Journal of Scientific and Engineering Research, 2019, 6(1):166-183

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

Estimation of Longitudinal Light Ship Hull Structure Shear Force and Bending Moment on Still Water

Godwin Ugodo*¹, Tamunodukobipi Daniel T.², Akandu Ezebuchi E.³, Kombo Johnson⁴

Department of Marine Engineering, Faculty of Engineering, Rivers State University, Port Harcourt, Nigeria

Abstract Longitudinal estimation of shear force and bending moment is of almost important in the early stage of design analysis of ship for determination of the maximum bending stress of the hull girder. The paper considers various numerical approximation methods for estimation of longitudinal load distribution. The components of longitudinal load distribution include gravity and buoyant load distributions. The use of different numerical approximations enhances the elimination of complexity and errors. In this paper, the longitudinal buoyancy distribution was gotten from the offset table data with numerical integration method using trapezoidal rule. Few requirements are needed for the calculation of shear force and bending moment (hull geometry, distribution, machinery and equipment weight distribution and the L.C.G. of various weights). The method used is known as weight and buoyancy method. Simulation was carried out using offshore servicing vessel with characteristics shown in table 1. Results indicate that if the longitudinal weight distribution is not evenly distributed within the allowable strength of the ship, bending moment will start from zero and will not come to zero, which will make the ship to capsize and may eventually lead to catastrophe.

Keywords Ship Structure, Shear Force, Bending Moment, Offshore Servicing Vessel

Introduction

The nature and complexity of ship structure has changed significantly over decades. This has also affected the methodology of design from traditional ways to more robust and complex systems. This can be seen by the many sophisticated software for structural analysis. The bottom line in most of the complexity in the analysis is the application of computational tools without the basic or fundamental principles of the subject of naval architecture. This singular purpose has given birth to this paper on the development of naval architecture's practical knowledge on ship's structure.

The paper focuses on various structural responses steepness (load distribution, shear force and bending moment calculations) with developed algorithms that can be implemented in any programming language. The results generated from the numerical simulation of a typical ship, an offshore servicing vessel are presented and could enhance comparative study with other well-known methodologies.

It is the responsibility of naval architects to carry out proper analysis using the possible simplest method [1]. For a quick estimate of response steepness two different approximation methods are considered for weight and buoyancy distributions. This reduces time and complexity in the analysis. An unnamed Matlab code was written as a result. The response results obtained improve confidence in the procedure used in demonstrating satisfaction [2].

To this end, the importance of shear force and bending moment calculation cannot be overemphasized as the safety of the ship, human elements' comfort, ship's efficiency and even cost depend to a greater extent.

2. Literature Review

General Ship Theory

Ship's main dimensions determine many of her characteristics, e.g. stability, hold capacity, power requirements, and more importantly her economic efficiency. Therefore determining the main dimensions and ratios, as well as coordinating them in such a way that a ship satisfies the design conditions forms a particularly important phase in the overall design.

The characteristics desired by a shipping company can be usually achieved through various combinations of dimensions. Such characteristics could allow for an economic optimum design to be achieved if it were not for the restrictions imposed by size of locks, canals, slip waterways and bridges and most commonly water depth. A ship's economic efficiency is usually improved by increasing her size, and accordingly this could lead to the specific cost decreases. In general, the larger the ship, the more economically efficient is the ship.

According to the above mentioned aspects a perfect ship does not exist; however, weight reduction for a wellknown design achieving its purpose without shape (main dimensions) alteration leads to a less fuel consumption, increased deadweight, more freeboard, less initial cost, more speed and even better accessibility to channels and harbors with lesser depths.

Weight Distribution Methods

A ship in water can be modeled as a rigid body acted upon by its weight (light weight), deadweight and the environmental loads. When she is in still water condition, the weights are generally identified as longitudinal load distribution, and are caused by gravity and pressure loads on the hull structure of the ship [3]. Figure 2 describes the two components of the force as described above. The forces with arrows pointing down represent the gravity load distribution whereas the doted solid arrows pointing upward show the buoyant load distribution. This is usually modeled in general as a beam under distributed loading for the purpose of theoretical analysis.

Figure 1: Depiction of Offshore Servicing Vessel in Two Different Views

Longitudinal Ship Weight Distribution Methods

In the determination of gravity load distribution, the weight of the ship's structures in light condition (hull, outfitting and machineries) is calculated using data of built ships. This method is employed in Bending moment and shear force calculations play a very dominant role in initial stage of the ship design as spelled out in a well-defined naval architecture design spiral [4]. This is used to analyze the ship strength and for preparing the loading booklet [5]. The application of various methods in calculation of ship structural responses becomes imperative.

In ship structural analysis, numerical approximation methods are usually used for hull weight distribution while grouping or bucket method is used for machinery and equipment distribution (Comstock, 1944). The various approximation methods are given below while other relevant methods are as well discussed.

Figure 2: Action of gravity and buoyant loadings on a hull structure [3]

- 1. Approximation methods
 - a. Comstock approximation
 - b. Biles approximation
 - c. Prohaska approximation
 - d. Trapezoidal approximation [4]
- 2. Grouping methods (bucket method)
- 3. Direct distribution methods
 - a. General philosophy methods (twenty one station methods)
 - i. Calculate the weight of each station
 - ii. Find the C.G of weight of each segment
 - iii. Place the weight at the C.G
 - b. Mechanics of distribution (trapezoids) [2].

3. Materials and Methods

Materials

Offshore Serving Ship Description

The main function of an offshore servicing vessel is to transport store materials, equipment and/or personnel to, from and between offshore installations. The class notation of the investigated existing vessel is Bureau Veritas, and the vessel is intended to operate in the benign sea of offshore Nigeria. It is worth mentioning that this vessel is selected as a case study because this type of vessels represents the highest percentage of the vessels building and operating in the area due to increase in offshore activities. The vessel main characteristics and capacities are mentioned below in Table 1. Fig. 2 shows an outline of the ship's general arrangement.

