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Abstract This research is concerned with the Bayesian methodology of relaxing the proportional hazard model by 

having non-proportional hazard model such as a piecewise constant hazard model. The form of the baseline hazard 

was also relaxed using the piecewise constant hazard model. It will allow the form of the baseline hazard to change. 

In addition, the coefficients of the covariates can change over time and this allows for non-proportionality of 

hazards whereby the proportional hazard assumption will be inappropriate.  We use the Bayesian approach to 

inference in incorporating covariates into the model using a breast cancer data. 
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1. Introduction 

This research is concerned with a method of introducing flexibility to Bayesian modelling of survival analysis 

by relaxing the proportional hazard model and the form of the baseline hazard. The main purpose of survival 

analysis in medicine is to estimate a patient`s chances of survival as a function of time given the available 

covariates at the time the patient was admitted to the study. Thus, a standard problem in survival analysis is to 

explore the relationship between the covariates and survival [7] and to make inference for covariate effects and 

baseline hazards from life time or survival data. It is very common that to assume the proportional hazard model 

in which the hazard of any individual is a fixed proportion of the hazard of any other individual. This implies 

that the hazard ratio is dependent only on the covariates and not on the time. However, the proportional hazard 

model may not be suitable if the effects of the covariates take a different form and hence the form of 

dependence of the hazard function on the covariates should not be specified. 

Most analysts start out by fitting a parametric proportional hazard model to describe the features of the data 

since parametric models for survival data have the advantage of being simple to handle because the visualization 

of the hazard function is much easier [5]. We will note that the form of the baseline hazard in these parametric 

models might not be simple. One limitation of assuming a proportional hazard model which is a key to its 

analytical simplicity in estimating the parameters is that the parameters stay constant over time thereby forcing 

the effects of the covariates to have the same effect at all points in time. The popular Cox semi-parametric 

model [7] is semi-parametric in the sense that there is a parametric model for the dependence of the hazard 

multipliers on the covariates but no parametric form is specified for the baseline hazard. [23] and [8] discussed 

modelling non-proportionality of hazards using the piecewise constant hazard model with priors for the 

coefficients in the linear predictor taking the form of the system evolution in a dynamic linear model. [20] 

extended the proportional hazard model by allowing for the non-proportionality of hazards and incorporating 

time varying regression coefficients. [24] used a mixture model approach to non-proportionality of hazards. 

It is typical that covariates contribute linearly to the logarithm of the hazard multiplier but this may not be 

appropriate as a pure linear predictor may not be sufficient to capture complex relationship between covariates 

and survival. It may be that some non-linear function of the covariates might be more appropriate. Some 
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possibilities for the different forms of dependence on covariates are splines [19], basis function regression, 

Bayesian classification and regression trees (C&RT) etc. [8]. [25] checked the assumption of linear covariate 

effects on survival using restricted cubic splines and Martingale residuals. [18] demonstrated how a neural 

network can be used to allow for non-linear predictors and covariate effects varying over time. [1] considered 

the application of neural networks to model non-proportionality in survival analysis. 

The aim in this research is to relax the assumption of proportional hazard model by having a non-proportional 

hazard model and the form of baseline hazard. We discuss one way where both assumptions are relaxed using 

the piecewise constant hazard model. The form of the baseline hazard can also be relaxed using the piecewise 

constant hazard model. There is the need to relax these assumptions by removing the assumptions of parametric 

forms which are usually made and allowing the model to adapt to the true form of the relationship. We adopt the 

Bayesian approach to inference. 

The rest of the paper is briefly reviews the ‘usual proportional hazard model and the piecewise constant hazard 

model and time varying covariate effects model will be discussed as semi-parametric models. We will apply 

Bayesian inference to survival using piecewise constant hazard model and we will also discuss how we choose 

cut points, construct the likelihood and prior distribution in the piecewise constant hazard model. We discuss 

using the survival probability at a particular time or predictive median survival time as the prognostic index in 

the piecewise constant hazard model and illustrate a practical application to relaxing the proportional hazard 

model and the form of baseline hazard in survival analysis using breast cancer data. We give some discussions 

and summaries of results and conclude the research. 

 

2. The Usual Proportional Hazard Model 

The proportional hazard model is the most commonly used method to relate the hazard function to the covariate 

values for an individual using the proportionality assumption [7]. We suppose that we have S covariates for 

         and n individuals for            We denote the covariate vector for the     individual by    

                       . We will note that these covariates may be continuous, discrete, categorical or even 

indicator variables (equal to 1 if present and 0 if absent). The proportional hazard model assumes that any two 

individuals i and j with the hazard function        and       at time t and covariate vectors    

                          and                            , have their hazards which is related by 

                    (1) 

We have that      is a constant and does not depend on t. Another way of writing Equation 1 is 

                   (2) 

where        is the baseline hazard function which is a function of time t but does not involve the covariates    

                         . We have that the quantity     is the hazard multiplier which depends on the covariates 

of the individual i but not on the time variable t. We have that      and this is usually done using a 

logarithmic link function to a linear predictor    . So, 

 

                       
 
    (3) 

where       is the value of covariate s for subject i,     is the baseline parameter and    is the regression 

coefficient of the     covariate. 

 

3. Piecewise Constant Hazard Model With Time Varying Covariate Effects 

In this research, we will discuss the piecewise constant hazard model and time varying covariate effects model 

as semi-parametric models. The piecewise constant hazard model is one of the most convenient and popular 

models for a semi-parametric approach to survival modelling [3]. It is flexible and relaxes the assumption of a 

particular form for the baseline hazard by having sub-divided time where the baseline hazard        and the 

linear predictor are assumed constant in each interval. 
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In the PCH model, the time t is partitioned into J disjoint intervals with J-1 cut points given as            

                 . The     interval is defined as            for          with      and      .  The 

hazard is constant within each interval but is allowed to vary from one interval to another.  

The proportional hazard model assumption might not be true as the effects of covariates might vary over time 

and it is unable to describe time varying covariate effects. The results for our model could be incorrect and 

hence, we have wrong conclusions if we ignore the time varying covariate effects and assume constant effects. 

For instance, in the piecewise constant hazard models, we allow the baseline hazard to change at points but the 

coefficients of the covariates do not change and in this case, it is still a proportional hazard model. However, 

non-proportional hazards could arise if the covariate effects change over time. 

It is possible that we allow the effects of the covariates to vary over time. The piecewise constant hazard model 

with time varying covariates effects can be used to investigate the problem of non-proportionality present in the 

data. [9] allowed dependence on the covariates to change at points which make the hazards non-proportional 

and allow time varying covariate effects. 

Suppose that we have a piecewise constant hazard model with time varying covariate effects and the hazard 

function for the     individual in the     interval,         for            is given by 

                             

 

   

  

Again,       denotes the value of the covariate s for the     individual and      is the regression parameter for the 

covariate s in the      interval. 

 

4. Bayesian Survival Modelling Using the Piecewise Constant Hazard Model 

The proportional hazard model is a well-known way to conduct survival analysis because of its straight 

forwardness. It is possible to extend our model beyond the usual proportional hazard model since a higher 

degree of complexity may describe the survival analysis better. We will fit a piecewise constant hazard model 

which relaxes the assumption of a particular form for the baseline hazard by having sub-divided time. Here, 

there is flexibility in modelling of the baseline hazard and we check for time dependent covariate effects which 

are a form of non-proportionality of hazards. 

We may wish to apply Bayesian inference to our discussions on the piecewise constant hazard model with time 

varying covariate effects. Much work has been done on piecewise constant hazard models where the hazard 

parameters are independent between intervals. See, for example [9] and [11]. In Bayesian survival analysis, our 

beliefs about the unknown parameters of the survival model are expressed in terms of a probability distribution 

in the form of the prior which is updated to the posterior distribution after seeing the data in the form of the 

likelihood function. In cases where the posterior distribution does not have a standard form, it is usual to sample 

from the posterior distribution using Markov chain Monte Carlo (MCMC) methods. 

