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Abstract In the present work, a study involving a spectral method to solve the reactive Favre averaged Navier-

Stokes equations, coupled with a turbulence model and the Maxwell equations, is performed. The Favre 

averaged Navier-Stokes equations coupled with the Maxwell equations, in conservative and finite volume 

contexts, employing structured spatial discretization, are studied. Turbulence is taken into account considering 

the implementation of five k- two-equation turbulence models, based on the works of Coakley 1983; Wilcox; 

Yoder, Georgiadids and Orkwis; Coakley 1997; and Rumsey, Gatski, Ying, and Bertelrud. For the magnetic 

formulation, the Gaitonde model is implemented. The Euler backward integration method is studied to march 

the scheme in time. The spectral method presented in this work employs collocation points and variants of 

Chebyshev and Legendre interpolation functions are studied. The “hot gas” hypersonic flow around a blunt 

body in two-dimensions is simulated. The convergence process is accelerated to steady state condition through a 

spatially variable time step procedure, which has proved effective gains in terms of computational acceleration 

(see Maciel). The reactive simulations involve Earth atmosphere chemical model of seven species and eighteen 

reactions, based on the Blottner model. N, O, N2, O2, NO, NO
+
 and e

-
 species are used to perform the numerical 

comparisons. The results have indicated that the Chebyshev collocation point variants are more accurate in 

terms of stagnation pressure estimations. For the studied problem such errors are inferior to 3.68%, being 1.93% 

the best result. The Legendre collocation point variants are more accurate in terms of the lift coefficient 

estimations. Moreover, the Legendre collocation point variants are more computationally efficient and cheaper. 

Keywords Spectral method; Hypersonic flow; Thermochemical non-equilibrium reentry flows; Euler and 

Navier-Stokes equations; Maxwell equations; High order accuracy; Maciel scheme. 

1. Introduction 

There are several approaches for computationally modeling fluid dynamics. These include finite difference, 

finite element, and spectral methods to name a few. Finite element and finite difference methods are frequently 

used and offer a wide range of well-known numerical schemes. These schemes can vary in terms of 

computational accuracy but are typically of lower order of accuracy. If a more accurate solution is desired, it is 

common practice to refine the mesh either globally or in a region of interest. This can often be a complicated or 

time consuming process as global mesh refinement will greatly increase the computation time while local 

refinement requires an elaborated refinement operation [1]. 

Alternatively, polynomial refinement has been used to improve the solution accuracy and has been shown to 

converge more quickly than mesh refinement in some cases [2-3]. For finite difference methods, polynomial 

refinement is performed by including neighboring node values in a higher order polynomial [4]. This can 

increase the complexity of the scheme especially near the boundaries where nodes do not exist to construct the 

higher order polynomials. Finite element methods instead increase the number of unknown values within the 

cell itself to construct a higher order solution [5]. 
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A scheme with a very high formal order of accuracy will not necessarily always produce the highest resolution. 

[6] demonstrated that a spectral-like scheme with a formal fourth-order accuracy produced a much more highly 

resolved solution than schemes with higher formal orders of accuracy when comparing modified wave numbers. 

Therefore, formal order of accuracy does not provide a comprehensive basis for selecting the best solution 

procedure. State-of-art methods such as spectral methods fall into this category. 

Spectral methods are considered a class of solution techniques using sets of known functions to solve 

differential equations [7]. Such methods are generally considered high order and capable of obtaining solutions 

with a high resolution. Unlike finite-difference and finite-element methods, spectral methods utilize an 

expansion in terms of global, rather than local, basis functions to represent the solution of a differential 

equation. When properly applied, these techniques accurately resolve phenomena on the scale of the mesh 

spacing. The order of truncation error decay with mesh refinement is also higher than which can be achieved 

with finite-difference and finite-element methods. For problems with smooth solutions, it is possible to produce 

spectral method whose truncation error goes to zero as faster than any finite power of the mesh spacing 

(exponential convergence). 