OSV environmental loads

Still water loads

When a ship is at sea, she is subjected to forces which cause the structure to deflect. The correct assessment of the magnitude of the forces is difficult. The forces may be divided into static and dynamic components. Still water forces are static in nature as the ship is considered to be floating in equilibrium. Still water load curve is obtained as the algebraic sum of weight and buoyancy curves. Different loading conditions are assigned to the ship in order to determine the worst one.

Table 2 summarizes these loading conditions. In order to determine the distribution of bending moment along the ship, the weight and buoyancy, load, shear and moment distributions for the worst loading condition are obtained.

Standard Estimate of Weight Distribution of Offshore Servicing Ship

A systematic method of estimating weight of ship has been used over time. This is achieved by using principal particulars of the ship. Table 1 shows the particulars of the servicing ship used in this work as a case study. Matlab subroutine was developed for analysis of light ship weight estimation and the method employed is discussed next.

Standard Estimation of Weight Distribution of Offshore Servicing Ship Weight Estimation

Table 1: Principal particulars and weight distribution									
Self-propelled offshore servicing s	hip Double hull	L (m))	B (m)	D (m)	T (m)	LOA (m)		
		108.1	5	11.50	4.7	3.55	110		
Table 2	: Actual Light Shi	p Weigh	it Si	ımmar	у	_			
Items	Weight	(ton)	KG	(m)	LCG (m)	_			
Aft parts	112.988		2.07		10.57				
Central part	487.926		1.36	5	58.92				
Fore part	78.409		2.37		102.84				
Deck house	53.6	4	4.84	ļ	10.87				
Fitting	17.705	-	3.62	2	53.06				
Completion weig	ght 61.575	1	5		37.42				
<u>Total light ship</u>	weight 812.203		2.11		51.57	_			
Table	e 3: Light Ship We	eight Bre	eak I	Down	_				
Items		Weight	t 1	L.C.G					
Hull s	tructure	679.323	3 .	-	_				
Deck	house	53.6		-					
Main	installation aft	4.625		-					
Main	machinery aft	15.4		-					
Ancho Gear f	or equipment and ore	12.35		-					
Ancho Gear	or equipment and	4.35		-					
Machi	nery installation	1.935		-					
Main	machinery fore	4		-					
Deck	equipment	5.14		-					
Fitting		17.705		-					
Ballas	t piping system	0.85		-					
Auxili	ary machinery	2.15		-					
Auxili Instal	ary machinery lation	3.32		-					

The offset table is use for the determination of ship hull shape (hull geometry) which will use to calculate the area, volume, buoyancy

Table 4: Offset Table (hull geometry)											
Station	0	1	2	3	4	5	6	7	8	9	
No.											
Length	0	0.925	6.3325	11.74	17.1475	22.555	27.9625	33.37	44.185	55	
Water line(m)Half Breath(m)											
8	0	0	0	0	0	0	0	0	0	5.75	
7	0	0	0	0	0	0	0	0	0	5.75	
6	0	0	0	0	0	0	0	0	0	5.75	
5	0	0	0	0	0	0	0	0	0	5.75	
4.7	5.307	5.728	5.75	5.75	5.75	5.75	5.75	5.75	5.75	5.75	
4	5.303	5.725	5.749	5.749	5.75	5.75	5.75	5.75	5.75	5.75	

3	2 025	3 701	1 055	5 / 87	5 658	5 713	5 735	5 7/3	5 748	5 740
5	2.925	0	4.933	2.407	1 1 0 0	1.072	5.755	5.745	5.740	5.749
2	0	0	1.1/6	2.704	4.108	4.972	5.408	5.602	5.708	5./1/
1	0	0	0	0	0.789	2.113	3.423	4.539	5.364	5.442
0.5	0	0	0	0	0	0	1.615	2.958	4.667	4.884
0	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4

Station No.	10	11	12	13	14	15	16	17	18	19	20
Length	65.815	76.63	82.0375	87.445	92.8525	98.26	100.9638	103.6675	106.3713	109.075	110
Water line(m)			Half	Breath(m)						
8	5.75	5.745	5.657	5.459	5.17	4.721	4.a412	4.047	3.578	2.91	2.019
7	5.75	5.702	5.59	5.349	5.022	4.519	4.178	3.76	3.212	2.474	1.47
6	5.749	5.654	5.418	5.232	4.853	4.284	3.897	3.416	2.795	1.993	0
5	5.749	5.598	5.397	5.101	4.65	3.995	3.55	3.002	2.318	1.441	0
4.7	5.749	5.58	5.367	5.056	4.582	3.898	3.432	2.865	2.167	1.255	0
4	5.743	5.519	5.283	4.929	4.396	3.642	3.139	2.536	1.793	0.722	0
3	5.73	5.407	5.116	4.7	4.075	3.211	2.667	2.019	1.188	0	0
2	5.671	5.216	4.847	4.338	3.581	2.607	2.021	1.336	0.426	0	0
1	5.307	4.685	4.166	3.487	2.588	1.619	1.054	0.472	0	0	0
0.5	4.647	3.716	3.039	2.304	1.584	0.848	0.438	0.012	0	0	0
0	0.4	0.4	0.4	0.4	0.275	0	0	0	0	0	0

The Grouping Method

The grouping method is known as the bucket method and the name is derived from the fact that the weight are positioned in different bucket based on the location of the local longitudinal center of gravity from the global reference point and it is grouped as uniform distributed load on each bucket (segment) as they fall on a particular bucket. Figure 3 is an illustration of this method.

