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Abstract In this work, we deal with a three-dimensional modeling study of a silicon solar cell in steady state, at 

the temperature T, under monochromatic illumination of wavelength λand placed in a magnetic field B. The use 

of the maximum diffusion law as a function of the optimal temperature made it possible to choose the values of 

the magnetic field B in the study of the effective diffusion coefficient Dk,j. The effect of both, the magnetic field 

B and the temperature T on the excess minority carrier density (x, y, z) is analyzed through the determination 

of the eigenvalues (Ck, Cj), for different grain sizes (gx, gy) and there combination velocity at the grain 

boundaries Sg. 
 

Keywords Silicon solar cell -Magnetic field-Temperature- grain size and recombination velocity-Eigenvalues 

1. Introduction 

The performance of a solar cell, used for photovoltaic conversion, depends on several parameters including the 

nature and structure of the semiconductor, its manufacturing technique and the operating conditions [1-3]. Thus, 

in order to improve the efficiency, different techniques using the silicon solar cell (monofacial, bifacial [4- 6], 

vertical Multijunction [7-8]) at 1D orat 3D [9-15] were developed. These techniques use static regimes [16], 

dynamic frequency regime [17-19] and transient [20-23]. Among the most commonly used characterization 

techniques, are those with constant or pulsed external signal as, optical excitation(mono orpolychromatic), 

electrical excitation  (E, electron).The experimental conditionskeep the solar cell under: 

a) sun concentration (n), and variableangle of incidence2425] 

b) Temperature T [26] 

c) Magnetic field B [27,28] 

d) Irradiation with p the flux and, Kl the intensity of irradiation with nuclear particles [29]. 

The results are analyzed by use of physicphenomenological parameters i.e., excess minority carrier diffusion 

coefficient (D), lifetime (, diffusion length (L), recombination velocities at the junction Sf, at the rear (Sb) and 

at the grain surface (Sg) [11]. 

The physicmacroscopic parameters are takenfrom electrical equivalent model i.e.: short circuit current density 

(Jsc), open circuit voltage (Voc),  maximum current density (Jmax), maximum photovoltage (Vmax), fill factor 
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(FF), efficiency (series and shunt resistances (Rs, Rsh), transitional and diffusion capacitance (Cz), 

impedance (Z), cut off frequency (c), self-inductance (Lh) [30,31]. 

This study combines the parameters of temperature T and magnetic field B, for a static operation of the solar 

cell under monochromatic illumination (short wavelength), taking into account grain size and 

grainrecombination velocity at boundaries. Then new eigenvalues are obtained from new excess minority 

diffusion coefficient D * (B, T). Thus the excess minority carrier can be studied. 

 

2. Theoretical Study 

2.1. Description of the Silicon Solar Cell 

The polycrystalline substrate is composed of several grains or crystallites of any shape and size. For a three-

dimensional modeling study, we will use the columnar model where each grain is assumed to have a regular 

parallelepipedal shape [11, 32-35] (Figure 1). 

 

Figure 1: The columnar geometry of a grain used in the model, with  𝐵  = 𝐵. 𝑖  

The silicon solar cell on which our study will focus is monofacial typen
+
-p-p

+
 (figure 1 c).  

The silicon solar cell is trained of four major essential parts: 

The emitter (type n), heavily doped zone (10
17

 - 10
19

 cm
-3

 phosphorus atoms), is called the front face of the solar 

The thickness of the emitter is of the order 0.3 at 1 μm. 

The base (type p), with thickness (100 - 400 µm), is weakly doped (from 10
15 

to 10
17

 cm
-3 

boron atoms). 

The emitter and the base are separated by a zone without charge called space charge region(SCR) where a 

strong electric field prevails,called the junction. 

The back surface (type p
+
) consisting of an area on endowed with impurities (from 10

17 
to 10

19
 cm

-3
) where is an 

electric field, that allows the photogeneratedcarrier to reach the junction. 

