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Abstract In this paper, the symmetrical situation is of conic sections given according to a simple function as the 

axis of reflection y = g(x) is studied. Some kinds of reflections are explored. If simple functions are one-to-one, 

how are the conical sections reflected when in this case? 

The case in which the domain of given conic section Ax
2 

+ Bxy + Cy
2 

+ Dx
 
+ Ey

 
+

 
F

 
= 0 is reflecting according 

to the axis y = g(x) is discussed in detail. The reflection of the conic section relative to y = x is Ay
2 
+ Bxy + Cx

2 
+ 

Dy
 
+ Ex

 
+

 
F

 
= 0 is a well-known. The reflection of some conic sections relative to simple function y = g(x) is 

defined as                
2 2

0A k y B k y g x C g x Dk y E g x F       in [1]. 

 

Keywords line function, exponential function, simple function, reflection, symmetric function, Implicit 

function. 

1. Introduction 

Let g: ℝ→ℝ, ( )y g x  be a function. Then the equation from ( )y g x  the axis of reflection is as ( )x k y

. From these two equations we get the function ( )y h x  obtained from the two equations ( )y g x and

( )y f x is called the reflected function. That is, 

 

   
( )

( ) ( ( ))
y g x x k y

y f x g x f k y y h x
  

     . 

In [1], some specific reflection properties were also given.  

So far we are dealing with explicitly given functions  y f x . But frequently the dependence of endogenous 

variable y on exogenous variable x can be given in a form  ,F x y k . If for x this equation determines a 

corresponding value of y , we say that the endogenous variable y is an implicit function of exogenous variable  

x .  The general conic equation is a special implicit function. 

The symmetry of
2 2 0Ax Bxy Cy Dx Ey F      , whit respect to the reflecting function y x is 

given below; 
2 2 0Ay Bxy Cx Dy Ex F      . 

Example  1. We can describe this circle with the relation 
2 2 1x y   

that is, the circle of radius 1 centered at the origin is the set of all points  ,x y  such 

2 2 1x y   
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The reflecting function according to axis of reflection y x is given below; 

2 2 1y x  . 

This is the same equation. Only the axes are changed. 

 
 

2. Reflections and Images of Conic Sections  

Let g: ℝ→ℝ, be the axis of reflection ( )y g x  function. Then it is obtained 

               
2 2

0A k y B k y g x C g x Dk y E g x F       [2]. 

For some simple functions with the following lemma, symmetry axis and reflected states are given. 

Lemma . Let  
2 2 0Ax Bxy Cy Dx Ey F      . Then,  

i. For 0, 0p m  , a conic section  reflected according to a axis of reflection  g x mx n   is 

     
2

2
0

y n y n y n
A B mx n C mx n D E mx n F

m m m

       
             

     
. 

ii. For    0,1 1,a   , a conic section  reflected according to a axis of reflection   xg x a  is 

       
22

log log log 0x x x

a a aA y B y a C a D y Ea F      . 

iii. A conic section reflected according to axis of reflection   sing x x  is 
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2 2

1 1 1 1sin sin sin sin sin sin 0A y B y x C y D y E x F         . 

iv. For    0,1 1,a   ,  a conic section  reflected according to  a axis of reflection   logag x x  is 

          
2 2

log log log 0y y y

a a aA a B a x C x D a E x F      . 

Proof. The proofs are clear. 

 

We give a few examples below. 

Example 2. Let us consider the circle 
2 2 1x y   

that is, the circle of radius 1 centered at the origin is the set of all points (x, y) such that  
2 2 1x y  . Then, according to the axis of reflection 2 1y x   according the reflecting function is given 

below; 

 

 
2

2 2 21 1 1 1
2 1 1 4 4

2 4 2 4

y
x x x y y

 
         

 
. 

 

Example 3. Again, Let   
2 2 1x y   

Then, according to the axis of reflection
xy e  the reflecting function is given below; 

 

   
22

ln 1xy e  . 
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Theorem . Let g: ℝ→ℝ be basic function with one to one, onto. Then, the reflection of the general conic 

section according to this axis is  

               
2 2

0A k y B k y g x C g x Dk y E g x F      . 

Proof . Since g  is one to one ,onto 

   1y g x x g y    

If the above equation is used in 
2 2 0Ax Bxy Cy Dx Ey F       then required equation is obtained. 

 

3. Results and Discussions  

According to a simple function, the reflection of a conic section may not be a conic section. While the conic 

sections have two unknown equations with the second order, their reflections sometimes turn into a closed 

function. It is a hard problem to know that which function to which axis of reflection gives a conic section. The 

focal points and the main axes of the conic sections can be calculated. 
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