝐼, 𝑅 ∈ ℛ+
3 : 0 ≤ 𝑆 + 𝐼 + 𝑅 ≤

𝛽

𝜇
                                                                                                                      (2)      

The total human population is given by N = 𝑆 + 𝐼 + 𝑅, so that 𝑑𝑁/𝑑𝑡 ≤ 𝛽 − 𝜇𝑁, thus 𝑁 → 𝛽/𝜇 as𝑡 → ꝏ. 

 

3. Stability Analysis 

The basic reproduction number for the model obtained by the first generation matrix approach introduced by 

Diekmann et al [11] is given as 

𝑅0

=
𝜙𝛽

𝜇(𝜇 + ϒ)
                                                                                                                                                                               (3) 

The disease-free equilibrium given by 𝐸0 =  𝑆0, 𝐼0, 𝑅0  is the only equilibrium for R0≤ 1, where 

𝑆0 =
𝛽

𝜇
 ,    𝐼0 = 0 ,   𝑅0 = 0                                                                                          

If R0>1, then there is also an endemic equilibrium given by E
*
= (S

*
, I

*
, R

*
), where S

*
 is the root of the following 

𝜇𝜙α𝑆∗2 +  −𝜙α𝛽 − 𝜇𝜙 − 𝜙ϒ 𝑆∗ + 𝜇2 + 2𝜇ϒ + ϒ2 = 0    

And I
*
 and R

*
 are given below in terms of S

*
 

𝐼∗ = −
(𝜙𝑆∗ − 𝜇 − ϒ)

𝜙α𝑆∗
 

𝑅∗ =
ϒ(𝜙𝑆∗ − 𝜇 − ϒ)

(𝜇𝜙α𝑆∗)
                                                                                                                                                            (4) 

 

Local Stability of the Disease Free Equilibrium. 

The characteristics equation after linearizing (1) about the disease free equilibrium E
0
 gives 

 𝜆 + 𝜇 2 𝜇2 + 𝜇ϒ + 𝜇𝜆 − 𝜙𝛽 = 0                                                                                                                                     (5) 

This gives 𝜆1,2 = −𝜇 and the solution to the following equation 

𝜇2 + 𝜇ϒ + 𝜇𝜆 − 𝜙𝛽 = 0                                                                                                                                                         (6) 

(6) gives 

𝜆 =  𝜇 + ϒ  𝑅0 − 1  

The first two eigenvalues λ1 and λ2 are negative and if R0< 1, λ in (6) is also negative giving us the following 

theorem. 

 

Theorem 1. 

The disease-free equilibrium point of the System (1) is locally asymptotically stable when R0 < 1, marginally 

stable when R0 = 1 and unstable when R0> 1. 

 

Local Stability of the Endemic Equilibrium 

We analyse the local stability of the endemic equilibrium point in this section. The characteristics equation at 

the endemic equilibrium point E
*
gives 

𝜆3 + 𝜇2𝜙α𝐼∗2 + 𝜙α𝜇ϒ𝐼∗2 + 2𝜇𝜙α𝐼∗2𝜆 + 𝜙αϒ𝐼∗2𝜆 + 𝜙α𝐼∗2𝜆2 − 2𝜇2𝜙α𝐼∗𝑆∗ − 4𝜇𝜙α𝐼∗𝑆∗𝜆 − 2𝜙α𝐼∗𝑆∗𝜆2 +

𝜇2𝜙𝐼∗ + 𝜇𝜙ϒ𝐼∗ + 2𝜇𝜙𝐼∗𝜆 + 𝜙𝐼∗𝜆2 + 𝜇2ϒ − 𝜇2𝜙𝑆∗ − 2𝜙𝜇𝑆∗𝜆 − 𝜙𝑆∗𝜆2 + 𝜇3 + 3𝜇2𝜆 + 2𝜇ϒ𝜆 + 3𝜇𝜆2 +

ϒ𝜆2 + 𝜙ϒ𝐼∗𝜆 = 0           (7)

     