Spectral methods may be viewed as an extreme development of the class of discretization schemes known by 

the generic name of method of weighted residuals (MWR) [8]. The key elements of the MWR are the trial 

functions (also called the expansion or approximating functions) and the test functions (also known as weighted 

functions). The trial functions are used as the basis functions for a truncated series expansion of the solution 

that, when substituted into the differential equation, produces the residual. The test functions are used to enforce 

the minimization of the residual. 

The choice of the trial functions is what distinguishes the spectral methods from the element and finite 

difference methods. The trial functions for spectral methods are infinitely differentiable global functions 

(Typically, they are tensor products of the eigenfunctions of singular Sturm-Liouville problems). In the case of 

finite element methods, the domain is divided into small elements and a trial function is specified in each 

element. The trial functions are thus local in character and well suited for handling complex geometries. The 

finite difference trial functions are likewise local. 

The choice of test function distinguishes between Galerkin and collocation approaches. In the Galerkin 

approach, the test functions are the same as the trial functions, whereas in the collocation approach the test 

functions are translated Dirac delta functions. In other words, the Galerkin approach is equivalent to a least-

square approximation, whereas the collocation approach requires the differential equations to be solved exactly 

at the collocation points. 

The collocation approach is the simplest of the MWR and appears to have been first used by [9] in his study of 

electronic energy bands in metals. A few years later, [10] applied this method to the problem of torsion in square 

prism. [11] developed it as a general method for solving ordinary differential equations. They used a variety of 

trials functions and an arbitrary distribution of collocation points. The work of [12] established for the first time 

that a proper choice of the trial functions and the distribution of collocation points is crucial to the accuracy of 

the solution. Perhaps he should be credited with laying down the foundation of the orthogonal collocation 

method. 

Spectral methods have been used on one-dimensional, compressible flow problems with piecewise linear 

solutions by [13-14]. These reports demonstrated that spectral methods, when combined with appropriate 

filtering techniques, can capture one-dimensional shock waves in otherwise featureless flows. A different sort of 

demonstration was provided by [15]. They exhibited spectral solutions of compressible flows with nontrivial 

structures in the smooth regions. 

Renewed interest in the area of hypersonic flight has brought Computational Fluid Dynamics (CFD) to the 

forefront of fluid flow research [16]. Many years have seen a quantum leap in advancements made in the areas 

of computer systems and software which utilize them for problem solving. Sophisticated and accurate numerical 

algorithms are devised routinely that are capable of handling complex computational problems. Experimental 

test facilities capable of addressing complicated high-speed flow problems are still scarce because they are too 

expensive to build and sophisticated measurements techniques appropriate for such problems, such as the non-
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intrusive laser, are still in the development stage. As a result, CFD has become a vital tool in the flow problem 

solution. 

In high speed flows, any adjustment of chemical composition or thermodynamic equilibrium to a change in local 

environment requires certain time. This is because the redistribution of chemical species and internal energies 

require certain number of molecular collisions, and hence a certain characteristic time. Chemical non-

equilibrium occurs when the characteristic time for the chemical reactions to reach local equilibrium is of the 

same order as the characteristic time of the fluid flow. Similarly, thermal non-equilibrium occurs when the 

characteristic time for translation and various internal energy modes to reach local equilibrium is of the same 

order as the characteristic time of the fluid flow. Since chemical and thermal changes are the results of collisions 

between the constituent particles, non-equilibrium effects prevail in high-speed flows in low-density air. 

In chemical non-equilibrium flows the mass conservation equation is applied to each of the constituent species 

in the gas mixture. Therefore, the overall mass conservation equation is replaced by as many species 

conservation equations as the number of chemical species considered. The assumption of thermal non-

equilibrium introduces additional energy conservation equations – one for every additional energy mode. Thus, 

the number of governing equations for non-equilibrium flow is much bigger compared to those for perfect gas 

flow. A complete set of governing equations for non-equilibrium flow may be found in [17-18]. 