The piecewise constant hazard model requires the discretisation of the time axis into intervals and thereby 

choosing the number and locations of the cut points. Some authors have suggested defining the intervals as 

beginning and ending at the observed failure times while [13] suggested selecting intervals independently of the 

data. In an attempt to define intervals, [22] suggested shorter intervals over the first few years since deaths in 

cancer data are common in early stages and longer intervals in the later years since there are fewer deaths. 

In this research, we suggest one possibility of deliberately choosing our cut points so that we expect to have the 

same number of deaths in each interval. We would think of a certain number of cut points and expect equal 

portions of death to be in each time interval using prior judgements. We will suppose that we want to choose ten 

time intervals and we might then think ordinarily that we should have approximately 10% of the deaths in each 

interval. We might also suppose that the event times will have approximately an exponential distribution. We 

recall that the survival function of an exponential distribution with parameter   is given by         . Given the 

cut points               , the probability of surviving until    will be 

                 

and        
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We let the mean of the distribution  
 

 
  be υ and ς  

 

 
 . So, 

                  

We will want to construct the likelihood of a piecewise constant hazard model by supposing that associated with 

every patient is a time which could either be a death or censoring time and that every interval is associated with 

three different groups of patients, patients who died during the interval, patients who were censored during the 

interval and patients who survived the interval. The likelihood contribution L of the patients is given as 

         

 

   

 

   

 

where 

                 1                                                 if         

     =      
                     if            

                                 if         

 

  is the number of time intervals 

   is the event or censoring time of the     individual. 

     is the hazard of the      individual in the     interval. 

     is the indicator of death or censoring of the     individual in the     interval. 

We will note that within each interval the conditional survival distribution given that the patient is alive and 

uncensored at time       is exponential since the hazard is constant. 

We construct the prior distribution for the baseline parameter,    and the regression parameters   . In a 

Bayesian context, we have the advantage of constructing a prior that makes the hazard parameters in 

neighbouring intervals to be correlated. In this research, we would use a piecewise constant hazard model which 

has prior distribution in which the parameters are correlated over time. [11] and [9] made the prior distribution 

of the parameters independent between time intervals. However, it would be reasonable to think that the hazards 

in the intervals which are closely together are likely to be similar. 

In our illustration in this research we will assume that the prior will take the form of a realisation of a stochastic 

process which could either be stationary or non-stationary. We will make the priors stationary so that each 

parameter gets the same variance in each time period. For example, we might use an autoregressive process with 

autoregressive parameter which governs how strong the correlation between time periods will be. We will 

choose to give the autoregressive parameter     0 a positive autocorrelation. That is, we give a first order 

autoregressive process such that for any given value of autoregressive parameter, the process is given by 

                     

where     is normally distributed with mean zero and variance     

The variance of the process is 

          
       

  

     

 

   

 

 

5. A Prognostic Index based on the Piecewise Constant Hazard Model 

The prognostic index in a standard proportional hazard model is the linear predictor or some function of it, 

which is the logarithm of the hazard multiplier. A prognostic index in the case of the piecewise constant hazard 

model cannot be constructed in the same way as the linear predictor changes from one time interval to another. 

It is not obvious what the prognostic index should be in the piecewise constant hazard model. In this research, 

we use the survival probability at a particular time or the predictive median survival time as the prognostic 

index, for example. 

We will need to compute the predictive survival probability in order to work out the predictive median survival 

time. 
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5.1. Computation of Survival Probability at a Fixed Time 

We will use the following steps to find the predictive survival probability at any fixed time   . We calculate the 

survival probability at each cut point    where        
   for each vector of sampled parameter values.  We will 

suppose that we have cut points                with J intervals and hazards                for a new 

case. We would want a predictive survival probability for a new case or a particular covariate profile. Then, the 

probability that the individual survives the first interval is 

                     

Similarly, the probability that the individual survives the     interval is 

                             

 

   

  

The stored survival probabilities are then averaged over all sampled parameters sets. The averaged survival 

probability is the predictive survival probability of the patient at time   . 
 

5.2. Practical Computation of Predictive Median Survival Time 

We will first of all find the predictive survival probability,          for          until           . An 

iterative method can be used to find the predictive median survival time      such that                

since we know the interval in which    falls. We could, for example, find where in the interval the predictive 

median survival time    is by using interval halving. We do interval halving by moving half way between the 

lower and the higher time limits of the interval until it eventually converges. In cases, where the predictive 

median survival time falls in the last interval, the upper limit would be infinity and the interval halving will not 

be direct. We could transform the life times to a function   where        . However, we propose a more 

efficient algorithm as follows. 
 

5.3. An Iterative Algorithm for finding the Predictive Median Survival Time 

We avoid the problem of looking for the upper or lower limit and using interval halving by using the following 

algorithm. 

Let              be the predictive survival probability at time   (i.e the function evaluated at time  ). 

Suppose that we have evaluated         and       and                     so              where    is 

the predictive median survival time. 

Let                  be the survival function for a given value of λ. Now, 

                               for              

So, 

                                     

which is linear in  . We use a locally linear approximation to                within            . We 

require    such that                   . 

Algorithm 

Let          . Calculate    g(  ). 

Let       , if     or          if    . 

Calculate         . 

For               

{If             
      then {calculate 

  
          
          

 

Calculate 

          
 

 
              

} 

Else stop 

} 
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6. A Practical application to Breast Cancer data 

In this research, we will apply the Bayesian survival modelling using the piecewise constant hazard 

model to the data set provided by Saudi Cancer Registry (SCR) in King Faisal Specialist Hospital and 

Research Centre (KFSH & RC). The information included in the data set are survival time, censoring 

indicator, gender, age, marital status, address code, laterality, grade, stage (extent) and topography. The 

data set contains information on 5432 patients diagnosed of advanced breast cancer with eight covariates 

collected for 9-years (2004 to 2013). The age of the patient at diagnosis was recorded as a continuous 

variable. The gender of the patients was recorded with value 1 for male and 2 for female. The grade of a 

tumor describes how quickly a tumor can grow and spread. In our data set, the value 1, 2, 3 and 4 were 

used for Grade I (low grade), II (intermediate grade), III (Poorly differentiated or high grade) and IV 

(Undifferentiated or high grade) respectively. The extent is the stage of the disease. The values 1, 2, 3 and 

4 were used to represent in situ, localised, regional and distant metastasis respectively. The laterality 

identities the side of a paired organ or the side of the body on which the reportable tumor originated. The 

values 1, 2, 3 and 4 were used to represent right, left, paired site and bilateral involve sides respectively. 

The address code of the patients were recorded with values 1 to 14 representing Eastern, Riyadh, Asir, 

Tabuk, Qassim, Madinah, Makkah, Hail, Jouf, Baha, Northern, Jazan, International and Najran 

respectively. The topography indicates the site of origin of a neoplasm with values 1 to 9 representing 

Nipple, Central portion of breast, Upper-inner quadrant of breast, Lower-inner quadrant of breast, Upper-

outer quadrant of breast, Lower-outer quadrant of breast, Axillary tail of breast, Overl. lesion of breast 

and Breast, NOS respectively. The marital status of the patient were recorded with the values 1 to 4 used 

to represent married, single, widowed and divorced respectively. 

We follow our discussion on the construction of the likelihood contribution and the construction of the prior. 

We will apply Equation (4) to the breast cancer data set to choose the cut points. We may make a prior 

assessment of the mean survival life time of a patient, as 5 years in the breast cancer data set, and we get the cut 

points as 0.527, 1.116, 1.783, 2.554, 3.466, 4.581, 6.020, 8.047, and 11.513. 

We follow our discussion to construct the prior means and variances of the parameters of the breast 

cancer data set. We would want to think of the value of the autoregressive parameter by considering how 

much the variance of the parameter will reduce in the next time periods if we know the value in the first 

time period. We suppose that 90% of the variance in the next time period is explained. This corresponds 

to a coefficient of determination        correlation       . 

