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Abstract In this work, we apply the fractional order theory of thermoelasticity to a problem of a half-space. Whose 

surface is rigidly fixed and subjected to the effects of a thermal shock Laplace transform are using for the time 

variable and the exponential Fourier transform for one of the space variables. The solution in the transformed 

domain is obtained by a direct approach. Numerical inversion techniques are used to obtain the inverse double 

transforms. The temperature, thermal stresses, and the displacement distributions are obtained numerically for 

different values of the fractional parameter and different values of times. The results are represented graphically and 

discussed. 
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Introduction 

Thermoelasticity’s importance is due to its many applications in diverse fields such as geophysics, plasma 

physics and related topics, especially in the design of nuclear reactors. There are several generalized theories of 

thermoelasticity. The first was developed by Lord and Shulman [1] and is often referred to as the L-S theory. In 

this theory the new equation of heat was obtained by using a new law of heat conduction instead of Fourier’s 

law. Sherief [2] discussed the fundamental solution of the generalized thermoelastic problem for short times. 

Sherief and Anwar [3] solved a two dimensional generalized thermoelasticity problem for an infinitely long 

cylinder. Sherief and Helmy [4] are studied the solution of a two-dimensional generalized thermoelasticity 

problem for a half-space.  Sherief and Megahed [5] are solved the problem of a two-dimensional 

thermoelasticity problem for a half- space subjected to heat sources, Sherief and Khader [6] are  discussed  the 

propagation of discontinuities in electromagneto generalized thermoelasticity in cylindrical regions. Sharma, 

Kumar and Chand [7] are discussed the Reflection of generalized thermoelastic waves from the boundary of a half-

space. The second theory was developed by Green and Lindsay [8]. They introduced two different lag times in 

the stress- strain relations and the entropy expression. This theory is known as the theory of thermoelasticity 

with two relaxation times. Sherief and Megahed [9] solved a two dimensional problem for thermoelasticity with 

two relaxation times in spherical regions under axisymmetric distributions. Sherief [10-11] is discussed the 

fundamental solution for thermoelasticity with two relaxation times and a thermo-mechanical shock problem for 

thermoelasticity with two relaxation times. 

The fractional order theory of thermoelasticity is based on the heat conduction equation with differential 

operators of fractional order. Time fractional differential operators describe memory effects, space fractional 

differential operator's deal with the long range interaction. The fractional calculus has been successfully used in 

engineering, physics, chemistry, geology, robotics bioengineering, robotics, etc. The first paper on fractional 

thermoelasticity was published by Povstenko [12] in 2005. Then after that published many research in this topic. 

Povstenko [13-15] proposed and investigated new models that use fractional derivative. The fractional order 

theory of thermoelasticity was derived by Sherief, El-Sayed, and Abd El-Latief [16]. Caputo and Mainardi [17-

18] are discussed the new dissipation model based on memory mechanism, Pure and Applied Geophysics and 
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Linear model of dissipation in anelastic solids. Caputo [19] is studied the vibrations on an infinite viscoelastic 

layer with a dissipative memory. Abd El-Latief, and Khader [20] are solved the problem of Fractional model of 

thermoelasticity for a half-space overlaid by a thick layer.   

 

Formulation of the problem 

Consider a homogeneous isotropic elastic solid occupying the half-space 0y . The y-axis is taken 

perpendicular to the plane. The surface of this medium is rigidly fixed and the surface is kept at a given 

temperature that is a function of x.  

The displacement vector u has the form 

 )0,,( vuu  

The cubical dilatation e is given by 
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The components of the thermoelastic stress tensor ij  are given by 
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where λ and μ are Lamé’s modulii, T is the absolute temperature of the medium, and γ is a material constant 

given by  γ = ( 3λ + 2μ )αt where αt is the coefficient of linear thermal expansion, T0 is a reference temperature 

assumed to be such that │( T-T0 ) / T0 │<<1. 