The problems of chemical non-equilibrium in the shock layers over vehicles flying at high speeds and high 

altitudes in the Earth’s atmosphere have been discussed by several investigators [19-22]. Most of the existing 

computer codes for calculating the non-equilibrium reacting flow use the one-temperature model, which 

assumes that all of the internal energy modes of the gaseous species are in equilibrium with the translational 

mode [21-22]. It has been pointed out that such a one-temperature description of the flow leads to a substantial 

overestimation of the rate of equilibrium because of the elevated vibrational temperature [20]. A three-

temperature chemical-kinetic model has been proposed by [23] to describe the relaxation phenomena correctly 

in such a flight regime. However, the model is quite complex and requires many chemical rate parameters which 

are not yet known. As a compromise between the three-temperature and the conventional one-temperature 

model, a two-temperature chemical-kinetic model has been developed [24-25], which is designated herein as the 

TTv model. The TTv model uses one temperature T to characterize both the translational energy of the atoms 

and molecules and the rotational energy of the molecules, and another temperature Tv to characterize the 

vibrational energy of the molecules, translational energy of the electrons, and electronic excitation energy of 

atoms and molecules. The model has been applied to compute the thermodynamic properties behind a normal 

shock wave in a flow through a constant-area duct [24-25]. Radiation emission from the non-equilibrium flow 

has been calculated using the Non-equilibrium Air Radiation (NEQAIR) program [26-27]. The flow and the 

radiation computations have been packaged into a single computer program, the Shock-Tube Radiation Program 

(STRAP) [25]. 

In spite of the advances made in the area of compressible turbulence modeling in recent years, no universal 

turbulence model, applicable to such complex flow problems has emerged so far. While the model should be 

accurate it should also be economical to use in conjunction with the governing equations of the fluid flow. 

Taking these issues into consideration, k- two-equation models have been chosen in the present work [28-32]. 

These models solve differential equations for the turbulent kinetic energy and the vorticity. Additional 

differential equations for the variances of temperature and species mass fractions have also been included. These 

variances have been used to model the turbulence-chemistry interactions in the reacting flows studied here. 

The effects associated with the interaction of magnetic forces with conducting fluid flows have been profitably 

employed in several applications related to nuclear and other [33] technologies and are known to be essential in 

the explanation of astrophysical phenomena. In recent years, however, the study of these interactions has 

received fresh impetus in the effort to solve the problems of high drag and thermal loads encountered in 

hypersonic flight. The knowledge that electrical and magnetic forces can have profound influence on hypersonic 

flow fields is not new [34-35]– note increased shock-standoff and reduced heat transfer rates in hypersonic 

flows past blunt bodies under the application of appropriate magnetic fields. The recent interest stems, however, 

from new revelations of a Russian concept vehicle, known as AJAX [36], which made extensive reference to 

technologies requiring tight coupling between electromagnetic and fluid dynamic phenomena. A 
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magnetogasdynamics (MGD) generator was proposed [37] to extract energy from the incoming air while 

simultaneously providing more benign flow to combustion components downstream. The extracted energy could 

then be employed to increase thrust by MGD pumping of the flow exiting the nozzle or to assist in the 

generation of plasma for injection of the body. This latter technique is known to not only reduce drag on the 

body but also to provide thermal protection [38]. 

In addition to daunting engineering challenges, some of the phenomena supporting the feasibility of an AJAX 

type vehicle are fraught with controversy (see, for example, [39]). Resolution of these issues will require 

extensive experimentation as well as simulation. The latter approach requires integration of several disciplines, 

including fluid dynamics, electromagnetics, chemical kinetics, and molecular physics amongst others. This 

paper describes a recent effort to integrate the first three of these, within the assumptions that characterize ideal 

and non-ideal magnetogasdynamics. 