 

2.2. Steady state continuity equation of the density of charge carrier 

In a semiconductor the concentration of minority carrier will be greater in the illuminated region than in the 

semiconductor remainder. There is a concentration gradient in the semiconductor. There is a phenomenon of 

diffusion of the minority carrier of the region of high concentration towards the region of low concentration. 

This diffusion process obeys the first law of Fick [11]: 

𝐽 = −𝑒𝐷
𝜕𝛿

𝜕𝑥
= −𝑒𝐷𝑔𝑟𝑎𝑑            𝛿         (1) 

J is the current density due to the minority carrier; 

Δ is the density of minority carrier;  

D represents the diffusion coefficient that depends on the nature of the semiconductor and μ characterizes the 

mobility of electrons by the Einstein’s relation: 
𝐷

𝜇
=

𝑘𝑇

𝑒
                                                                                   (2) 

e =1.610
-19

 c, is the elementary charge, T is the temperature and k the Boltzmann constant (k= 8.62 10
-5

 eV/°K) 
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In the three-dimensional case where the semiconductor grain is represented by Figure 1; the continuity equation 

which governs the excess minority carrier density in the base, is written as [15, 35, 36]: 

𝐷  
𝜕2𝛿(𝑥,𝑦 ,𝑧)

𝜕𝑥 2 +
𝜕2𝛿(𝑥,𝑦 ,𝑧)

𝜕𝑦 2 +
𝜕2𝛿(𝑥,𝑦 ,𝑧)

𝜕𝑧 2  −
𝛿 𝑥,𝑦,𝑧 

𝜏
+ 𝑔 𝑧 = 0     (3) 

with: δ(x,y,z) represents the excess minority carrier density in the base g(z)  represents the generation rate of the 

minority carrier which depends on  z, depth in the base according to the fallowing relation:    

g z =  λ  1 − R λ  I0e−α λ z                      (4)

 is the monochromatic optical absorption coefficient at the wavelength  

R(𝜆) is the reflection coefficient of the material at the wavelength , 

I0 is the incident illumination flux. 

 is the electron lifetime in the base. 

The solar cell undermagnetic field B, the coefficient and diffusion length of excess minority carrier change with 

the relation [37, 38, 39]: 

𝐷∗ =
𝐷

1+(𝜇𝐵)2     𝑒𝑡    𝐿∗ =  𝜏𝐷∗                                                (5) 

The equation (3) becomes: 

 
𝜕2𝛿(𝑥,𝑦 ,𝑧)

𝜕𝑥 2 +
𝜕2𝛿(𝑥,𝑦 ,𝑧)

𝜕𝑦 2 +
𝜕2𝛿(𝑥,𝑦 ,𝑧)

𝜕𝑧 2  +
𝑔 𝑧 

𝐷∗ =
𝛿 𝑥,𝑦,𝑧 

𝜏𝐷∗        (6) 

𝛿 𝑥,𝑦 ,𝑧 

𝜏𝐷∗ = ∆𝛿 𝑥, 𝑦, 𝑧 +
𝑔 𝑧 

𝐷∗                                                      (7) 

𝑊𝑖𝑡ℎ           𝐷∗𝜏 = 𝐿∗2
 

𝛿(𝑥,𝑦 ,𝑧)

𝐿∗2 = ∆𝛿 𝑥, 𝑦, 𝑧 +
𝑔 𝑧 

𝐷∗                                              (8) 

The general solution of the continuity equation (8) can be expressed as:  

𝛿 𝑥, 𝑦, 𝑧 =   𝐹𝑘𝑗  𝑧 𝑗𝑘 cos 𝐶𝑘𝑥 𝑐𝑜𝑠 𝐶𝑗𝑦                (9) 

Fkj(z) represents the spatial function of the density of excess minority carrier depending on the base depth z. The 

Ck and Cj are the eigenvalues obtained using the following boundary conditions at the grain boundaries. 