Equation (7) simplifies to 

 𝜆 + 𝜇  𝜇𝜙α𝐼∗2 + 𝜙αϒ𝐼∗2 + 𝜙α𝐼∗2𝜆 − 2𝜇𝜙α𝐼∗𝑆∗ − 2𝜙α𝐼∗𝑆∗𝜆 + 𝜇𝜙𝐼∗ + 𝜙ϒ𝐼∗ + 𝜙𝐼∗𝜆 − 𝜙𝜇𝑆∗ − 𝜙𝑆∗𝜆 + 𝜇2

+ 𝜇ϒ + 2𝜇𝜆 + ϒ𝜆 + 𝜆2 = 0                                                                                                              (8) 

Giving 𝜆 = −𝜇 and the solution to the following equation 
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𝐴1𝜆
2 + 𝐴2𝜆 + 𝐴3 = 0 

Where, 

𝐴1 = 𝜙α𝑆∗2 

𝐴2 = 𝜙2α𝑆∗3 − 𝜙αϒ𝑆∗2 − 𝜙𝜇𝑆∗ − 𝜙ϒ𝑆∗ + 𝜇2 + 2𝜇ϒ + ϒ2 

𝐴3 = 𝜙2α𝜇𝑆∗3 − 𝜙α𝜇2𝑆∗2 − 𝜙α𝜇ϒ𝑆∗2 − 𝜙𝜇2𝑆∗ − 2𝜙𝜇ϒ𝑆∗ − 𝜙ϒ2𝑆∗ + 𝜇3 + 3𝜇2ϒ + 3𝜇ϒ2 + ϒ3 

Conditions: Let the following hold for 𝑅0 > 1 

(i) 𝐴1 > 0,     𝐴2 > 0,      𝐴3 > 0 

(ii) 𝐴1𝐴2 − 𝐴3 > 0 

If conditions (i) and (ii) hold, we are guaranteed stability from the Routh Hurwitz criteria giving us the 

following theorem. 

 

Theorem 2. 

The endemic equilibrium point (E
*
) of System (1) is locally asymptotically stable whenever R0> 1 if conditions 

(i) and (ii) above is satisfied. 

 

4. Numerical Simulation 

In this section, we show numerically the established results in earlier sections about the stability of the disease 

free and the endemic equilibria of the System (1) as it relates to the basic reproduction number (R0). We use the 

ode23 suite in Matlab to simulate the System (1) with the parameters as shown below the figures. The 

parameters are chosen solely for simulation convenience and do not reflect actual collected data. 

 

 
 

 

 

 

In Fig. 1(a), R0= 0.8747< 1, hence the disease free equilibrium becomes stable which shows that the infection 

dies out of the population. Fig. 1(b) shows the stable endemic equilibrium for R0= 1.56> 1, this means that the 

disease will persist in the population. This simulation agrees with Theorems (1) and (2) in Section 3. 

In the next figures, we show the effect of the inhibition parameter αon System (1) by plotting the number of 

infectives for different values of α. 

(b) R0= 1.56> 1, μ = 0.5  (a) R0= 0.8747< 1, μ = 0.69 

Figure 1: Other parameters are: β = 0.65, 𝜙 = 0.78, 𝛼 = 024 andϒ= 0.15 
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We easily notice a remarkable increase in the number of infectives as the inhibition parameter is increased in 

Fig. 2. Notice that at α = 0, we have the bilinear force of infection, but at α = 1, we have full inhibition. 

 

5. Conclusion 

In this paper, we formulated an SIR epidemic model with a nonlinear incidence rate. The threshold value R0 was 

found and analytical calculations and numerical simulations show that the local and global dynamics of the 

System (1) are completely determined by the values of the threshold number R0. 

We found that if R0< 1, the disease free equilibrium point is always stable for  0 ≤ α ≤ 1  and the endemic 

equilibrium point is always stable for (0 ≤ α ≤ 1) if R0>1. The inhibitory parameter α is such that at α = 0, i.e. 

no inhibitory effect, the system assumes a bilinear force of infection giving lower infectives in the population, 

but at full inhibition (α = 1), we have higher levels of infectives, Fig (2). 
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