In the present work, a study involving a spectral method to solve the reactive Favre averaged Navier-Stokes 

equations, coupled with a turbulence model and the Maxwell equations, is performed. The Favre averaged 

Navier-Stokes equations coupled with the Maxwell equations, in conservative and finite volume contexts, 

employing structured spatial discretization, are studied. Turbulence is taken into account considering the 

implementation of five k- two-equation turbulence models, based on the works of [28-32]. For the magnetic 

formulation, the [40-41] model is implemented. The Euler backward integration method is studied to march the 

scheme in time. The spectral method presented in this work employs collocation points and variants of 

Chebyshev and Legendre interpolation functions are studied. The “hot gas” hypersonic flow around a blunt 

bodyin two-dimensions is simulated. The convergence process is accelerated to steady state condition through a 

spatially variable time step procedure, which has proved effective gains in terms of computational acceleration 

[42-43]. The reactive simulations involve Earth atmosphere chemical model of seven species and eighteen 

reactions, based on the [44] model. N, O, N2, O2, NO, NO
+
 and e

-
 species are used to perform the numerical 

comparisons. The Maciel scheme is used to perform the numerical experiments. The results have indicated that 

the Chebyshev collocation point variants are more accurate in terms of stagnation pressure estimations. For the 

studied problem such errors are inferior to 3.68%, being 1.93% the best result. The Legendre collocation point 

variants are more accurate in terms of the lift coefficient estimations. Moreover, the Legendre collocation point 

variants are more computationally efficient and cheaper. 

 

2. Spectral Method 

Two classes of techniques for spectral discretization are referred to as tau and collocation methods [45]. The 

latter technique is used here. In this scheme, the approximation series is determined by satisfying the differential 

equation exactly at a set of distinct collocation points. The locations of these points in the domain are linked to 

the choice of basis function. In this study, arbitrary collocation points are implemented. The collocation method 

is used here since enforcement of boundary conditions and evaluations of nonlinear terms are straightforward. 

Additionally, some accuracy advantage is seen in the collocation method over the tau method for a number of 

problems [45]. The series expansion for a function Q(x) may be represented as 





N

0n
nnN

)x(BQ̂)x(Q ,                                          (1)
 

Where Bn(x) are the basis functions and N is the total number of nodes employed in the interpolation process (it 

is also the order of accuracy of the spectral method). The coefficients 
n

Q̂  are often termed the spectrum of 

QN(x). One common technique used to evaluate the spectrum is to consider Eq. (1) as an interpolation series 

representing Q(x). The interpolation “nodes” of such series are the collocation points of the method.  For a 

scheme based on Chebyshev collocation, the basis functions are: 

)x(P)x(xP2)x(T)x(B
2n1nnn 

 ,          2n  ,      (2) 

with: P0(x) = 1 and P1(x) = x. The Chebyshev-Gauss-Lobatto standard collocation points are 








 
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N

l
cosx

l
,          l = 0, 1, …, N.                                             (3) 
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The Chebyshev collocation points result from a simple change of variables, which relates the Chebyshev 

interpolation series to a Fourier cosine series [45]. To evaluate the 
n

Q̂ , the inverse relation is required. This is 





N

0l
j,ilnlnn

Q)x(BwĉQ̂ ,          n = 0, 1, …, N,                                   (4) 

With wl being a normalized weighting function and 
n

ĉ a constant. These variables assume the following 

expressions to a Chebyshev-Gauss-Lobatto interpolation: 

n

n
cN

2
ĉ  , where: ;

1Nn1,1

Nor0n,2
cn








 and   

l

l
c

1
w  .                       (5) 