 𝜕
𝜕𝑥

𝛿(𝑥, 𝑦, 𝑧) 
𝑥=±

𝑔𝑥
2

= ±
𝑆𝑔

𝐷∗ 𝛿  ±
𝑔𝑥

2
, 𝑦, 𝑧          (10) 

 𝜕
𝜕𝑦

𝛿(𝑥, 𝑦, 𝑧) 
𝑦=±

𝑔𝑦

2

= ±
𝑆𝑔

𝐷∗ 𝛿  𝑥, ±
𝑔𝑦

2
, 𝑧        (11) 

Sg is the excess minority recombination velocity at grain boundaries. The eigenvalues Ck and Cj are determinate 

by transcendental equations expressed as: 

tan 𝐶𝑘
𝑔𝑥

2
=

𝑆𝑔

𝐶𝑘𝐷∗                               (12) 

tan 𝐶𝑗
𝑔𝑦

2
=

𝑆𝑔

𝐶𝑗𝐷
∗               (13) 

The solutions of equations (12), (13) is obtained by a graphic resolution [40] instead of numerical one. 

Using the orthogonality of cos(Ck.x) and cos(Cjy) functions, we obtain the Fk,j(z) expression as: 

𝐹𝑘𝑗 (𝑧) = 𝐴𝑘𝑗 cosh⁡(
𝑧

𝐿𝑘𝑗
) + 𝐵𝑘𝑗 sinh⁡(

𝑧

𝐿𝑘𝑗
) −

𝛼𝐼0 1−𝑅 𝐿𝑘𝑗
2

𝐷𝑘𝑗  𝛼
2𝐿𝑘𝑗

2 −1 
𝑒−𝛼𝑧               (14) 

With Lkj the effective diffusion length expressed as 
1

𝐿𝑘𝑗
2 = 𝐶𝑘

2 + 𝐶𝑗
2 +

1

𝐿∗2              (15) 

And Dkj, the effective diffusion coefficient 

𝐷𝑘𝑗 =
𝐷∗ 𝑔𝑥𝐶𝑘 +sin( 𝐶𝑘𝑔𝑥 )].[𝑔𝑦𝐶𝑗 +sin (𝐶𝑗 𝑔𝑦 ) .

16.sin ( 𝐶𝑘
𝑔𝑥
2

) .sin (𝐶𝑗
𝑔𝑦

2
)

          (16) 

The constants Akj, and Bkj are obtained with the boundary conditions at the junction and back surfaces: 

𝐷∗ 𝜕

𝜕𝑧
𝛿 𝑥, 𝑦, 𝑧 = 𝑆𝑓𝛿 𝑥, 𝑦, 𝑧       𝑓𝑜𝑟        𝑧 = 0       (17) 

𝐷∗ 𝜕

𝜕𝑧
𝛿 𝑥, 𝑦, 𝑧 = −𝑆𝑏𝛿 𝑥, 𝑦, 𝑧       𝑓𝑜𝑟          𝑧 = 𝐻         (18) 
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In these expressions, Sf represents the excess minority carrier recombination velocity at the junction which 

accelerated the flow of carrier crossing the junction and Sb is the recombination velocity on the back surface 

and reflected the minority carrier toward the junction(back surface field) [41-43]. 

 

2.3. Diffusion Coefficient  

The diffusion coefficient D * (B, T) of the minority carrier in the base under influence of temperature T and the 

applied magnetic field B is obtained by the relation [28, 44]: 

𝐷∗ 𝐵, 𝑇 =
𝐷 𝑇 

1+ 𝜇 𝑇 𝐵 2  (19) 

With𝐷 𝑇 = 𝜇 𝑇 
𝐾𝑇

𝑞
  (20) 

and 

𝜇 𝑇 = 1,43. 109𝑇−2.42𝑐𝑚2𝑣−1𝑠−1       (21) 

The Umklap’s process, is justified, that for a given value of the magnetic field, the optimum temperature is 

obtained when the diffusion coefficient reaches its maximum. Using the graphical and analytical methods, the 

optimal temperature as a function of the magnetic field [44] can be given by the following relation: 

𝑇𝑜𝑝 𝐵 =  5,2349. 1018𝐵24,85
=  2,56(1,43. 109)2. 𝐵24,85

    (22) 

This relation allows us to optimize the diffusion coefficient in the determination of eigenvalues Ck and Cj, 

through transcendental equations. 