Posterior distributions for the covariate effects were evaluated using the RJAGS software. Following a 

burn-in of 5000 iterations of the sampler, 50000 iterations were taken. Convergence was checked using 

two chains starting from very different values. Visual inspection of the trace plots of the covariate 

parameters showed that the mixing appeared very satisfactory. The posterior means and standard 

deviations of the parameters for each of the ten intervals are given in the Appendix. The posterior means 

and standard deviations for the effects of age and gender and baseline parameter    for each interval are 

given in Table 1. 

Table 1: Posterior numerical summaries of some selected parameters in each interval 

                     

1 0.527 -0.001( 0.005) 0.040(0.074) -2.800( 0.238) 

2 1.116 0.001(0.004) 0.040(0.072) -2.692( 0.229) 

3 1.783 0.002(0.004) 0.034(0.073) -2.444( 0.224) 

4 2.554 0.005(0.004) 0.032(0.073) -2.287( 0.229) 

5 3.466 0.010(0.005) 0.029(0.073) -2.172( 0.237) 

6 4.581 0.013(0.005) 0.029(0.075) -2.129( 0.240) 

7 6.020 0.015(0.006) 0.028(0.075) -2.106( 0.248) 

8 8.047 0.018(0.008) 0.025(0.074) -2.051( 0.267) 

9 11.513   0.007(0.020)    0.025(0.073)   -2.032( 0.277) 

 10   0.010(0.035) 0.023(0.073) -2.004( 0.292) 
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The time dependent effects of covariates were illustrated using the breast cancer data sets using the piecewise 

constant hazard model. We have plotted the effects of the covariates over time for age, gender and baseline 

parameter.  

Figure 1 shows time plots for the posterior means and    standard deviation for the intervals for the 

coefficients of age, gender and baseline parameter. The figure shows that the age effect increases from one 

interval to another. The values of the posterior mean and    standard deviation increases from one interval to 

another. The last interval had the widest range of values for the posterior mean and    standard deviation. The 

gender effect hardly changes from one interval to another and the posterior mean and    standard deviation 

values neither increased nor decreased. The baseline parameter also increased from one interval to another and 

the posterior mean and    standard deviation neither increased nor decreased. The last interval also had the 

widest range of values for the posterior mean and    standard deviation. The time dependent effects of all 

parameters will be summarised in Table 2. 

Figure 1: Time plots of the posterior means and    standard deviation for the intervals for the coefficients of 

age, gender and baseline using the breast cancer data set 

 

 
 

Application: Finding the Predictive Median Survival Time and Survival Probability at some Fixed Time 

The MCMC samples from the practical example were thinned and 1000 samples were retained. Our procedure 

is used to find the survival probability at 1-year and predictive median survival time. The algorithm discussed 

was written using R function. The plot of the 1-year survival probability against the predictive median survival 

time is shown in Figure 2. 

 

7. Discussion and Results 

The usual proportional hazard model in survival model is simple to handle and is widely used in survival 

analysis since the hazard function is easy (Collet, 1994). This model assumes there is proportionality in the 

hazards and hence the covariate effects stay the same at all-time points. Here, we specify the form of the 

baseline hazard using a distribution. In this research, we have chosen not to use the standard proportional hazard 

model. We discussed the piecewise constant hazard model where the form of the dependence of the hazard 

function on the covariates is not specified. This has the advantage of not imposing the overall shape of the 

hazard function. We relaxed the proportional hazard assumption with a non-proportional hazard using the 
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piecewise constant hazard model. We have demonstrated a Bayesian approach to using a piecewise constant 

hazard model with the use of a large set of data using the RJAGS software. The posterior means and standard 

deviation of the coefficient of all the parameters for each of the ten intervals are given in the Appendix. For 

instance, the posterior mean and standard deviation of the coefficient of age in the first interval (beta.age[1]) is 

given as 0:0013414 and 0:004746 respectively. Again, the posterior mean and standard deviation of the 

coefficient of address code of Eastern in the first interval (beta.addresscode[1,1]) is given as 0:1388787 and 

0:173171 respectively. This follows for all other parameters in all intervals. 

From Table 2, it is very obvious that covariate effects depended on time in the piecewise constant hazard model. 

The prognostic index in the case of the piecewise constant hazard model was not constructed in the same way as 

the linear predictor changes from one time interval to another and it was not obvious what the prognostic index 

should be in the piecewise constant hazard model. We have used the survival probability at a particular time and 

the predictive median survival time as an example for the prognostic index. We have computed the survival 

probability at 1-year and the predictive median survival time. 

 

Table 2: A summary of the time dependent effect of all parameters using the piecewise constant hazard model 

Parameter   
 

Levels Summary of time dependent effect 

     nil The covariate effect increases from one interval to another. 

       

1 

The covariate effect slightly decreases from the first to the 

third interval and increases from the fourth interval to the last interval. 

2 

The covariate effect slightly decreases from the  first to the second 

interval and increases from the third interval to the last interval. 

3 

The covariate effect slightly increases from the  first to the 

fourth interval and decreases from the  fifth interval to the sixth 

interval and later increases to the last interval. 

4 

The covariate effect decreases from the  first to the fourth interval, 

does not change from the fifth to the seventh interval and later increases to the 

last interval. 

            

1 

The covariate effect does not change from the  first to the second 

interval but it increases from the third interval to the last interval. 

2 The covariate effect increases from the first to the last interval. 

3 The covariate effect decreases from the first to the last interval. 

4 

The covariate effect decreases from the  first to the fourth 

interval and increases from the fifth to the last interval. 

         

1 The covariate effect increases from the first to the last interval. 

2 The covariate effect increases from the first to the last interval. 

3 

The covariate effect decreases from the first to the fourth 

interval and increases from the fifth to the last interval. 

4 

The covariate effect slightly decreases from the  first to the 

fifth interval and increases from the sixth to the last interval. 

            

    1 The covariate effect increases from the first to the last interval. 

    2 The covariate effect increases from the first to the last interval. 

    3 The covariate effect increases from the first to the last interval. 

    4 The covariate effect increases from the first to the last interval. 

    5 The covariate effect increases from the first to the last interval. 

    6 The covariate effect increases from the first to the last interval. 

    7 

The covariate effect slightly decreases from the first to the sixth interval and 

increases from the seventh to the last interval. 

    8 

The covariate effect slightly increases from the first to the third, decreases from 

the third to fourth interval and increases from the fifth. 
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    9 

The covariate effect slightly decreases from the first to the seventh interval and 

increases from the eighth to the last interval. 

        

    1 The covariate effect increases from one interval to another. 

    2 The covariate effect increases from one interval to another. 

    3 The covariate effect increases from one interval to another. 

    4 The covariate effect decreases from one interval to another. 

             

 

 

    1 The covariate effect increases from one interval to another. 

    2 The covariate effect increases from one interval to another. 

  3 The covariate effect increases from one interval to another. 

  4 The covariate effect increases from one interval to another. 

5 The covariate effect increases from one interval to another. 

6 

The covariate effect slightly decreases and increases from 

the seventh interval to the last interval. 

7 

The covariate effect slightly decreases and increases from the 

seventh interval to the last interval. 

8 

The covariate effect slightly decreases and increases from the 

sixth interval to the last interval. 

9 

The covariate effect slightly decreases from the first to the third 

interval and increases from the fourth interval to the last interval. 

10 

The covariate effect slightly decreases from the  first to the 

fourth interval and increases from the fifth interval to the last interval. 

11 

The covariate effect slightly decreases from the  first to the fourth 

interval and increases from the fifth interval to the last interval. 

12 

The covariate effect slightly decreases, then it increases a bit, 

decreases and later increase from the fifth interval to the last interval. 

13 

The covariate effect slightly decreases from the first to the 

third interval and increases from the fourth interval to the last interval. 

14 

The covariate effect slightly decreases from the first to the 

fourth interval and increases from the fifth interval to the last interval. 