Legendre collocation is based on using Legendre polynomials as the basis function in Eq. (1), e.g., 

     n)x(P1n)x(xP1n2)x(B 2n1nn   ,          2n  ,     (6) 

where: P0(x) = 1 and P1(x) = x. Interpolation via Legendre series cannot easily be related to trigonometric 

interpolation, so there is no simple expression to evaluate the 
n

Q̂ coefficients. Appeal must be made to the 

theory of numerical quadrature to form an approximation to the integrals which result from analytic Legendre 

interpolation [46]. Considering Eq. (4), the normalized weights and constant of the Legendre-Gauss-Lobatto 

collocation points are 

)x(B)1N(N

1
w

l

2

N

l



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1N,...,1,0n,1n2
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

    

(7) 

In this work, it was assumed that the Legendre-Gauss-Lobatto collocation points are the same as the Chebyshev-

Gauss-Lobatto ones. It was also adopted the following collocation points and normalized weight for the 

Chebyshev-Gauss-Radau interpolation, based on the work of [47]: 


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For the Legendre-Gauss-Radau interpolation, also based in [47], the collocation points are defined by Eq. (8) 

and the normalized weights are described by: 

 
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The same calculation to the vector of conserved variables Q is applied to the vector of flux C, to be defined in 

section 6. 

Hence, we have two collocation point options and two normalized weight functions to be considered by the 

Chebyshev and the Legendre methods, namely: Chebyshev-Gauss-Radau, Chebyshev-Gauss-Lobatto, Legendre-

Gauss-Radau and Legendre-Gauss-Lobatto. 

 

3. Favre Average 

The Navier-Stokes equations and the equations for energy and species continuity which governs the flows with 

multiple species undergoing chemical reactions have been used [48-50] for the analysis. Details of the present 

implementation for the seven species chemical model, and the specification of the thermodynamic and transport 

properties are described in [51-52]. Density-weighted averaging [53] is used to derive the turbulent flow 
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equations from the above relations. For a detailed description of the Favre equations, the g’s equations and the 

modeling are presented in [54]. The interested reader is encouraged to read this paper. 

 

4. Favre-averaged Navier-Stokes Equations Coupled with Maxwell Equations 

The flow is modeled by the Favre-averaged Navier-Stokes equations coupled with the Maxwell equations and 

the condition of thermochemical non-equilibrium, where the rotational and vibrational contributions are 

considered, is taken into account. The reactive Navier-Stokes equations in thermal and chemical non-

equilibrium were implemented on conservative and finite volume contexts, in the two-dimensional space. In this 

case, these equations in integral and conservative forms can be expressed by: 

  




VV V

CV

S

GdVdVSdSnFQdV
t


, with:     jFFiEEF veve


 ,      (11) 

where: Q is the vector of conserved variables, V is the volume of a computational cell, F


 is the complete flux 

vector, n


 is the unity vector normal to the flux face, S is the flux area, G is the k- two-equation model source 

term, SCV is the chemical and vibrational source term, Ee and Fe are the convective flux vectors or the Euler flux 

vectors in the x and y directions, respectively, and Ev and Fv are the viscous flux vectors in the x and y 

directions, respectively. The i


 and j


 unity vectors define the Cartesian coordinate system. Seventeen (17) 

conservation equations are solved: one of general mass conservation, two of linear momentum conservation, one 

of total energy, six of species mass conservation, one of the vibrational internal energy of the molecules, two of 

the k- turbulence model, two of the g-equations, and two of the Maxwell equations. Therefore, one of the 

species is absent of the iterative process. The CFD literature recommends that the species of biggest mass 

fraction of the gaseous mixture should be omitted, aiming to result in a minor numerical accumulation error. To 

the present study, in which is chosen a chemical model to the air composed of seven (7) chemical species (N, O, 

N2, O2, NO, NO
+
 and e

-
) and eighteen chemical reactions to the [44] model, this species can be the N2 or the O2. 