 

2.4. Eigenvalues Ck et Cj determination: 

The coefficients Ck et Cj are space eigenvalues obtained through transcendental equations (23) and (24) either 

graphically.  

We have opted for the graphical method, where by plotting the functions f (Ck) and h (Ck) below, the points of 

intersection of the two curves yield, the Ck. The Cj are obtained in the same way. Keeping gx = gy the Ck and 

Cj have the same values. 

f Ck = tan Ck
gx

2
         (23) 

h 𝐶𝑘 =
1

  Ck
×

Sg

2D∗                   (24)  

We notice that for Sg ≤ 10
3
 cm.s

-1
, Ck (or Cj) values seem to be insensitive to both the variations of the magnetic 

field and Sg. In the table (1) we have noted the values obtained from Figures 2a and 2b. 

  

(a) (b) 

Figure 2: eigenvalue for sg ≤ 10
3
 cm.s

-1 
; B=10

-2
 T et B=10

-3
 T 

The table 1 gives the eigenvalues Ck for sg ≤ 10
3
 cm.s

-1
 

Table 1: eigenvalues Ck for sg ≤ 10
3
 cm.s

-1
 

Magnetic field B [T] Eigen value Ck (cm
-1

) 

10
-2

 630 1255 1887 2516 3144 

10
-3

 630 1255 1887 2516 3144 
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We verified for several recombination velocity at grain boundaries sg ≤ 10
3
 cm.s

-1
 and for different values of the 

magnetic field; the Ck (or Cj) valuesare substantially equal to the values given in Table 1 (Low manifestation of 

the Lorentz forces). 

For 10
3
 cm.s

-1
<Sg <10

5
 cm.s

-1
 the Ck (or Cj) values vary and increase as the magnetic field increases (Figs. 3a 

and 3b) as indicated by the founded values in Table 1. 

  
(a) (b) 

Figure 3: eigenvalues  for10
3
 cm.s

-1 
< Sg < 10

5
 cm.s

-1
; B=10

-2
 T et B=10

-3
 T 

The table 2 gives the eigenvalues Ck for Sg= 3.10
3
 cm.s

-1
 

Table 2: eigenvalue Ck for Sg= 3.10
3
 cm.s

-1
 

Magnetic field B [T] Eigenvalue Ck 

10
-2

 719 1307 1920 2542 3164 

10
-3

 660 1269 1897 2526 3148 

When Sg> 10
5
 cm.s

-1
 the values of Ck (or Cj) become very sensitive to the variations of the magnetic field; in 

figure 4 gives these values for B = 10
-5

 T and B = 10
-4

 T with a value of Sg = 5. 10
5
 cm.s

-1
. (Strong 

manifestation of the Lorentz forces, for large B and Sg values). 

  
(a) (b) 

Figure 4: egenvalues sg>10
5
 cm.s

-1 
; B=10

-2
 T et B=10

-3
 T 

The table 3 offers the eigenvalues Ck for Sg= 5.10
5
 cm.s

-1
 

Table 3: eigenvalues Ck for Sg = 5.10
5
 cm.s

-1
 

Magnetic field B [T] Eigenvalues Ck 

10
-5

 809 1384 1983 2592 3204 

10
-4

 1496 2101 2707 3319  
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Also, the grain size gx has a very large influence on the eigenvalues, irrespective of the recombination velocity 

at the grain boundaries and the magnetic field; all previous curves were plotted for gx = 10
-2

 cm. 

 For the curve below (figure 5) we took gx = 2.10
-2

 cm; we note that for the same interval the number of 

eigenvalues Ck has practically doubled, according to equation (12). 