Figure 3: illustration of a bucket method [2]

Trapezoidal Method

Figure 4 illustrates the application of trapezoidal method

Figure 4: Approximation to Hull Weight of Mid Parallel Body

Models for Calculating light Ship Still Water Shear Force and Bending Moment

	is for ourounding light ship still (futer shour I or ce und Behang froment	
i.	Area $(m^2) = \frac{1}{2} (y_0 + y_1)h + \frac{1}{2} (y_1 + y_2)h + \dots \frac{1}{2} (y_9 + y_{10})h$	(1)
ii.	volume (m ³) = $\frac{1}{2}$ (A ₀ + A ₁)L + $\frac{1}{2}$ (A ₁ + A ₂)L + $\frac{1}{2}$ (A ₉ + A ₁₀)L	(2)
iii.	Mass = volume displacement x ρ (Trim line)	(3)
iv.	Light ship weight (no cargo)	
Light s	ship weight is the sum of the three main components	
$W_{LS} =$	$W_H + W_E + W_M$	(4)
v.	Buoyancy is the Volume displaced at the total ship weight draught on a segment multiply by sea	water
	density and gravity	
Buoya	$\operatorname{ncy} = \Delta \times g (kN)$	(5)
vi.	Net load = Buoyancy - weight	(6)
vii.	Shearing force (Area under the net load curve)	
$\rho g \int_{o}^{L}$	$a(x)dx = g \int_{o}^{L} m(x)dx = g\Delta$	(7)
viii.	bending moment (Area under the shear force)	
$\rho g \int_{o}^{L}$	$a(x)xdx = g \int_{a}^{L} m(x)xdx = g\Delta Lg$	(8)

Procedures for Calculations in Matlab

The calculation process for shear force and bending moment distribution is given in figure 5.

Input Data in Excel File

Offset table, machinery and equipment weight, hull weight

Pre-Processing

Reading of the excel files that contains the offset table of the ship, the machinery and equipment loading and hull weight input

Processing Computation of

- a. Cross sectional area,
- b. Volume
- c. Total downward weight
- d. Draughts along trim line
- e. Buoyancy
- f. Resultant
- g. Shearing force
- h. Bending moment across the ship span

Post Processing

Display of graphical result of

- i. Weight and buoyancy curve
- ii. Resultant
- iii. Shear force against ship span
- iv. Bending moment against ship span

Figure 5: Block Diagram for Developing Shear Force and Bending Moment Mathlab Programmed

4. Results and Discussion

The result is obtained from the bucket method and is shown in table 5below using manual method.

Table 5: Estimation of equipment and machinery weight to each segment by grouping method (Bucket method)

Seg. No.	Length (m)	Weight (tonnes)
0	0	0
1	0.925	1.6
2	6.3325	17.74
3	11.7400	31.68
4	17.1475	40.725
5	22.555	1.295
6	27.9625	-
7	33.3700	-
8	44.185	-
9	55	-
10	65.8150	0.85
11	76.6300	-
12	82.0375	-
13	87.4450	-
14	92.8525	-
15	98.2600	-
16	100.9637	3.565
17	103.6675	6.0
18	106.37125	4.0
19	109.075	3.5
20	110	0.3
		132.88

Light ship weight is the summation of hull weight, equipment and machinery weight. And the hull weight is gotten from the trapezoidal approximation as in figure two above.

	C1' 1 / 1 '	• 1 . 1•		1 .	•	. 1 1	• ,•	.1 1
anie 6 • Estimation	of light shir	n weight die	stribution f	o each segment	lising fra	nezoidal	approximation	method
	or ingite simp	, weight an	surroution t	o euch segment	using uu	pezoidui	upproximution	methou

Seg. No	L (m)	Hull Weight	Weight of mission equip and machinery (Ton)	Total (Ton)
_		(Ton)		Weight
0	0	0	0	0
1	0.925	2.7725	1.6	4.3725
2	6.3325	9.5800	17.74	27.3200
3	11.7400	0.1775	31.68	31.8575
4	17.1475	0.6248	40.725	41.3498
5	22.555	7.9029	1.295	9.1979
6	27.9625	22.4427	-	22.4427
7	33.3700	30.7733	-	30.7733
8	44.185	107.1561	-	107.1561
9	55	120.0955	-	120.0955
10	65.8150	118.8621	0.85	119.7121
11	76.6300	103.4452	-	103.4452
12	82.0375	42.2358	-	42.2358
13	87.4450	33.8573	-	33.3573
14	92.8525	46.3258	-	46.3258
15	98.2600	35.5514	-	35.5514
16	100.9637	9.9653	3.565	13.5303
17	103.6675	4.5833	6.0	10.5833
18	106.37125	4.2278	4.0	8.2278
19	109.075	3.7183	3.5	7.2183
20	110	1.2641	0.3	1.5641
		679.323	132.88	812.203

4.1. Calculation of Cross Sectional Areas (m²) (Trapezoidal Method)

The cross sectional area was calculated from the input off set table (hull geometry) in excel file on each station from the keel/bottom to the deck