To this work, the N2was chosen. The vectors Q, Ee, Fe, Ev, Fv, G and SCV can, hence, be defined as follows: 
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in which:  is the mixture density; u and v are Cartesian components of the velocity vector in the x and y 

directions, respectively; V


 is the complete flow velocity vector; P is the pressure term considering the magnetic 

effect; Z is the fluid total energy considering the contribution of the magnetic field; B


 is the complete magnetic 

field vector; Rb is the magnetic force number or the pressure number; 1, 2, 4, 5, 6 and7 are densities of the 

N, O, O2, NO, NO
+
, and e

-
, respectively; k is the turbulent kinetic energy;  is the turbulent vorticity; Qh is the 

product of fluctuating enthalpy, 
""hh ; Qs is the sum of the product of fluctuating mass fraction, 



ns

1i

"

i

"

icc ;Bx and 

By are Cartesian components of the magnetic field vector in the x and y directions, respectively; µM is the mean 

magnetic permeability, with the value of 4πx10
-7

T·m/A; eV is the sum of the vibrational energy of the 

molecules; the ’s are the components of the Reynolds stress tensor; the t’s are the components of the viscous 

stress tensor; fx and fy are viscous work and Fourier heat flux functions; svsx and svsy represent the species 

diffusion flux, defined by the Fick law; x and y are the terms of mixture diffusion; v,x and v,y are the terms of 

molecular diffusion calculated at the vibrational temperature; x, y, x, y, x, y, x and y are two-equation 

turbulence model parameters; sx and sy are diffusion terms function of the mass fraction gradients; 
s

  is the 

chemical source term of each species equation, defined by the law of mass action;
*

ve  is the molecular-

vibrational-internal energy calculated with the translational/rotational temperature; 
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s is the translational-vibrational characteristic relaxation time of each molecule; qv,x and qv,y are the vibrational 

Fourier heat flux components in the x and y directions, respectively; Re is the laminar Reynolds number; qJ,x 

and qJ,y are the components of the Joule heat flux vector in the x and y directions, respectively; Reσ is the 

magnetic Reynolds number; σ is the electrical conductivity; Gk and G are k- source terms; T is the turbulent 

viscosity or vorticity viscosity; h is the static enthalpy; and cT is the total mass fraction sum. 
The viscous stresses, in N/m

2
, are determined, according to a Newtonian fluid model, by: 

   yvxu32xu2t mmxx  ; 

 xvyut mxy  ;                                                        (15) 

    ,yvxu32yv2t mmyy   

where µm is the molecular viscosity. The components of the turbulent stress tensor (Reynolds stress tensor) are 

described by the following expressions: 

   ; kRe32yvxu32xu2 TTxx   

 xvyuTxy  ;                                   (16) 

   . kRe32yvxu32yv2 TTyy   

Expressions to fx and fy are given below: 

    xx,vxxyxyxxxxx kqqvtutf  ;                                       (17) 

    yy,vyyyyyxyxyy kqqvtutf  ,                                       (18) 

where qx and qy are the Fourier heat flux components and are given by: 
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  ;xhdPrdPrq TTLmx 
        

(19) 

  yhdPrdPrq TTLmy  ,                            (20) 

where: PrdL and PrdT are the laminar and turbulent Prandtl numbers. The qv,x and qv,y are the vibrational heat 

flux components and are given by: 

;xTkq VVx,v 
          

(21) 

yTkq VVy,v  ,                                     (22) 

with kV being the vibrational thermal conductivity and TV is the vibrational temperature, what characterizes this 

model as of two temperatures: translational/rotational and vibrational. The last terms in Eqs. (17)-(18) are kx and 

ky and are defined as follows: 

;xkk
k

T
mx 












 and .ykk

k

T
my 












                              (23) 

The diffusion terms related to the k- equations are defined as: 

  ,xkkTmx    ykkTmy  ;                              (24) 

  ,xTmx     yTmy   ;                              (25) 

  ,xQdPrdPr hTTLmx    ;yQdPrdPr hTTLmy                      (26) 