The equations of motion have the vector form 
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The equation of heat conduction has the form [16] 

        eTTc
tt

Tk E 00
2 1 




























 . (6) 

where k is the thermal conductivity of the medium, cE is the specific heat at constant and ρ is the density. 0 and 

 are two parameters of the theory. 

Solution of the Problem in the Laplace Transform Domain  

By using a non-dimension variables 
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The equations (2) - (6) in non-dimensional form become (dropping the asterisks for convenience) 
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using Laplace transform with respect to time with parameter s, to both sides of equations (7)-(11), we obtain 
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Taking the divergence for both side of equation (13), we obtain 
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Eliminating   between equations (16) and (17), we get 
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In a similar manner we can show that   satisfy the equations 
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Equation (18) can be factorized as 
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In order to solve equation (20), we shall use the exponential Fourier transform with respect to the variable x 

(denoted by an asterisk) and defined by the relation 
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Applying the exponential Fourier transform to both sides of equation (20), we get 

    02
2

22
1

2  emDmD  (21) 

where  
22

2
2
2

22
1

2
1 ,, qkmqkm

dy

d
D   

The solution of equation (21) is taken as 

 
ymym

ekBekAe 21 2
2

2
1

* 
  (22) 

where A and B are some parameters depending on s and q. 

Taking the Fourier Transform of both sides of equation (17) and substituting from equation (22), we obtain  
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In order to obtain the displacement component u, we apply the exponential Fourier transform to both sides of 

equation (14) to get 
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The solution of equation (25) is given by 
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Taking the Laplace and exponential Fourier transforms of equation (1), and useing equations (22), (26), we get 
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Substituting from equations (22), (23), (26) and (27) into equations (12), we obtain the transformed stress 

components in the form 
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The boundary condition of the problem are taken as 

Mechanical boundary condition  
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The thermal boundary condition  
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By solving equations (33)-(35), we find the expressions for A, B and C. The solution of these equations can be 
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This completes the solution in the transform domain [4]. 

 

Numerical Results 

The function F(x) representing the thermal shock was taken as )()( xaxHxF  , which gives. 
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We shall apply our results to the copper material. The material properties are  
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All field quantities temperature, displacement and stress depend on x, y and t. The problem was solved for 

different values of time  3.0,2.0,1.0t with fixed value of fractional parameter 1 , which are 

represented by figures (1-5). Dotted lines represent the solution for t = 0.3, double Dotted lines represent the 

solution for t = 0.2 and solid lines represent the solution when t = 0.1. And different values of the fractional 

parameter  1,99.0,5.0,1.0  for fixed value of time 1.0t , which are represented by figures (6-10). 

Black lines represent the solution for α = 0.1, red lines represent the solution for α = 0.5, yellow lines represent 

the solution for α = 0.99 and blue lines represent the solution when α = 1. 

 

 

 

Fig. 1 Temperature Distribution
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Fig. 4 Normal Stresses Distribution
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From figures (1-5), all functions satisfied the boundary conditions. The wave front moves with a finite speed 

dependent the value of time. This means that all the functions considered have a nonzero value only in a 

bounded region of space and vanish identically outside this region. All curves decreases regularly until zero 

reaches the time value, for example in figure 1, when t = 0.1, the curve of temperature reaches at y = 0.43, but 

when t = 0.2, the curve of temperature reaches at y = 0.65. 

From figures (5-10), notice the effect of fraction parameter is appear, the two curves when 5.01.0 or are 

very soon and have the same behavior. Which Leeds to when fractional parameter tends to zero, is given the 

case of coupled and uncoupled theories of thermo elasticity. I.E the speed of waves are infinite. The two curves 

when 199.0 or , are very soon and have the same behavior. Which Leeds to when fractional parameter 

tends to one is given the case of generalized theory of thermo elasticity. I.E the speed of waves is finite.  