$$\int^{h} y(x) dx$$

Cross sectional area = o

* N	IATLAB R2	015a		1						-	
	HOME		PLOTS	APPS	EDITOR	PUB	LISH V	/IEW			
-			🔄 Find Files	$\langle \Rightarrow \Rightarrow \rangle$	Insert	🛃 fx 🗗	• •				
			📴 Compare	👻 🚽 Go To	- Comment	% % 🖏			Rur	Section Section	
Nev	v Open	Save	Print 💌	Q Find	 Indent 		Breakpoints	Run	Run and Advance	vance Run and Time	
		FILE	<u> </u>	NAVIGATE		EDIT	BREAKPOINTS		RUN		
	Image: A state of the state		C → Users	► USER ► Do	cuments 🕨						
Con	nmand Wi	ndow	· er · osers	· obert · be	comency -						
001											
1	A =										
	Colum	ns 1	through 10	D							
	0.20	000	0.2000	0.2000	0.2000	0.2000	0.2000	1.007	1.6790	2.5335	2.6420
	0.20	000	0.2000	0.2000	0.2000	0.5945	1.2565	3.526	5 5.4275	7.5490	7.8050
	0.20	000	0.2000	1.3760	2.9040	5.4915	8.3415	12.357	15.5685	18.6210	18.9640
	3.12	250	3.9910	7.5070	11.0950	15.2575	19.0265	23.500	05 26.9135	30.0770	30.4300
	11.3	530	13.5070	18.2110	22.3310	26.6655	30.4895	34.985	5 38.4065	41.5750	41.9290
	18.7	300	21.5241	26.2603	30.3803	34.7155	38.5395	43.035	5 46.4565	49.6250	49.9790
	20.3	/21	23.2425	27.9853	32.1053	36.4405	40.2645	44.760	05 48.1815	51.3500	53.4290
	20.3	721	23.2425	27.9853	32.1053	36.4405	40.2645	44.760	75 48.1815	51.3500	64.9290
	20.3	721	23.2423	27.9055	32.1055	26 4405	40.2645	44.760	75 40.1015	51.3500	70.4290 97.0200
	20.5	/21	23.2923	27.9000	32.1055	30.4405	40.2045	44.700	/5 40.1015	51.5500	07.9290
	Colum	ns 11	through 2	20							
	2.5	235	2.0580	1.7195	1.3520	0.9295	0.4240	0.219	0.0060	0	0
	7.50	005	6.2585	5.3220	4.2475	3.0155	1.6575	0.965	0.2480	0	0
	18.4	785	16.1595	14.3350	12.0725	9.1845	5.8835	4.040	2.0560	0.4260	0
	29.8	795	26.7825	24.2980	21.1105	16.8405	11.7015	8.728	5.4110	2.0400	0
	41.3	525	37.7085	34.6970	30.7395	25.3115	18.5545	14.534	9.9660	5.0210	0.7220
	49.39	969	45.4778	42.1520	37.7290	31.5961	23.8325	19.133	13.7467	7.7930	2.1059
	52.84	463	48.8312	45.3812	40.7761	34.3657	26.2004	21.228	15.5068	9.1385	2.9147
	64.34	443	60.0832	56.1962	51.1091	43.8687	34.4794	28.675	3 21.9248	14.2515	6.3487
	75.84	433	71.4392	67.2042	61.6901	53.7437	43.2824	36.750	29.1008	20.2585	10.8157
	87.34	433	82.8862	78.4512	72.4981	63.9357	52.5224	45.340	36.9078	27.0485	16.1997
	Colum	n 21									
		0									
		0									
		0									
		0									
		0									
		0									
		0									
		0									
	1.47	700									
$f_{\mathbf{x}}$	4.9	590									

Figure 6: Result of Cross Sectional Area

4.2. Calculation of sectional volumes (m³) (Trapezoidal Method)

The sectional volume displaced was calculated from the area, using the area as ordinate on each water line station, and the summation of section volume across the ship span is volume displaced at that particular draught.

	номе		PLOTS	APPS	EDITOR	PUB	LISH	VIEW				
		E	Tind Files	- 🗢 🖻	Inser	t 🛃 fx 🖓	·			Section (
			📑 Compare	👻 🚽 Go To	comment	t % 🏡 🖏				Section 🕓		
New	Open T	Save	🚔 Print 💌	Q Find	 Indent 	t 🗊 🞜 🖾	Breakpoint	s Run Ru ▼ Ac	un and 🔤 Adv dvance	ance Runa Time	nd #	
		FILE		NAVIGA	re	EDIT	BREAKPOINT	rs	RUN			
4) 🖬 🗵		C: ► User	s ► USER ► D	ocuments 🕨							
Com	mand Wir	ndow										
*	*****	****	********	********	********	********	*********	********	*********	********	**	
t	he valu	les c	of the tot	oal volume	s accross	the vessel	span acros	ss each wa	aterline,V			
v	=											
	Colum	ns 1	through 1	0								
	0.10	850	1.0815	1.0815	1.0815	1.0815	3.2648	7.2636	22.7791	27.9865	27.9324	
	0.10	850	1.0815	1.0815	2.1481	5.0046	12.9320	24.2094	10.1704	83.0268	82.7645	
	3.20	550 512	31 0877	50 2952	22.0993	92 6954	114 9824	136 3069	308 1761	203.2409	202.4703	
	11 40	978	85 7575	109 6154	132 4743	154 5328	177 0280	198 4336	432 5000	451 5479	450 3447	
	18.6	406	129.1971	153.1420	176.0028	198.0632	220.5584	241.9640	519.5607	538.6086	537.3752	
	20.1	718	138.5072	162.4700	185.3307	207.3911	229.8863	251.2919	538.2166	566.5924	574.6837	
	20.1	718	138.5072	162.4700	185.3307	207.3911	229.8863	251.2919	538.2166	628.7787	699.0454	
	20.1	718	138.5072	162.4700	185.3307	207.3911	229.8863	251.2919	538.2166	690.9649	823.4125	
	20.1	718	138.5072	162.4700	185.3307	207.3911	229.8863	251.2919	538.2166	753.1512	947.7850	
	Colum	ns 11	l through	20								
	24.7	745	10.2134	8.3046	6.1686	3.6595	0.8693	0.3042	0.0081	0	0	
	74.4	018	31.3108	25.8735	19.6373	12.6346	3.5453	1.6398	0.3353	0	0	
	187.3	050	82.4495	71.3993	57.4736	40.7401	13.4153	8.2410	3.3554	0.5759	0	
	306.3	998	138.1089	122.7732	102.6100	77.1704	27.6181	19.1142	10.0728	2.7578	0	
	427.52	224	195.7664	176.9239	151.5479	118.6027	44.7315	33.1209	20.2606	7.7638	0.3339	
	513.0	349	236.9291	215.9/83	187.4377	149.8651	58.0849	44.4502	29.1190	15.3821	1 2490	
	672 8	417	314 3904	290 1267	256 7962	211 8337	85 3773	68 4050	48 9058	27 8489	2 9363	
	796.4	301	374.8571	348.4980	312.1041	262.3343	108.1942	89.0225	66.7276	42.0084	5.6821	
	920.5	160	436.2160	408.1292	368.8829	314.8736	132.2981	111.1892	86.4609	58.4662	9.7859	
8	*****	****	*********	*********	*********	********	*********	*********	**********	**********	****	
t	he valu	les d	of the tot	oal volume	s accross	each water	lines,V_s					
v	_s =											
	1.0e	+03 *	ł									
	0.1	480										
	0.4	520										
	1.2	631										
	2.2	680										
	3.3	803										
	4.1	524										
	4.4	13/ 406										
	5.6	535										
	6.2	810										
		-										