  ,xQScSc STTmx    ,yQScSc STTmy 
    

(27) 

with: Sc and ScT are the laminar and turbulent Schmidt numbers, with values 0.22 and 1.00, respectively. The 

terms of species diffusion, defined by the Fick law, to a condition of thermal non-equilibrium, are determined by 

[55]: 

x

Y
Dv

s,MF

ssxs



 and

y

Y
Dv

s,MF

ssys



 ,                                    (28) 

with “s” referent to a given species, YMF,s being the molar fraction of the species, defined as: 









ns

1k

kk

ss
s,MF

M

M
Y                                    (29) 

and Ds is the species-effective-diffusion coefficient and “ns” the total number of species. 

The diffusion terms x and y which appear in the energy equation are defined by [56]: 





ns

1s

ssxsx hv and  



ns

1s

ssysy hv ,                                          (30) 

being hs the specific enthalpy (sensible) of the chemical species “s”. The molecular diffusion terms calculated at 

the vibrational temperature, v,x and v,y, which appear in the vibrational-internal-energy equation are defined by 

[55]: 





mols

s,vsxsx,v hv and 



mols

s,vsysy,v hv ,                                         (31) 

with hv,s being the specific enthalpy (sensible) of the chemical species “s” calculated at the vibrational 

temperature TV. The sum of Eq. (14), as also those present in Eq. (31), considers only the molecules of the 

system, namely: N2, O2, NO and NO
+
. The ’s terms of Eq. (13) are described as, 

  ;xcScSc STTmsx                                 (32) 

  ycScSc STTmsy  .                                                  (33) 

The Z total energy is defined as: 

   
M
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b

22

V

0

mix,fREFmix,v
2

B
Rvu5.0ehTTcZ


 ,                           (34) 
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with: TREF is the reference temperature, and 
0

mix,fh  is the mixture formation enthalpy. The pressure term is 

expressed by: 
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with p the fluid static pressure. The magnetic force number or pressure number is determined by: 
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 ,                     (36) 

Where Binitial, Bx,initial, By,initial,Vinitial, uinitial, vinitial, char, and char,M  are initial magnetic and flow velocity 

variables and “char” represents characteristic or freestream flow properties. The laminar Reynolds number is 

estimated by: 

char,m

REFinitialchar LV
Re




 ,                                       (37) 

with LREF a characteristic configuration length. The magnetic Reynolds number is calculated by: 

charchar,MinitialREFVLRe  .                                (38) 

The components of the Joule heat flux vector, which characterizes the non-ideal formulation, are determined by: 
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5. Turbulence Models 

Five turbulence models were implemented according to a k-ω and k
1/2

-ω formulations. Details of the five 

turbulence models are found in [57, 58]. The interested reader is encouraged to read these references to become 

aware of the numerical implementation of such models. 

 

6. Centered Scheme 

For treat the Maxwell equations, the Maciel centered scheme is implemented. It is obtained by arithmetical 

average between the flux at the left and right states of the interface. Considering the two-dimensional and 

structured case, the algorithm is divided in three parts, as recommended by [59], each one corresponding to a 

characteristic flux. The first part takes into account the dynamics part, which considers the Navier-Stokes 

equations plus the four equations of the turbulence model and the Maxwell equations, the second one takes into 

account the chemical part, and the third part takes into account the vibrational part. Hence, the discrete-

dynamic-convective flux, which solves the dynamic part, is given by Eq. (40). 
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;                  (40) 

the discrete-chemical-convective flux is defined by: 

;     (41) 

and the discrete-vibrational-convective flux is determined by: 

.                             (42) 

