Journal of Scientific and Engineering Research, 2018, 5(9):133-136

Research Article

ISSN: 2394-2630 CODEN(USA): JSERBR

On Reflection of Conic Sections According to Basic Functions

Hasan KELEŞ

Karadeniz Technical University, Department of Mathematics, Campus of Kanuni, Ortahisar, Trabzon, TURKEY

Abstract In this paper, the symmetrical situation is of conic sections given according to a simple function as the axis of reflection y = g(x) is studied. Some kinds of reflections are explored. If simple functions are one-to-one, how are the conical sections reflected when in this case?

The case in which the domain of given conic section $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ is reflecting according to the axis y = g(x) is discussed in detail. The reflection of the conic section relative to y = x is $Ay^2 + Bxy + Cx^2 + Dy + Ex + F = 0$ is a well-known. The reflection of some conic sections relative to simple function y = g(x) is defined as $A(k(y))^2 + B(k(y))g(x) + C(g(x))^2 + Dk(y) + E(g(x)) + F = 0$ in [1].

Keywords line function, exponential function, simple function, reflection, symmetric function, Implicit function.

1. Introduction

Let g: $\mathbb{R} \to \mathbb{R}$, y = g(x) be a function. Then the equation from y = g(x) the axis of reflection is as x = k(y). From these two equations we get the function y = h(x) obtained from the two equations y = g(x) and y = f(x) is called the reflected function. That is,

$$y = f(x) \stackrel{y=g(x) \Leftrightarrow x=k(y)}{=====>} g(x) = f(k(y)) \Leftrightarrow y = h(x)$$

In [1], some specific reflection properties were also given.

So far we are dealing with explicitly given functions y = f(x). But frequently the dependence of endogenous variable y on exogenous variable x can be given in a form F(x, y) = k. If for x this equation determines a corresponding value of y, we say that the endogenous variable y is an *implicit function* of exogenous variable x. The general conic equation is a special implicit function.

The symmetry of $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$, whit respect to the reflecting function y = x is given below;

$$Ay^2 + Bxy + Cx^2 + Dy + Ex + F = 0.$$

Example 1. We can describe this circle with the relation

$$x^2 + y^2 = 1$$

that is, the circle of radius 1 centered at the origin is the set of all points (x, y) such

 $x^2 + y^2 = 1$

The reflecting function according to axis of reflection y = x is given below;

$$y^2 + x^2 = 1$$

This is the same equation. Only the axes are changed.

2. Reflections and Images of Conic Sections

Let g: $\mathbb{R} \to \mathbb{R}$, be the axis of reflection y = g(x) function. Then it is obtained

$$A(k(y))^{2} + B(k(y))g(x) + C(g(x))^{2} + Dk(y) + E(g(x)) + F = 0$$
[2].

For some simple functions with the following lemma, symmetry axis and reflected states are given.

Lemma. Let $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$. Then,

i. For $p \neq 0, m \neq 0$, a conic section reflected according to a axis of reflection g(x) = mx + n is

$$A\left(\frac{y-n}{m}\right)^2 + B\left(\frac{y-n}{m}\right)(mx+n) + C\left(mx+n\right)^2 + D\left(\frac{y-n}{m}\right) + E\left(mx+n\right) + F = 0.$$

ii. For $a \in (0,1) \cup (1,+\infty)$, a conic section reflected according to a axis of reflection $g(x) = a^x$ is

$$A(\log_{a} y)^{2} + B(\log_{a} y)a^{x} + C(a^{x})^{2} + D(\log_{a} y) + Ea^{x} + F = 0.$$

iii. A conic section reflected according to axis of reflection $g(x) = \sin x$ is

Journal of Scientific and Engineering Research

$$A(\sin^{-1} y)^{2} + B(\sin^{-1} y)(\sin x) + C(\sin^{-1} y)^{2} + D(\sin^{-1} y) + E(\sin x) + F = 0$$

iv. For $a \in (0,1) \cup (1,+\infty)$, a conic section reflected according to a axis of reflection $g(x) = \log_a x$ is

$$A(a^{y})^{2} + B(a^{y})(\log_{a} x) + C(\log_{a} x)^{2} + D(a^{y}) + E(\log_{a} x) + F = 0$$

Proof. The proofs are clear.

We give a few examples below. Example 2. Let us consider the circle

$$x^2 + y^2 = 1$$

that is, the circle of radius 1 centered at the origin is the set of all points (x, y) such that

 $x^2 + y^2 = 1$. Then, according to the axis of reflection y = 2x + 1 according the reflecting function is given below;

Example 3. Again, Let

 $x^{2} + y^{2} = 1$

Then, according to the axis of reflection $y = e^x$ the reflecting function is given below;

Theorem. Let g: $\mathbb{R} \to \mathbb{R}$ be basic function with one to one, onto. Then, the reflection of the general conic section according to this axis is

$$A(k(y))^{2} + B(k(y))g(x) + C(g(x))^{2} + Dk(y) + E(g(x)) + F = 0.$$

Proof. Since g is one to one ,onto

$$y = g(x) \Leftrightarrow x = g^{-1}(y)$$

If the above equation is used in $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$ then required equation is obtained.

3. Results and Discussions

According to a simple function, the reflection of a conic section may not be a conic section. While the conic sections have two unknown equations with the second order, their reflections sometimes turn into a closed function. It is a hard problem to know that which function to which axis of reflection gives a conic section. The focal points and the main axes of the conic sections can be calculated.

References

- [1]. Keles, H. On the Symmetric Conditions of Simple Function, UMTEB 4. ULUSLARARASI MESLEKİ VE TEKNİK BİLİMLER KONGRESİ, 7-9 Aralık ERZURUM, 2018.
- [2]. Keles, H. (2017). On the Symmetric Conditions of Simple Functions, Journal of Scientific and Engineering Research, Vol. 5(86), Page no: 69-74.
- [3]. Keles, H. (2017). Interpretation of Conic Sections with Side Conditional Extremes, Journal of Scientific and Engineering Research, Vol. 4(6), Page no: 84-88.
- [4]. Keles, H. (2016). On The Linear Transformation of Division Matrices, Journal of Scientific and Engineering Research, 3(5), 101-104.
- [5]. Kreyszig, E. (1978). Introductory Functional Analysis with Applications, John Wiley & Sons New York Santa Barbara London Sydney Toronto.