Figure 7: Result of Sectional Volume and Total Volume on Each Water Line

The total volume displaced is plotted to the different water line to determine the intermediate water line (draught) at certain amount of volume displaced and use the equivalent draught to interpolate across the volume of the ship span at each section to get the local volumes (buoyancy) across the ship.

4.3. Light Trim Ship Buoyancy Estimation Distribution

The various draughts at each stations spacing across the ship span was calculated along the trim line from fore draught (1.245m) and aft draught (1.605m) with similar triangle method. And using areas as ordinate with corresponding draught on each station to get the segment volume and the total summation of volume on a waterline give the total volume displaced with equivalent mass of (812.203 tonnes)

1.6050 1.6020 1.5843 1.5666 1.5489 1.5312 1.5135 1.4958 1.4604 1.4250 1.3896 Columns 12 through 21 1.3365 1.3188 1.3011 1.2834 1.2746 1.2657 1.2569 1.2480 1.2450 Figure 9: Result of Light Ship trim draught at each station across the ship span © 0.2000 0.2000 0.8871 1.7320 3.2824 5.0199 8.0611 10.4553 12.6465 12.5476 11.7776 Columns 12 through 21 9.7655 8.3550 6.7422 4.8731 2.8552 1.8093 0.7284 0.1094 0 0 Figure 10: Result of Light Ship trim area at each station across the ship span © O 0 0 Figure 10: Result of Light Ship trim area at each station across the ship span O 0 0.1896 3.0127 7.2585 13.8966 23.0085 36.2520 51.3153 128.0460 139.6428 134.8268 Columns 12 through 21 <td c<="" th=""><th>Columns 1</th><th>through 11</th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>\odot</th></td>	<th>Columns 1</th> <th>through 11</th> <th>1</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>\odot</th>	Columns 1	through 11	1								\odot
Columns 12 through 21 1.3542 1.3365 1.3188 1.3011 1.2834 1.2746 1.2657 1.2569 1.2480 1.2450 Figure 9: Result of Light Ship trim draught at each station across the ship span Columns 1 through 11 0.2000 0.2000 0.8871 1.7320 3.2824 5.0199 8.0611 10.4553 12.6465 12.5476 11.7776 Columns 12 through 21 9.7655 8.3550 6.7422 4.8731 2.8552 1.8093 0.7284 0.1094 0 0 Figure 10: Result of Light Ship trim area at each station across the ship span Columns 1 through 11 0 0.1896 3.0127 7.2585 13.8966 23.0085 36.2520 51.3153 128.0460 139.6428 134.8268 Columns 12 through 21 119.4068 50.2182 41.8396 32.1901 21.4179 6.4635 3.5165 1.1610 0.1516 0 Figure 11: Result of Light Ship Buoyancy Distribution to Each Segment	1.6050	1.6020	1.5843	1.5666	1.5489	1.5312	1.5135	1.4958	1.4604	1.4250	1.3896	
1.3542 1.3365 1.3188 1.3011 1.2834 1.2746 1.2657 1.2569 1.2480 1.2450 Figure 9: Result of Light Ship trim draught at each station across the ship span Columns 1 through 11 0 0.2000 0.8871 1.7320 3.2824 5.0199 8.0611 10.4553 12.6465 12.5476 11.7776 Columns 12 through 21 0 0 0 0 0 1 0 0.1896 6.7422 4.8731 2.8552 1.8093 0.7284 0.1094 0 0 Figure 10: Result of Light Ship trim area at each station across the ship span Columns 1 through 11 0 0.1896 3.0127 7.2585 13.8966 23.0085 36.2520 51.3153 128.0460 139.6428 134.8268 Columns 12 through 21 119.4068 50.2182 41.8396 32.1901 21.4179 6.4635 3.5165 1.1610 0.1516 0 Figure 11: Result of Light Ship Buoyancy Distribution to Each Segment	Columns 12	through 2	21									
Figure 9: Result of Light Ship trim draught at each station across the ship span Columns 1 through 11 • 0.2000 0.2000 0.8871 1.7320 3.2824 5.0199 8.0611 10.4553 12.6465 12.5476 11.7776 Columns 12 through 21 • • • • • • • 9.7655 8.3550 6.7422 4.8731 2.8552 1.8093 0.7284 0.1094 0 0 Figure 10: Result of Light Ship trim area at each station across the ship span Columns 1 through 11 •	1.3542	1.3365	1.3188	1.3011	1.2834	1.2746	1.2657	1.2569	1.2480	1.2450		