 

 
Figure 2: Plot of the survival probability at 1-year against the predictive median survival time 

Figure 2 revealed that the predictive median survival time and the fixed time survival probability have a close 

relationship over the region where most values occur. The figure reveals some kind of patterns or clustering of 

points on the plot. We identified the corresponding patients by ordering the covariates by the values of either 
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the predictive median survival time or fixed time survival probability. Further investigation revealed that the 

clustering was caused by discrete or categorical covariates of groups which correspond to different values of 

that covariate. 

In this application, there may be little to be gained by calculating the predictive median survival time rather than 

the simpler fixed time survival probability. The fixed time survival probability appears to be just as good as an 

index as the predictive median survival time does. The computation of the predictive median survival time is 

harder than that of the fixed time survival probability. We would have the problem of the choice of time when 

working out the fixed time survival probability. Another problem is that the time that is most informative for 

one patient might be different for another patient. 

Another possibility of calculating the prognostic index of a piecewise constant hazard model would be to use 

the survival probabilities at more than 1 time. By calculating the predictive survival probabilities at a suitable 

range of times, such as the cut points, we could use simple interpolation to give an approximate predictive 

median survival time. 

 

8. Conclusion 

This research has discussed the Bayesian methodology of relaxing the usual proportional hazard model in 

survival analysis by having non-proportional hazard model such as a piecewise constant hazard model with a 

practical application to a breast cancer data. The proportional hazard model may not be suitable if the effects of 

the covariates take a different form and therefore the form of dependence of the hazard function on the 

covariates should not be specified. We have also relaxed the form of the baseline hazard by using the piecewise 

constant hazard model which allows the form of the baseline hazard to change. The coefficients of the 

covariates also changed over time allowing for non-proportionality of hazards. The prognostic index of the 

piecewise constant hazard model was constructed using the survival probability at a particular time and the 

predictive median survival time as the prognostic index. The research showed that there is little to be gained by 

calculating the predictive median survival time rather than the simpler fixed time survival probability. It also 

shows that the fixed time survival probability appears to be just as good as an index as the predictive median 

survival time does.  
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Appendix 

Bayesian survival modelling to Breast cancer data set using piecewise constant hazard model 

 Mean SD Naive SE Time-series SE 

beta.addresscode[1,1] -0.1388787    0.173171        0.0054762 0.0071431 

beta.addresscode[2,1] 0.0074585 0.160132 0.0050638 0.0068116 

beta.addresscode[3,1] 0.0829655 0.152131 0.0048108 0.0057054 

beta.addresscode[4,1] 0.1540914 0.157568 0.0049827 0.0060117 

beta.addresscode[5,1] 0.2370280 0.169740 0.0053676 0.0067539 

beta.addresscode[6,1] 0.1881486 0.193010 0.0061035 0.0071573 

beta.addresscode[7,1] 0.2113269 0.217408 0.0068750 0.0071423 

beta.addresscode[8,1] 0.2189915 0.239912 0.0075867 0.0083881 

beta.addresscode[9,1] 0.1966258 0.268335 0.0084855 0.0088806 

beta.addresscode[10,1] 0.1873839 0.302256 0.0095582 0.0099443 

beta.addresscode[1,2] 0.0546441 0.157023 0.0049655 0.0067188 

beta.addresscode[2,2] 0.1532881 0.141256 0.0044669 0.0057701 

beta.addresscode[3,2] 0.2365945 0.133605 0.0042250 0.0050052 
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beta.addresscode[4,2] 0.3637211 0.136109 0.0043041 0.0055543 

beta.addresscode[5,2] 0.5310845 0.156872 0.0049607 0.0063588 

beta.addresscode[6,2] 0.4977276 0.178611 0.0056482 0.0058755 

beta.addresscode[7,2] 0.5288927 0.210328 0.0066512 0.0066491 

beta.addresscode[8,2] 0.5162753 0.239563 0.0075757 0.0075734 

beta.addresscode[9,2] 0.4820994 0.272739 0.0086248 0.0086235 

beta.addresscode[10,2] 0.4582717 0.301280 0.0095273 0.0095202 

beta.addresscode[1,3] -0.1244004    0.225794      0.0071402 0.0089857 

beta.addresscode[2,3] -0.0197975   0.204773      0.0064755 0.0087276 

beta.addresscode[3,3] -0.0078939    0.198970        0.0062920 0.0083650 

beta.addresscode[4,3] 0.0791179 0.203539 0.0064365 0.0083858 

beta.addresscode[5,3] 0.1931964 0.220231 0.0069643 0.0095597 

beta.addresscode[6,3] 0.1945879 0.238813 0.0075519 0.0091438 

beta.addresscode[7,3] 0.2378212 0.260751 0.0082457 0.0099709 

beta.addresscode[8,3] 0.2283483 0.291329 0.0092126 0.0101628 

beta.addresscode[9,3] 0.2096350 0.326349 0.0103201 0.0110244 

beta.addresscode[10,3] 0.1914523 0.356109 0.0112611 0.0112666 

beta.addresscode[1,4] 0.0665563 0.290003 0.0091707 0.0121282 

beta.addresscode[2,4] 0.1110668 0.265253 0.0083880 0.0112812 

beta.addresscode[3,4] 0.1213295 0.250039 0.0079069 0.0098430 

beta.addresscode[4,4] 0.1623947 0.257878 0.0081548 0.0106240 

beta.addresscode[5,4] 0.2442143 0.277516 0.0087758 0.0107111 

beta.addresscode[6,4] 0.2257740 0.303713 0.0096043 0.0107066 

beta.addresscode[7,4] 0.2611102 0.333194 0.0105365 0.0126671 

beta.addresscode[8,4] 0.2804930 0.359152 0.0113574 0.0125223 

beta.addresscode[9,4] 0.2703558 0.384786 0.0121680 0.0131688 

beta.addresscode[10,4] 0.2513915 0.405524 0.0128238 0.0140009 

beta.addresscode[1,5] 0.0267810 0.266741 0.0084351 0.0098597 

beta.addresscode[2,5] 0.0933760 0.227181 0.0071841 0.0083963 

beta.addresscode[3,5] 0.1523572 0.220716 0.0069797 0.0077640 

beta.addresscode[4,5] 0.0972812 0.239122 0.0075617 0.0075624 

beta.addresscode[5,5] 0.1231575 0.265606 0.0083992 0.0088030 

beta.addresscode[6,5] 0.0539334 0.296216 0.0093672 0.0097301 

beta.addresscode[7,5] 0.0512529 0.327517 0.0103570 0.0108086 

beta.addresscode[8,5] 0.0454133 0.362127 0.0114515 0.0114497 

beta.addresscode[9,5] 0.0359587 0.406397 0.0128514 0.0128485 

beta.addresscode[10,5] 0.0309325 0.434214 0.0137311 0.0137309 

beta.addresscode[1,6] 0.0876169 0.258248 0.0081665 0.0102052 

beta.addresscode[2,6] 0.1436333 0.228478 0.0072251 0.0083460 

beta.addresscode[3,6] 0.0498035 0.210818 0.0066666 0.0081555 

beta.addresscode[4,6] 0.0681618 0.230767 0.0072975 0.0075914 

beta.addresscode[5,6] 0.0091003 0.265731 0.0084032 0.0087427 

beta.addresscode[6,6] -0.1549345   0.305547    0.0096623 0.0096643 

beta.addresscode[7,6] -0.2011545   0.351201   0.0111059 0.0114864 

beta.addresscode[8,6] -0.1330252    0.392908   0.0124248 0.0124272 

beta.addresscode[9,6] -0.1198397   0.441304   0.0139553 0.0139622 

beta.addresscode[10,6] -0.1055134   0.484137   0.0153098 0.0146793 

beta.addresscode[1,7] -0.0100189   0.210800  0.0066661 0.0088422 

beta.addresscode[2,7] -0.2104280   0.182194   0.0057615 0.0075185 
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beta.addresscode[3,7] -0.3929164  0.163837   0.0051810 0.0060986 