 
Figure 5: eigenvalues sg=5.10

2
 cm.s

-1
; B=10

-2 
T 

 

2.5. Excess minority carrier density in the base 

(x,y,z) represents the density of excess minority charge carrier in the base, its expression is given by the 

resolution of equation (25): 

𝛿 𝑥, 𝑦, 𝑧 =   [𝐴𝑘𝑗 cosh⁡(
𝑧

𝐿𝑘𝑗
) + 𝐵𝑘𝑗 sinh⁡(

𝑧

𝐿𝑘𝑗
) −

𝛼𝐼0 1−𝑅 𝐿𝑘𝑗
2

𝐷𝑘𝑗  𝛼
2𝐿𝑘𝑗

2 −1 
𝑒−𝛼𝑧

𝑗𝑘 ] cos 𝐶𝑘𝑥 𝑐𝑜𝑠 𝐶𝑗𝑦  (25) 

From this expression, we simulate the excess minority carrier density profile as a function of base depth(z) and 

magnetic field B as shown in Figure II-6. 

 
Figure 6: Minority carrier density versus base depth and magnetic field 

(Sf = 5.10
3 
cm.s

-1
, Sb = 5.10

3 
cm.s

-1
) Sg=5.10

2
 cm.s

-1
; gx=gy= 0.05 cm;   x=y=0. 

We note that for a given magnetic field value, the profile of the excess minority carrier density as a function of 

the base depth essentially reveals three zones: 

An area near the junction gives a positive density gradient. In this zone of high excess minority density, 

photogenerated carrier have sufficient energy to cross the junction and contribute to the photocurrent. 
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A wider area appears, where the excess carrier density gradient is negative; the carrier there, do not have enough 

energy to cross the junction and participate in the photocurrent. They disappear in the base by recombination in 

the bulk and at the back surface [20]. 

These two zones are separated by the points where the gradient of the excess minority density remained zero, 

therefore the density of charge carrier is constant. 

Also, we observe a considerable increase in the charge carrier density near the junction (Sf = 5.10
3
m.s

-1
) as the 

magnetic field increases. This is since the charge carrier are deviated from their initial trajectory causing the 

blocking of, some of them (Lorentz’s effect). 

 

2.5.1. Excess minority carrier density in the base: influence the wavelength 

The figure 6 and 7 produce excess minority carrier density profiles in the base for short wavelengths λ=0.6µm 

and λ=0.4µm. 

 
Figure 7: Minority carrier density versus base depth and magnetic field for λ=0.4µm and λ=0.6µm  

Sf = 5.10
3
cm.s

-1
, Sb = 5.10

3 
cm.s

-1
 

We notice that for short wavelength illumination,the excess minority carrierdensity in the base decreases. In 

Figure II-7 the area where the charge carrier concentration is constant disappears, so the area near the junction 

where the gradient of the density is positive decreases. This means that the excess minoritycarrier, that can cross 

the junction and participate in the production of electric current decreases. Therefore, the short wavelengths 

have a significant influence on the conductivity of the solar cells [45]. 

 

2.5.2. Excess minority carrier density in the base: influence the grain boundaries 

The density profile of the excess charge carrier as a function of the base depth and the magnetic field for 

different grain size values is given in the (Figure 8). 
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Figure 8: Minority carrier density versus depth in the base and magnetic field for different values the grain 

boundaries.  Sf = 5.10
3
cm.s

-1
, Sb = 5.10

3
cm.s

-1
 

The comparative study of the curves in Figure II-8 shows that the smaller the grain size, the lower the density of 

the excess carrier in the base decreases. All areas shrink; and we find that for gx = gy = 0.035 cm, the 

recombination of the charge carrieris very important in the bulk. 

This phenomenon is explained by the fact that when the grain size is large, recombination rate in the bulk 

remained less, whatever the grain surface recombinationTherefore, solar cells with large grains are better(large 

Leff and low Cj values) than those with small grains [34] according to equations (12, 13,15). 

 

3. Conclusion 

We have presented in this paper a 3D theoretical study of the solar cell in static mode under monochromatic 

illumination. The use of the expression of the charge carrier diffusion coefficient, optimized by the relation 

between the temperature Topt (B) and the magnetic field B, made it possible to determine the space eigenvalues  

as a function of the optimal temperature Topt(B) and the magnetic field B. The influence of the magnetic field 

and the short wavelengths on the density of the minority carrier was also carried out. 
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