Columns 1 through 11 0.2000 0.2000 0.8871 1.7320 3.2824 5.0199 8.0611 10.4553 12.6465 12.5476 11.7776 Columns 12 through 21 9.7655 8.3550 6.7422 4.8731 2.8552 1.8093 0.7284 0.1094 0 0 Figure 10: Result of Light Ship trim area at each station across the ship span Columns 1 through 11 0 0.1896 3.0127 7.2585 13.8966 23.0085 36.2520 51.3153 128.0460 139.6428 134.8268 Columns 12 through 21 119.4068 50.2182 41.8396 32.1901 21.4179 6.4635 3.5165 1.1610 0.1516 0 Figure 11: Result of Light Ship Buoyancy Distribution to Each Segment		Figur	e 9: Result	of Light Sh	hip trim dro	aught at ea	ch station	across the	ship span			
0.2000 0.2000 0.8871 1.7320 3.2824 5.0199 8.0611 10.4553 12.6465 12.5476 11.7776 Columns 12 through 21 9.7655 8.3550 6.7422 4.8731 2.8552 1.8093 0.7284 0.1094 0 0 Figure 10: Result of Light Ship trim area at each station across the ship span Columns 1 through 11 0 0.1896 3.0127 7.2585 13.8966 23.0085 36.2520 51.3153 128.0460 139.6428 134.8268 Columns 12 through 21 119.4068 50.2182 41.8396 32.1901 21.4179 6.4635 3.5165 1.1610 0.1516 0 Figure 11: Result of Light Ship Buoyancy Distribution to Each Segment	Columns 1 t	through 11	L									
Columns 12 through 21 9.7655 8.3550 6.7422 4.8731 2.8552 1.8093 0.7284 0.1094 0 0 Figure 10: Result of Light Ship trim area at each station across the ship span Columns 1 through 11 0 0.1896 3.0127 7.2585 13.8966 23.0085 36.2520 51.3153 128.0460 139.6428 134.8268 Columns 12 through 21 119.4068 50.2182 41.8396 32.1901 21.4179 6.4635 3.5165 1.1610 0.1516 0 Figure 11: Result of Light Ship Buoyancy Distribution to Each Segment	0.2000	0.2000	0.8871	1.7320	3.2824	5.0199	8.0611	10.4553	12.6465	12.5476	11.7776	
9.7655 8.3550 6.7422 4.8731 2.8552 1.8093 0.7284 0.1094 0 0 Figure 10: Result of Light Ship trim area at each station across the ship span Columns 1 through 11 0 0.1896 3.0127 7.2585 13.8966 23.0085 36.2520 51.3153 128.0460 139.6428 134.8268 Columns 12 through 21 119.4068 50.2182 41.8396 32.1901 21.4179 6.4635 3.5165 1.1610 0.1516 0 Figure 11: Result of Light Ship Buoyancy Distribution to Each Segment	Columns 12	through 2	21									
Figure 10: Result of Light Ship trim area at each station across the ship span Columns 1 through 11 0 0.1896 3.0127 7.2585 13.8966 23.0085 36.2520 51.3153 128.0460 139.6428 134.8268 Columns 12 through 21 119.4068 50.2182 41.8396 32.1901 21.4179 6.4635 3.5165 1.1610 0.1516 0 Figure 11: Result of Light Ship Buoyancy Distribution to Each Segment	9.7655	8.3550	6.7422	4.8731	2.8552	1.8093	0.7284	0.1094	0	0		
Columns 1 through 11 0 0.1896 3.0127 7.2585 13.8966 23.0085 36.2520 51.3153 128.0460 139.6428 134.8268 Columns 12 through 21 119.4068 50.2182 41.8396 32.1901 21.4179 6.4635 3.5165 1.1610 0.1516 0 Figure 11: Result of Light Ship Buoyancy Distribution to Each Segment		Figu	re 10: Resi	ult of Light	Ship trim	area at eac	ch station a	cross the s	ship span			
0 0.1896 3.0127 7.2585 13.8966 23.0085 36.2520 51.3153 128.0460 139.6428 134.8268 Columns 12 through 21 119.4068 50.2182 41.8396 32.1901 21.4179 6.4635 3.5165 1.1610 0.1516 0 Figure 11: Result of Light Ship Buoyancy Distribution to Each Segment	Columns 1 t	through 11	L		-						۲	
Columns 12 through 21 119.4068 50.2182 41.8396 32.1901 21.4179 6.4635 3.5165 1.1610 0.1516 0 Figure 11: Result of Light Ship Buoyancy Distribution to Each Segment	0	0.1896	3.0127	7.2585	13.8966	23.0085	36.2520	51.3153	128.0460	139.6428	134.8268	
119.4068 50.2182 41.8396 32.1901 21.4179 6.4635 3.5165 1.1610 0.1516 0 Figure 11: Result of Light Ship Buoyancy Distribution to Each Segment	Columns 12 through 21											
Figure 11: Result of Light Ship Buoyancy Distribution to Each Segment	119.4068	50.2182	41.8396	32.1901	21.4179	6.4635	3.5165	1.1610	0.1516	0		
		Fi	igure 11: R	Result of Lig	ght Ship Bı	ioyancy Di	stribution	to Each Se	gment			

4.4. Light Ship Weight and Buoyancy Estimation to Each Section across the Ship

The light ship weight is seen as uniform distributed load on a section as the estimated local L.C.G from the global reference point fall into any bucket on that particular segment. And the buoyancy was distributed along the light trim ship hull geometry with intercept and cubic function in the mathlab programmed.