beta.addresscode[4,7] -0.3621626  0.170669   0.0053970 0.0060848 

beta.addresscode[5,7] -0.3458817  0.224494   0.0070991 0.0083585 

beta.addresscode[6,7] -0.4140807  0.258191  0.0081647 0.0088456 

beta.addresscode[7,7] -0.3301904  0.293995  0.0092969 0.0098131 

beta.addresscode[8,7] -0.3129593  0.358068  0.0113231 0.0113216 

beta.addresscode[9,7] -0.3128081  0.433407   0.0137055 0.0137101 

beta.addresscode[10,7] -0.3078504  0.489164   0.0154687 0.0154725 

beta.addresscode[1,8] 0.1640573 0.340903 0.0107803 0.0119217 

beta.addresscode[2,8] 0.1532036 0.303323 0.0095919 0.0100526 

beta.addresscode[3,8] 0.3326927 0.305789 0.0096699 0.0111201 

beta.addresscode[4,8] 0.1226030 0.329236 0.0104114 0.0115458 

beta.addresscode[5,8] 0.0509316 0.339393 0.0107326 0.0115179 

beta.addresscode[6,8] 0.0328602 0.385367 0.0121864 0.0127066 

beta.addresscode[7,8] -0.0837871      0.447268   0.0141439 0.0145814 

beta.addresscode[8,8] -0.1093396   0.500737     0.0158347 0.0158426 

beta.addresscode[9,8] -0.0860935  0.567030  0.0179311 0.0179375 

beta.addresscode[10,8] -0.0782145  0.617587   0.0195298 0.0195385 

beta.addresscode[1,9] -0.1451539  0.437750   0.0138429 0.0156977 

beta.addresscode[2,9] -0.1678542     0.397738     0.0125776 0.0140604 

beta.addresscode[3,9] -0.1906462     0.381076     0.0120507 0.0114155 

beta.addresscode[4,9] -0.1816178     0.416436     0.0131689 0.0131509 

beta.addresscode[5,9] -0.1403321     0.446732      0.0141269 0.0150707 

beta.addresscode[6,9] 0.0615861 0.507835 0.0160591 0.0157863 

beta.addresscode[7,9] 0.0879648 0.566442 0.0179125 0.0180860 

beta.addresscode[8,9] 0.1824346 0.644940 0.0203948 0.0198923 

beta.addresscode[9,9] 0.1649959 0.700475 0.0221510 0.0211319 

beta.addresscode[10,9] 0.1635220 0.754321 0.0238537 0.0231467 

beta.addresscode[1,10] -0.8316370      0.535076       0.0169206 0.0219432 

beta.addresscode[2,10] -0.8438706     0.456580        0.0144383 0.0200267 

beta.addresscode[3,10] -0.7409190     0.422393       0.0133572 0.0172396 

beta.addresscode[4,10] -0.6980758    0.416691        0.0131769 0.0166169 

beta.addresscode[5,10] -0.4914104    0.463170        0.0146467 0.0166492 

beta.addresscode[6,10] -0.3963019     0.534078       0.0168890 0.0188875 

beta.addresscode[7,10] -0.4027342    0.632051       0.0199872 0.0207513 

beta.addresscode[8,10] -0.3869783    0.720567       0.0227863 0.0227723 

beta.addresscode[9,10] -0.3707570     0.791297     0.0250230 0.0239700 

beta.addresscode[10,10       ] -0.3543279     0.839025       0.0265323 0.0265448 

beta.addresscode[1,11] -0.1135328    0.558361       0.0176569 0.0190743 

beta.addresscode[2,11] -0.1082260    0.498495       0.0157638 0.0189811 

beta.addresscode[3,11] -0.2049782    0.466562       0.0147540 0.0166184 

beta.addresscode[4,11] -0.1967426    0.475574      0.0150390 0.0156106 

beta.addresscode[5,11] 0.0978771 0.494972 0.0156524 0.0176558 

beta.addresscode[6,11] 0.3285546 0.574098 0.0181546 0.0181570 

beta.addresscode[7,11] 0.2975811 0.694665 0.0219672 0.0219791 

beta.addresscode[8,11] 0.2716535 0.785982 0.0248549 0.0242298 

beta.addresscode[9,11] 0.2551333 0.869134 0.0274844 0.0285707 

beta.addresscode[10,11] 0.2300766 0.926200 0.0292890 0.0292559 

beta.addresscode[1,12] -0.0337704    0.402148      0.0127170 0.0138424 
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beta.addresscode[2,12] -0.2238490     0.370318       0.0117105 0.0112177 

beta.addresscode[3,12] -0.0510147     0.352162       0.0111363 0.0111764 

beta.addresscode[4,12] 0.0443791 0.370996 0.0117319 0.0117223 

beta.addresscode[5,12] -0.4782787    0.421521       0.0133297 0.0133347 

beta.addresscode[6,12] -0.5477230     0.480306       0.0151886 0.0151868 

beta.addresscode[7,12] -0.5796450     0.564815      0.0178610 0.0178407 

beta.addresscode[8,12] -0.6439707    0.674513       0.0213300 0.0213122 

beta.addresscode[9,12] -0.5978761    0.768669      0.0243075 0.0242971 

beta.addresscode[10,12]           -0.5532891   0.867962     0.0274474 0.0264238 

beta.addresscode[1,13] 0.9733997 0.901793 0.0285172 0.0420207 

beta.addresscode[2,13] 0.8680100 0.854641 0.0270261 0.0434461 

beta.addresscode[3,13] 0.6851857 0.835214 0.0264118 0.0416341 

beta.addresscode[4,13] 0.6743923 0.869178 0.0274858 0.0399126 

beta.addresscode[5,13] 0.5217093 0.950892 0.0300699 0.0413284 

beta.addresscode[6,13] 0.5092500 1.017881 0.0321882 0.0436825 

beta.addresscode[7,13] 0.4966140 1.079259 0.0341292 0.0420565 

beta.addresscode[8,13] 0.4403287 1.137770 0.0359795 0.0425523 

beta.addresscode[9,13] 0.4219285 1.203672 0.0380635 0.0437140 

beta.addresscode[10,13] 0.3950842 1.276538 0.0403677 0.0458673 

beta.addresscode[1,14] 0.0243369 0.539976 0.0170755 0.0177005 

beta.addresscode[2,14] 0.0439889 0.448021 0.0141677 0.0146797 

beta.addresscode[3,14] -0.0725603    0.438762    0.0138749 0.0147662 

beta.addresscode[4,14] -0.3275437    0.542995       0.0171710 0.0193777 

beta.addresscode[5,14] -0.5523960    0.689951      0.0218182 0.0226791 

beta.addresscode[6,14] -0.5793822    0.806890      0.0255161 0.0261262 

beta.addresscode[7,14] -0.5750527    0.927998     0.0293459 0.0291943 

beta.addresscode[8,14] -0.5976651    1.004833     0.0317756 0.0321842 

beta.addresscode[9,14] -0.5493580    1.096528       0.0346753 0.0327749 

beta.addresscode[10,14]            -0.5089194   1.178068     0.0372538 0.0387636 

beta.age[1] -0.0013414     0.004746    0.0001501 0.0004170 

beta.age[2] 0.0005447 0.004085 0.0001292 0.0003244 

beta.age[3] 0.0021059 0.003954 0.0001250 0.0002515 

beta.age[4] 0.0047631 0.004076 0.0001289 0.0002573 

beta.age[5] 0.0096648 0.004518 0.0001429 0.0002672 

beta.age[6] 0.0128863 0.005118 0.0001618 0.0002515 

beta.age[7] 0.0154237 0.005659 0.0001790 0.0001987 

beta.age[8] 0.0176215 0.007847 0.0002481 0.0002779 

beta.age[9] 0.0072945 0.019580 0.0006192 0.0006193 

beta.age[10] 0.0099934 0.034576 0.0010934 0.0012291 

beta.extent[1,1] 0.0010218 0.087969 0.0027818 0.0033829 

beta.extent[2,1] 0.0295219 0.081280 0.0025703 0.0029045 

beta.extent[3,1] 0.0779282 0.076162 0.0024085 0.0024698 

beta.extent[4,1] 0.1232842 0.079567 0.0025161 0.0027675 

beta.extent[5,1] 0.1312550 0.082186 0.0025989 0.0029428 

beta.extent[6,1] 0.1370954 0.088704 0.0028051 0.0029986 

beta.extent[7,1] 0.1536889 0.098226 0.0031062 0.0032837 

beta.extent[8,1] 0.1624159 0.109592 0.0034656 0.0034664 

beta.extent[9,1] 0.1512074 0.118824 0.0037575 0.0037570 

beta.extent[10,1] 0.1447897 0.126017 0.0039850 0.0039865 
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beta.extent[1,2]    -0.6712354      0.085363       0.0026994 0.0033438 