Fig. 8 Shear Stresses Distribution
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Conclusion 

A two dimensional fractional order generalized thermoelastic problem for a half-space has been presented. The 

problem has been solved by using Laplace and Fourier transform techniques. The inversion process is carried 

out using a numerical method based on Fourier series expansions. The problem takes the effect of fractional 

parameter. The effect of fractional parameter is appearing. 

 

Reference 

[1]. Lord H, Shulman Y: A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solid 

1967;15: 299–309 

[2]. Hany Sherief: Fundamental Solution Of The Generalized Thermoelastic Problem for Short Times, J. 

Thermal Stresses, 1986; 9:151-164  

[3]. Hany Sherief : Mohamed Anwar A Two Dimensional Generalized Thermoelasticity Problem for an 

Infinitely Long Cylinder, J. Thermal Stresses 1994; 17: 213-227 

[4]. Hany Sherief, Kamal Helmy: A Two-Dimensional Generalized Thermoelasticity Problem for a Half-

Space, J. Thermal Stresses 1999; 22: 897-910 

[5]. Hany Sherief, Fouad Megahed: A Two-Dimensional Thermoelasticity Problem for a Half- Space 

Subjected to Heat Sources, Int. J. Solids Struct.1999; 36: 1369-1382  

[6]. Hany Sherief , Khader  S.E.: Propagation of discontinuities in electromagneto generalized 

thermoelasticity in cylindrical regions  Meccanica 2013; 48:2511–2523 

[7]. Sharma J.N, Kumar V and Chand D: Reflection of generalized thermoelastic waves from the boundary 

of a half-space. J. Therm. Stress. 2003; 26: 925–942 

[8]. Green A.E., Lindsay K.A., Thermoelasticity. Journal of Elasticity, 1972; 2: 1–7 

[9]. Hany Sherief, Fouad Megahed: Two-Dimensional Problems for Thermoelasticity with Two Relaxation 

Times in Spherical Regions under Axisymmetric Distributions, Int. J. Engng. Sci.1999; 37: 299-314 

[10]. Hany Sherief: Fundamental Solution for Thermoelasticity with Two Relaxation Times, Int. J. Engng. 

Sci. 1992; 30: 861-870 

[11]. Hany Sherief: A Thermo-Mechanical Shock Problem for Thermoelasticity with Two Relaxation Times, 

Int. J. Engng. Sci.1994; 32: 313-325 

[12]. Povstenko Y.: Fractional heat conduction and associated thermal stress, J. Thermal Stresses 2005; 28: 

83-102  

[13]. Povstenko Y.: Thermoelasticity that uses fractional heat conduction equation, J. Math. Sci.2009; 162: 

296-305 

[14]. Povstenko Y.: Fractional radial heat conduction in an infinite medium with a cylindrical cavity and 

associated thermal stresses, Mechanics Research Communications 2010; 37: 436–440 

[15]. Povstenko Y.: Fractional Cattaneo-type equations and generalized thermoelasticity, J. Thermal Stresses 

2011; 34:  97-114 

[16]. Sherief H., El-Sayed. A and Abd El-Latief A.: Fractional order theory of thermoelasticity, Int. J. Solids 

Structures. 2010; 47: 269-275 

[17]. Caputo M., Mainardi F.: A new dissipation model based on memory mechanism, Pure and Applied 

Geophysics. 1971; 91: 134–147 

[18]. Caputo M., Mainardi F.: Linear model of dissipation in anelastic solids, Rivista del Nuovo cimento. 

1971; 1: 161–198 

[19]. Caputo M.: Vibrations on an infinite viscoelastic layer with a dissipative memory, J. the Acoustical 

Society of America. 1974; 56: 897–904 

[20]. Abd El-Latief A.M.,  Khader S. E. :Fractional model of thermoelasticity for a half-space overlaid  by a 

thick layer  Z. Angew. Math. Mech. 2015; 95: 511-518 

 