Α	В	С	D	Е	F	G	Н	Ι
Ord	Bouy	Wt	Ord spacing L (m)	Resultant	S.F	Mid S.F	g B.M	B.M
				B – C	$\sum \mathbf{E}$		$\mathbf{G} \times \mathbf{D}$	$\sum \mathbf{H}$
0					0			0
	0.1896	4.3725	0.9250	- 4.1829		-2.0915	-1.9346	
1					- 4.1829			-1.9346
	3.0127	27.3200	5.4075	- 24.3073		-16.3366	-88.3401	
2					-28.4902			-90.2747
	7.2585	31.8575	5.4075	- 24.5993		-40.7899	-220.5714	
3					-53.0895			-310.8461
	13.8966	41.3498	5.4075	- 24.4533		-65.3162	-353.1974	
4					-77.5428			-664.0435
	23.0085	9.1979	5.4075	13.8102		-70.6377	-381.9734	
5					-63.7326			-1046.0169
	36.2520	22.4427	5.4075	13.8090		-56.8281	-307.2980	
6					-49.9236			-1353.3149
_	51.3153	30.7733	5.4075	20.5420		-39.6526	-214.4214	
7	100.0470	105 15 41	10.015	2 0 0001	-29.3816	10.0074	204.0104	-1567.7363
0	128.0460	107.1561	10.815	20.8881	0.4025	-18.9376	-204.8104	
8	120 (129	100 0055	10.015	10 5401	-8.4935	1 2007	12.0407	-17/2.5467
0	139.6428	120.0955	10.815	19.5481	11.0546	1.2806	13.8497	1750 (070
9	124 9269	110 7101	10.015	15 1150	11.0546	19 (121	201 2200	-1/58.69/0
10	134.8208	119./121	10.815	15.1150	26 1606	18.0121	201.2899	1557 4071
10	110 1069	102 4452	10.015	15 0610	20.1090	24 1506	260 2297	-1337.4071
11	119.4008	105.4452	10.815	13.9019	42 1215	54.1500	309.3387	1100 0601
11	50 2182	12 2258	5 4075	7 0826	42.1313	16 1228	240 4000	-1100.0004
12	30.2182	42.2338	5.4075	7.9820	50 1141	40.1226	249.4090	028 6504
12	41 8306	33 3573	5 4075	7 0820	30.1141	54 1051	202 5733	-936.0394
13	+1.0370	55.5575	J.+U/J	1.9620	58 0061	54.1051	272.3733	-646 0861
15	32 1901	46 3258	5 4075	- 14 1336	50.0701	51 0293	275 9409	-040.0601
	52.1701	-0.5250	5.7075	- 14.1550		51.0275	213.7407	

Table 7: Result of Light Trim Ship Shear Force and Bending Moment Using Trapezoidal Rule Approach

14					43.1315			-370.1452
	21 4179	35 5514	5 4075	- 14 1336		36 8957	199 5135	
15	21.11/2	55.5511	5.1075	111550	20 0200	50.0757	177.5155	170 6217
15	< 1 < 2 F	10 5000	2 20225	- 0.440	29.8289	26 20 55	71 00 65	-1/0.051/
	6.4635	13.5303	2.70375	- 7.0668		26.2955	71.0965	
16					22.7621			-99.5352
	3.5165	10.5303	2.70375	- 7.0668		19.2287	51.9896	
17					15 6053			-17 5456
17	1 1 < 1 0	0.0070	2 70275	7.0440	15.0755	10 1 (10	22.0027	-47.5450
	1.1610	8.2278	2.70375	- 7.0668		12.1619	32.8827	
18					8.6285			-14.6629
	0.1516	7.2183	2.70375	- 7.0668		5.0951	13.7759	
19					1 5617			-0.887
1)	0	1 56 41	0.0250	1 5 6 4 1	1.5017	0.7000	0 7000	-0.007
	0	1.5641	0.9250	- 1.5641		0.7809	0.7223	
20					0			0

Figure 13: Light Ship net load Curve

The net load is the difference between the gravity load per unit length (W/L) and buoyancy per unit length (buoy/L)

Figure 14: The Graph of the Light Ship Shear Forces

The algebraic summation of area from right or left is the shear force, indicating stable equilibrium of weight and buoyancy forces, and has it maximum shear at aft part of the ship

Figure 15: Light Ship Bending Moment Diagram

The bending moment graph simply indicate that the downward ship weight is evenly distributed and the maximum weight is acting on aft part of the ship which is stable equilibrium and trim, although it is ideal that the ship have little weight acting on the aft than the fore for proper submerged of the propeller and against sea keeping performance at sallow draught

5. Conclusion and Recommendation

Conclusion

The various methods of weight distribution such as approximation method (Comstock, Trapezoidal, Bile, Prohaska), direct method, and grouping method all have their own advantage and flaws and be justify by shear force and bending moment and the fidelity of the distribution is improve by the laid down method. The maximum bending moment is 1772.5467 T.M at 44.185m and maximum shearing force is 77.5428 Tonnes at 17.1475m from aft. Indicating that catastrophe will occur near amidships if steel selected is below the estimated maximum bending moment and heavier loads were on the aft part to maintain sea performance. The methods had improved structural integrity and a source code had been developed for flexibility of shear force and bending moment calculation.