beta.extent[2,2]    -0.6775765       0.076590        0.0024220 0.0030117 

beta.extent[3,2]    -0.6484582     0.072910          0.0023056 0.0028859 

beta.extent[4,2]    -0.6075181    0.076259          0.0024115 0.0026708 

beta.extent[5,2]    -0.5949473       0.080853        0.0025568 0.0027539 

beta.extent[6,2]    -0.5712705      0.085966         0.0027185 0.0033174 

beta.extent[7,2] -0.5259759      0.094638           0.0029927 0.0034651 

beta.extent[8,2] -0.4885455      0.106810          0.0033776 0.0039904 

beta.extent[9,2] -0.4673144      0.116461         0.0036828 0.0042644 

beta.extent[10,2] -0.4418281      0.126520        0.0040009 0.0040025 

beta.extent[1,3] -0.5933682      0.101398        0.0032065 0.0034712 

beta.extent[2,3] -0.5632609      0.086776         0.0027441 0.0030951 

beta.extent[3,3] -0.4859316      0.078097        0.0024696 0.0030225 

beta.extent[4,3] -0.4306283      0.082762         0.0026172 0.0029444 

beta.extent[5,3] -0.4004642      0.089963         0.0028449 0.0028463 

beta.extent[6,3] -0.3881110     0.104533         0.0033056 0.0028704 

beta.extent[7,3] -0.4096079     0.112300         0.0035512 0.0034046 

beta.extent[8,3] -0.3833231     0.127760         0.0040401 0.0041997 

beta.extent[9,3] -0.3592701     0.149306          0.0047215 0.0056461 

beta.extent[10,3] -0.3406102     0.163635          0.0051746 0.0051771 

beta.extent[1,4] 1.2635818 0.100247 0.0031701 0.0038069 

beta.extent[2,4] 1.2113156 0.086485 0.0027349 0.0029410 

beta.extent[3,4] 1.0564616 0.082023 0.0025938 0.0027279 

beta.extent[4,4] 0.9148621 0.086912 0.0027484 0.0027493 

beta.extent[5,4] 0.8641565 0.101332 0.0032044 0.0032058 

beta.extent[6,4] 0.8222860 0.119158 0.0037681 0.0035299 

beta.extent[7,4] 0.7818949 0.141144 0.0044634 0.0044616 

beta.extent[8,4] 0.7094527 0.162288 0.0051320 0.0049508 

beta.extent[9,4] 0.6753771 0.186928 0.0059112 0.0059054 

beta.extent[10,4] 0.6376485 0.203366 0.0064310 0.0061782 

beta.gender[1,1] 0.0397935 0.074491 0.0023556 0.0042961 

beta.gender[2,1] 0.0402296 0.072323 0.0022870 0.0042737 

beta.gender[3,1] 0.0338277 0.073155 0.0023134 0.0042529 

beta.gender[4,1] 0.0316361 0.072542 0.0022940 0.0042575 

beta.gender[5,1] 0.0292317 0.073437 0.0023223 0.0042465 

beta.gender[6,1] 0.0289367 0.074823 0.0023661 0.0041686 

beta.gender[7,1] 0.0279906 0.074828 0.0023663 0.0040758 

beta.gender[8,1] 0.0251260 0.074290 0.0023493 0.0039044 

beta.gender[9,1] 0.0249088 0.073489 0.0023239 0.0037062 

beta.gender[10,1] 0.0234899 0.073330 0.0023189 0.0033322 

beta.gender[1,2]            -0.0397935   0.074491     0.0023556 0.0042961 

beta.gender[2,2]         -0.0402296    0.072323       0.0022870 0.0042737 

beta.gender[3,2]       -0.0338277   0.073155     0.0023134 0.0042529 

beta.gender[4,2]      -0.0316361      0.072542        0.0022940 0.0042575 

beta.gender[5,2]      -0.0292317      0.073437        0.0023223 0.0042465 

beta.gender[6,2]     -0.0289367      0.074823      0.0023661 0.0041686 

beta.gender[7,2] -0.0279906    0.074828      0.0023663 0.0040758 

beta.gender[8,2] -0.0251260      0.074290     0.0023493 0.0039044 

beta.gender[9,2] -0.0249088    0.073489    0.0023239 0.0037062 
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beta.gender[10,2] -0.0234899    0.073330    0.0023189 0.0033322 

beta.grade[1,1] -0.2353660    0.126795    0.0040096 0.0058082 

beta.grade[2,1] -0.2784930    0.122734    0.0038812 0.0057588 

beta.grade[3,1] -0.2829944    0.121273    0.0038350 0.0056434 

beta.grade[4,1] -0.2833719    0.124654    0.0039419 0.0058270 

beta.grade[5,1] -0.2368768    0.129338    0.0040900 0.0060016 

beta.grade[6,1] -0.1983779    0.133123    0.0042097 0.0057666 

beta.grade[7,1] -0.1645298    0.138528     0.0043806 0.0056891 

beta.grade[8,1] -0.1544105     0.144414    0.0045668 0.0055795 

beta.grade[9,1] -0.1487081    0.147951    0.0046786 0.0054841 

beta.grade[10,1] -0.1395728    0.154028    0.0048708 0.0054888 

beta.grade[1,2] -0.2081482     0.099740    0.0031541 0.0042683 

beta.grade[2,2] -0.2466335    0.088444    0.0027968 0.0037093 

beta.grade[3,2] -0.2310527     0.086807     0.0027451 0.0035162 

beta.grade[4,2] -0.2181315    0.087774     0.0027756 0.0034690 

beta.grade[5,2] -0.1557738    0.092467    0.0029241 0.0035787 

beta.grade[6,2] -0.1047730    0.098897    0.0031274 0.0033226 

beta.grade[7,2] -0.0652010    0.105563    0.0033382 0.0038073 

beta.grade[8,2] -0.0629814    0.117359    0.0037112 0.0039427 

beta.grade[9,2] -0.0622002    0.126192    0.0039905 0.0042735 

beta.grade[10,2] -0.0591828    0.133557    0.0042234 0.0044210 

beta.grade[1,3] 0.1253516 0.108735 0.0034385 0.0053198 

beta.grade[2,3] 0.2293232 0.096084 0.0030384 0.0039555 

beta.grade[3,3] 0.3125323 0.091634 0.0028977 0.0037512 

beta.grade[4,3] 0.3402717 0.096375 0.0030476 0.0040531 

beta.grade[5,3] 0.2557130 0.102021 0.0032262 0.0036285 

beta.grade[6,3] 0.2187085 0.114444 0.0036190 0.0041201 

beta.grade[7,3] 0.1699319 0.125267 0.0039613 0.0043752 

beta.grade[8,3] 0.1709397 0.143029 0.0045230 0.0048452 

beta.grade[9,3] 0.1608893 0.157962 0.0049952 0.0049977 

beta.grade[10,3] 0.1555038 0.169357 0.0053555 0.0053582 

beta.grade[1,4] 0.3181626 0.208440 0.0065914 0.0096375 

beta.grade[2,4] 0.2958033 0.190594 0.0060271 0.0082861 

beta.grade[3,4] 0.2015147 0.191370 0.0060516 0.0083693 

beta.grade[4,4] 0.1612317 0.199612 0.0063123 0.0077244 

beta.grade[5,4] 0.1369376 0.212894 0.0067323 0.0087377 

beta.grade[6,4] 0.0844424 0.226639 0.0071669 0.0086853 

beta.grade[7,4] 0.0597989 0.241645 0.0076415 0.0088724 

beta.grade[8,4] 0.0464521 0.263964 0.0083473 0.0094954 

beta.grade[9,4] 0.0500190 0.277476 0.0087746 0.0096483 

beta.grade[10,4] 0.0432518 0.288644 0.0091277 0.0097051 

beta.laterality[1,1] -0.2495105    0.130312    0.0041208 0.0082731 

beta.laterality[2,1] -0.2428431    0.124752    0.0039450 0.0088027 

beta.laterality[3,1] -0.1594059    0.125822    0.0039788 0.0085883 

beta.laterality[4,1] -0.1134526    0.129235     0.0040868 0.0082105 

beta.laterality[5,1] -0.1291303    0.135745    0.0042926 0.0082215 

beta.laterality[6,1] -0.1358347    0.142448    0.0045046 0.0085422 

beta.laterality[7,1] -0.1474188    0.150508    0.0047595 0.0082073 

beta.laterality[8,1] -0.1536882    0.159557    0.0050456 0.0082693 
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beta.laterality[9,1] -0.1468693    0.163793    0.0051796 0.0070804 