Recommendation

However a vigorous research need to be carried out on longitudinal weight distribution with optimal loading plan taking into study of it route and structure constraints to eradicate the bending stress of ships

Developed Mathlab Source Code (trim ship)

disp('The offset table of the vessel')

[r,c]=size(b);

[q,w]=size(h);

h_s=h(2:end,1);

%% create a variable for the station linr spacing

s=a(1,2:end);

disp('The values of the station spacing ,s')

s

%% modified areas, A=zeros((r-1),c)

```
c_r=c;

A=zeros((r-1),c);

sum=0;

for i=1:1:(r-1)

t=(b(i,:)+b((i+1),:))*(h(i+1,:)-h(i,:));

sum=t+sum;

A(i,:)=sum;

end
```

A % A_m=zeros(size(A,1),(size(A,2)-2)); % for i=1:1:Size(A_m,2) % A_m(% end d_i=input('please enter the draught:'); h=input('please enter constant draft:'); d_r=zeros(size(s)) [r_d_r,c_d_r]=size(d_r); d_trimed=size(d_r,2);%trimed draft

 $d_r(1)=d_i;$

for i=2:1:c_d_r d_r(i)=(d_r(i-1)*(s(:,end)-s(:,i))/(s(:,end)-s(:,i-1))); d_r(i)=d_r(i);

end

d_r
for i=1:1:(c_d_r)
d_trimed(i)=d_r(i)+h;
end
d trimed

%% trim diagram figure(1) plot(s,d_trimed); xlabel('station spacing[m]') ylabel('trimmed values[m]') title('Trim diagram')

%% interpolating between each area station %

%% interpolating between the totoal volumes across each drafts/waterlines to get the required corresponding drafts for the hull weigh waterline %also the entire downward force is computed here as well A_i=size(d_r,2); for i=1:1:(c_d_r) A_i(i)=interp1(h_s,A(:,i),d_trimed(i)); end A_i %% volume computation with station V_i=zeros(1,size(d_r,2)); V_i(1)=0;

for i=1:1:(c_d_r)-1 $V_i(i+1)=0.5*(A_i(i+1)+A_i(i))*(s(i+1)-s(i));$ end V_i b_i=V_i*1.025 %% downward force $h_w = a(end, 2:end);$ de_t= zeros(1,size(s,2)); b_u=zeros(1,size(s,2)); for i=1:1:size(d_r,2)-1 $de_t(:,i+1)=(s(:,i+1)-s(:,i));$ end de_t D f=c 1+h w+m; for i=2:1:size(d_r,2) $D_t(:,i)=D_f(:,i)./de_t(:,i);$ end D_t %% resultant $r_s=(b_i)-(D_f)$ s_m=min(s):1:max(s); r_u=interp1(s,r_s,s_m,'PCHIP'); figure(2) plot(s_m,r_u)

xlabel('The station spacing of the vessel [m]') ylabel('The Resultant force [Tonnes]') title('The resultant at each station') grid on;

%% loading diagram for trim case

 $x = [0,0,0.925,0.925,6.3325,6.3325,11.74,11.74,17.1475,17.1475,22.555,22.555,27.9625,27.9625,33.37,33.37,44 \\ .185,44.185,55,55,65.815,65.815,76.83,76.83,82.0373,82.0375,87.445,87.445,92.8525,92.8525,98.26,98.26,100 \\ .9637,100.9637,103.6675,103.6675,106.37125,106.37125,109.075,1109.075,110,110]; \\ y = [0,4.7270,4.7270,5.0522,5.0522,5.8914,5.8914,7.0920,7.0920,1.7010,1.7010,4.1503,4.1503,5.6909,5.6909,9. \\ 9081,9.9081,11.1045,11.1045,11.0691,11.0691,9.5650,9.5650,7.8106,7.8106,6.2612,6.2612,8.5666,8.5666,6.57 \\ 45,6.5745,5.0043,5.0043,3.9143,3.9143,3.0431,3.0431,2.6697,2.6697,1.6909,1.6909,0];$

for i=2:1:size(d_r,2)-1 b_u(:,i)=b_i(:,i)./de_t(:,i); end b_u B_u=interp1(s,b_u,s_m,'PCHIP');

figure(3) plot(x,y,'r') hold on plot(s_m,-B_u) grid on;

legend({'Downward Loading Distribution ','Bouyancy Distribution'},'Location','northeast')
xlabel('station spacing[m]')
ylabel('The loading[Tonnes/M]')
title('Loading Distribution Diagram')

%% The net loading curve N_loading=b_i-D_t N_loadingy=interp1(s,N_loading,s_m,'PCHIP')

%plot the net loading figure(4) plot(s_m,N_loadingy); grid on; xlabel('Station Spacing [m]'); ylabel('Net loading [Tonnes/m]') title('Netloading diagram')

%% sheer force

```
S_f=cumsum(r_s,2)
```

%% Bending moments a_m= zeros(1,size(S_f,2)); %w=0;

for i=1:1:size(S_f,2)-1 u=(S_f(:,i)+S_f(:,(i+1)))*(s(:,i+1)-s(:,i))*0.5;

a_m(:,i)=u; end B_m=cumsum(a_m,2) B_mm=zeros(1,size(B_m,2));

s_m=min(s):1:max(s);

y_B_mm=interp1(s,B_mm,s_m,'PCHIP')
figure(6)
plot(s_m,y_B_mm)
grid on
xlabel('The station spacing of the vessel [m]')
ylabel('TheBending Moment[Tonnes.metre]')
title('The Bending plot against the station spacing')

Reference

- [1]. Cheng-Kuan, L., & Heiu-Jou, S. (2016). Preliminary Parametric Estimation of Steel Weight for New Ships. *Journal of Marine Science Technology*, 227–239.
- [2]. David, L. H. (2008).*Method of determining the longitudinal weight distribution of a ship*. presented at a joint meeting between Hampton Roads Section of the Society of Naval Architects and Marine Engineers and the Hauton Roads Chapter of the Society of Allied Weight Engineers.
- [3]. Rawson, K. J., & Tupper, E. C. (2001). Basic Ship Theory. Boston: Butterworth-Heinemann.
- [4]. Tania, S. M. (2013). Development of Empirical Formulas for Still Water Bending Moment. Categena, Ingenieria Naval Oceanica.
- [5]. Stood, R. K. (2017). *Introduction to longitudinal strength of ship*. New Delli, The Naval Archrte Ltd, 14 Robinson road #08-01A, far east finance building..