beta.laterality[10,1] -0.1380165    0.170657    0.0053966 0.0071623 

beta.laterality[1,2] -0.2765250    0.130058     0.0041128 0.0084125 

beta.laterality[2,2] -0.2297913    0.124106    0.0039246 0.0078906 

beta.laterality[3,2] -0.1522917    0.126291   0.0039937 0.0085027 

beta.laterality[4,2] -0.1173832   0.131826    0.0041687 0.0083057 

beta.laterality[5,2] -0.0637956    0.140000    0.0044272 0.0089583 

beta.laterality[6,2] -0.0527721    0.141818    0.0044847 0.0087445 

beta.laterality[7,2] -0.0541878    0.145254    0.0045933 0.0086146 

beta.laterality[8,2] -0.0511182    0.154778    0.0048945 0.0083896 

beta.laterality[9,2] -0.0518135    0.163310    0.0051643 0.0077492 

beta.laterality[10,2] -0.0499827    0.171159    0.0054125 0.0077547 

beta.laterality[1,3] 0.3668749 0.259656 0.0082110 0.0206046 

beta.laterality[2,3] 0.3722881 0.257621 0.0081467 0.0188783 

beta.laterality[3,3] 0.3352949 0.259783 0.0082151 0.0194783 

beta.laterality[4,3] 0.3124166 0.259269 0.0081988 0.0207574 

beta.laterality[5,3] 0.2841004 0.269227 0.0085137 0.0190821 

beta.laterality[6,3] 0.2600197 0.273457 0.0086475 0.0186846 

beta.laterality[7,3] 0.2476780 0.275380 0.0087083 0.0173652 

beta.laterality[8,3] 0.2259779 0.277793 0.0087846 0.0163858 

beta.laterality[9,3] 0.2139686 0.278113 0.0087947 0.0163170 

beta.laterality[10,3] 0.2028336 0.280618 0.0088739 0.0150026 

beta.laterality[1,4] 0.1591606 0.212814 0.0067298 0.0093205 

beta.laterality[2,4] 0.1003462 0.199912 0.0063218 0.0093360 

beta.laterality[3,4] -0.0235972    0.201032    0.0063572 0.0094377 

beta.laterality[4,4] -0.0815808   0.215113    0.0068025 0.0096471 

beta.laterality[5,4] -0.0911745    0.230008   0.0072735 0.0095073 

beta.laterality[6,4] -0.0714130   0.237245   0.0075023 0.0093556 

beta.laterality[7,4] -0.0460714    0.248131   0.0078466 0.0083049 

beta.laterality[8,4] -0.0211716   0.264033   0.0083495 0.0097931 

beta.laterality[9,4] -0.0152858    0.280235   0.0088618 0.0100077 

beta.laterality[10,4] -0.0148345    0.282525    0.0089342 0.0100892 

beta.marital[1,1] -0.2634098     0.087496    0.0027669 0.0033423 

beta.marital[2,1] -0.2444237   0.078048    0.0024681 0.0030856 

beta.marital[3,1] -0.1983179    0.077863     0.0024623 0.0029105 

beta.marital[4,1] -0.1433568    0.082545    0.0026103 0.0030310 

beta.marital[5,1] -0.0931767   0.088659    0.0028036 0.0030181 

beta.marital[6,1] -0.0781723    0.099145    0.0031352 0.0034185 

beta.marital[7,1] -0.0764298    0.106582   0.0033704 0.0037454 

beta.marital[8,1] -0.0636185    0.117547     0.0037172 0.0037173 

beta.marital[9,1] -0.0578880     0.129291     0.0040885 0.0040890 

beta.marital[10,1] -0.0526976    0.140343     0.0044380 0.0046100 

beta.marital[1,2] -0.1835432     0.118404     0.0037443 0.0056496 

beta.marital[2,2] -0.1958192    0.116016     0.0036687 0.0060648 

beta.marital[3,2] -0.1843658    0.116900     0.0036967 0.0056926 

beta.marital[4,2] -0.1691559    0.118269     0.0037400 0.0056317 

beta.marital[5,2] -0.1473760    0.120826     0.0038209 0.0051557 

beta.marital[6,2] -0.1445858     0.125944     0.0039827 0.0056200 

beta.marital[7,2] -0.1407793     0.132508    0.0041903 0.0057952 
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beta.marital[8,2] -0.1286698    0.142073     0.0044928 0.0057941 

beta.marital[9,2] -0.1214703    0.147682      0.0046701 0.0055393 

beta.marital[10,2] -0.1138464    0.155008     0.0049018 0.0059676 

beta.marital[1,3] -0.1144417     0.133364    0.0042173 0.0053959 

beta.marital[2,3] -0.1330813    0.122133     0.0038622 0.0056834 

beta.marital[3,3] -0.1758167     0.118775   0.0037560 0.0047368 

beta.marital[4,3] -0.1818544    0.120202     0.0038011 0.0052928 

beta.marital[5,3] -0.1921584      0.130175    0.0041165 0.0049808 

beta.marital[6,3] -0.1862384     0.137014     0.0043328 0.0055132 

beta.marital[7,3] -0.1762422    0.148986     0.0047114 0.0056097 

beta.marital[8,3] -0.1704588    0.160874      0.0050873 0.0056679 

beta.marital[9,3] -0.1627422      0.173409     0.0054837 0.0057984 

beta.marital[10,3] -0.1582058     0.184876      0.0058463 0.0058461 

beta.marital[1,4] 0.5613947 0.173366 0.0054823 0.0057249 

beta.marital[2,4] 0.5733242 0.157974 0.0049956 0.0056821 

beta.marital[3,4] 0.5585004 0.154714 0.0048925 0.0057445 

beta.marital[4,4] 0.4943672 0.166363 0.0052609 0.0059555 

beta.marital[5,4] 0.4327111 0.184613 0.0058380 0.0060395 

beta.marital[6,4] 0.4089965 0.205881 0.0065105 0.0068249 

beta.marital[7,4]    0.3934513 0.224734 0.0071067 0.0079928 

beta.marital[8,4] 0.3627471 0.246600 0.0077982 0.0078673 

beta.marital[9,4] 0.3421006 0.267104 0.0084466 0.0084351 

beta.marital[10,4] 0.3247498 0.283271 0.0089578 0.0093240 

beta.topography[1,1] 0.1167945 0.193992 0.0061346 0.0071339 

beta.topography[2,1] 0.1283809 0.181868 0.0057512 0.0066680 

beta.topography[3,1] 0.1320673 0.175004 0.0055341 0.0063670 

beta.topography[4,1] 0.1671191 0.171621 0.0054271 0.0060847 

beta.topography[5,1] 0.2172810 0.180212 0.0056988 0.0062286 

beta.topography[6,1] 0.3096278 0.187213 0.0059202 0.0063522 

beta.topography[7,1] 0.3417614 0.200210 0.0063312 0.0067987 

beta.topography[8,1] 0.3297924 0.216384 0.0068427 0.0065476 

beta.topography[9,1] 0.3183744 0.231486 0.0073202 0.0076165 

beta.topography[10,1] 0.2965737 0.249071 0.0078763 0.0079806 

beta.topography[1,2] -0.1192688    0.181892    0.0057519 0.0066236 

beta.topography[2,2] -0.1266221    0.167075     0.0052834 0.0063759 

beta.topography[3,2] -0.1347699   0.165010   0.0052181 0.0059604 

beta.topography[4,2] -0.1004747    0.170442    0.0053899 0.0063598 

beta.topography[5,2] -0.0624031   0.170462   0.0053905 0.0062436 

beta.topography[6,2] 0.0304575 0.185620 0.0058698 0.0067428 

beta.topography[7,2] 0.0740941 0.199224 0.0063000 0.0070988 

beta.topography[8,2] 0.0793235 0.213081 0.0067382 0.0074880 

beta.topography[9,2] 0.0770278 0.235487 0.0074467 0.0076867 

beta.topography[10,2] 0.0658183 0.254304 0.0080418 0.0086908 

beta.topography[1,3] -0.1075315   0.200443    0.0063386 0.0072819 

beta.topography[2,3] -0.0971923    0.179544   0.0056777 0.0066318 

beta.topography[3,3] -0.0714606     0.167747 0.0053046 0.0065569 

beta.topography[4,3] 0.0257207 0.169662 0.0053652 0.0063940 

beta.topography[5,3] 0.1142364 0.174784 0.0055272 0.0062150 

beta.topography[6,3] 0.2026358 0.190009 0.0060086 0.0062816 
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beta.topography[7,3] 0.2570610 0.206031 0.0065153 0.0069293 

beta.topography[8,3] 0.2741668 0.225903 0.0071437 0.0074465 

beta.topography[9,3] 0.2580550 0.251990 0.0079686 0.0079726 

beta.topography[10,3] 0.2350739 0.270817 0.0085640 0.0085663 

beta.topography[1,4] 0.0420882 0.239850 0.0075847 0.0087657 

beta.topography[2,4]  0.0650266 0.218148 0.0068984 0.0082476 

beta.topography[3,4] 0.0309812 0.206154 0.0065192 0.0073800 

beta.topography[4,4] 0.1654183 0.208083 0.0065802 0.0067678 

beta.topography[5,4] 0.2433705 0.224282 0.0070924 0.0073746 

beta.topography[6,4] 0.3762708 0.248870 0.0078700 0.0075446 

beta.topography[7,4] 0.3861999 0.276864 0.0087552 0.0084133 

beta.topography[8,4] 0.3744960 0.308476 0.0097549 0.0094507 

beta.topography[9,4] 0.3626771 0.332391 0.0105111 0.0105021 

beta.topography[10,4] 0.3460391 0.345385 0.0109220 0.0105309 

beta.topography[1,5] -0.3244190    0.176654     0.0055863 0.0071398 

beta.topography[2,5] -0.2895488     0.150748    0.0047671 0.0073533 

beta.topography[3,5] -0.2346310     0.142905    0.0045191 0.0054798 

beta.topography[4,5] -0.0756505    0.146298    0.0046264 0.0053920 

beta.topography[5,5] -0.1064567   0.159093   0.0050310 0.0058983 

beta.topography[6,5] -0.1021209    0.172485     0.0054545 0.0058597 

beta.topography[7,5] -0.0949587   0.195137      0.0061708 0.0061716 

beta.topography[8,5] 0.0221647 0.228792 0.0072350 0.0072386 

beta.topography[9,5] 0.0410552 0.281319 0.0088961 0.0087773 

beta.topography[10,5] 0.0391079 0.330547 0.0104528 0.0096136 

beta.topography[1,6] -0.5590985    0.291299     0.0092117 0.0115465 

beta.topography[2,6] -0.6084117    0.254469     0.0080470 0.0098932 

beta.topography[3,6] -0.5274739    0.228889     0.0072381 0.0086558 

beta.topography[4,6] -0.4650865    0.233310    0.0073779 0.0083879 

beta.topography[5,6] -0.3658653   0.252420    0.0079822 0.0083653 

beta.topography[6,6] -0.4156445    0.274581    0.0086830 0.0086361 

beta.topography[7,6] -0.3756128    0.297272    0.0094006 0.0088793 

beta.topography[8,6] -0.3911952    0.344506    0.0108942 0.0108502 

beta.topography[9,6] -0.3707703     0.393481   0.0124430 0.0124161 

beta.topography[10,6] -0.3524991    0.433793    0.0137177 0.0137015 

beta.topography[1,7] 0.5776328 0.425628 0.0134596 0.0158152 

beta.topography[2,7] 0.4597472 0.416932 0.0131846 0.0176346 

beta.topography[3,7] 0.1928777 0.417936 0.0132163 0.0187585 

beta.topography[4,7] -0.0393017     0.434001     0.0137243 0.0185373 

beta.topography[5,7] -0.1856353     0.431697      0.0136514 0.0163404 

beta.topography[6,7] -0.2802707    0.441522     0.0139622 0.0180889 

beta.topography[7,7] -0.3270540    0.467149     0.0147725 0.0186270 

beta.topography[8,7] -0.3508685    0.498817    0.0157740 0.0176684 

beta.topography[9,7] -0.3295804    0.538426    0.0170265 0.0156255 

beta.topography[10,7] -0.3160499    0.571576      0.0180748 0.0191133 

beta.topography[1,8] -0.0333645     0.204692      0.0064729 0.0082598 

beta.topography[2,8] -0.0293007    0.182578     0.0057736 0.0065872 

beta.topography[3,8] 0.1499521 0.155020 0.0049022 0.0056117 

beta.topography[4,8] -0.0994061     0.172943      0.0054689 0.0057250 

beta.topography[5,8] -0.1068467    0.189546     0.0059940 0.0067366 
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beta.topography[6,8] -0.2334878   0.222641    0.0070405 0.0076383 

beta.topography[7,8] -0.2312527    0.250140    0.0079101 0.0069353 

beta.topography[8,8] -0.3000323   0.324344   0.0102567 0.0096503 

beta.topography[9,8] -0.2970485    0.419093    0.0132529 0.0132380 

beta.topography[10,8] -0.2723058    0.505258    0.0159777 0.0167435 

beta.topography[1,9] 0.4071669 0.170244 0.0053836 0.0075683 

beta.topography[2,9] 0.4979210 0.139410 0.0044085 0.0054938 

beta.topography[3,9] 0.4624571 0.133525 0.0042224 0.0053430 

beta.topography[4,9] 0.4216615 0.151304 0.0047847 0.0053603 

beta.topography[5,9] 0.2523192 0.180111 0.0056956 0.0056951 

beta.topography[6,9] 0.1125320 0.205032 0.0064837 0.0063935 

beta.topography[7,9] -0.0302383    0.248360     0.0078538 0.0078578 

beta.topography[8,9] -0.0378475    0.335095    0.0105966 0.0106009 

beta.topography[9,9] -0.0597902    0.472951    0.0149560 0.0146094 

beta.topography[10,9] -0.0417581   0.572299     0.0180977 0.0166138 

beta0[1] -2.8004833    0.237707    0.0075170 0.0250800 

beta0[2] -2.6927998    0.228519     0.0072264 0.0250930 

beta0[3] -2.4443389     0.224229    0.0070907 0.0260313 

beta0[4] -2.2869011    0.228754     0.0072338 0.0231701 

beta0[5] -2.1715219     0.236681     0.0074845 0.0218532 

beta0[6] -2.1291042     0.239917     0.0075868 0.0225320 

beta0[7] -2.1061894    0.247784      0.0078356 0.0196670 

beta0[8] -2.0513336     0.266818     0.0084375 0.0178815 

beta0[9] -2.0322993    0.277243     0.0087672 0.0192463 

beta0[10] -2.0035495     0.292100     0.0092370 0.0175141 

 