The viscous formulation follows that of [60], which adopts the Green theorem to calculate primitive variable 

gradients. The viscous gradients at the interface are obtained by arithmetical average between cell (i,j) and its 

neighbors. As was done with the convective terms, there is a need to separate the viscous flux in three parts: 

dynamic viscous flux, chemical viscous flux, and vibrational viscous flux. The dynamic part corresponds to the 

first four equations of the Navier-Stokes ones plus the four equations of the turbulence model plus the two 

equations of the Maxwell ones, the chemical part corresponds to the six equations immediately below the energy 

equation, and the vibrational part corresponds to the equation that follows the last chemical one. For the Maciel 

scheme, the dynamic part is represented by: 
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;                 (43) 

To the chemical part one has: 

 

 

;                          (44) 

Finally, to the vibrational part: 

.     (45) 

where  defines the normal area vector for the surface (i+½,j). The normal area 

components Sx and Sy to each flux interface are given in Tab. 1. Figure 1 exhibits the computational cell adopted 

for the simulations, as well its respective nodes and flux interfaces. 

The resultant ordinary differential equation system can be written as: 

,                                  (46) 

where the cell volume is given by: 

 

.                             (47) 
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This centered scheme needs an artificial dissipation operator, D, to guarantee stability in presence of shock 

waves and background instabilities. Considering this operator, Eq. (46) can be rewritten as: 

,                                                      (48) 

where D has the following structure: 

,                                                    (49) 

with: 

 

      (50) 

named the undivided Laplacian operator, responsible by the numerical stability in presence of shock waves; and 

 

 

 

,                                              (51) 

named the bi-harmonic operator, responsible by the background stability (odd-even instabilities, for instance). In 

this last term, 

.                            (52) 

In the d
(4)

 operator,  is extrapolated from your neighbor cell every time that such one represents an 

especial boundary layer cell, recognized in the CFD literature as “ghost” cell. The  terms are defined, for 

instance, as: 

and ,                      (53) 

in which: 

.        (54) 

represents a pressure sensor employed to identify regions of high gradients. Each time that a neighbor cell 

represent a ghost cell, it is assumed that, for instance, . The Ai,j terms define the particular artificial 

dissipation operator. Two models were studied in the current work: 

(a) Artificial dissipation operator of Mavriplis / Scalar, non-linear, and isotropic model: 

In this case, the Ai,j terms represent the sum of the contributions of the maximum normal eigenvalue associated 

to the flux interface of the Euler equations, integrated along each cell face. Based on [61] work, these terms are 

defined as: 

 

,             (55) 

where “a” represents the sound speed and the interface properties are evaluated by arithmetical average. The K
(2)

 

and K
(4)

 constants have typical values of 1/4 and 3/256, respectively. 

 

(b)  Artificial dissipation model of Turkel and Vatsa / Scalar, non-linear, and anisotropic model: 

The aforementioned artificial dissipation model presents the characteristic of being isotropic. In words, the 

dissipation introduced artificially in a given coordinate direction to stabilize the scheme weights equally the 

phenomena originated from all directions, having not a more significant weighting from the particular direction 

under study. The dissipation is clearly isotropic. The scalar, non-linear and anisotropic artificial dissipation 

model of [62] aims to provide a numerical attenuation that considers with bigger weight the propagation 
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information effects associated to the characteristic maximum eigenvalue from the coordinate direction under 

study. Basically, such artificial dissipation model differs from the non-linear, isotropic model of [61] only in the 

determination of the weighting term of the dissipation operator. 

, and 

;        (56) 

, and 

.        (57) 

To this artificial dissipation model, the recommended values of K
(2)

 and K
(4)

 by [44] are 1/2 and 1/64, 

respectively. 

In the present study, the Euler backward method was employed to march the scheme in time. This method is 

first-order accurate in time, to the three types of complete flux. To the convective dynamic component, this 

method can be represented in general form by: 

,               (58) 

to the convective chemical component, it can be represented in general form by: 

,                                    (59) 

where the chemical source term SC is calculated with the temperature Trrc (reaction rate controlling temperature, 

see [51-52]). Finally, to the convective vibrational component: 

,                                (60) 

in which: 

,                            (61) 

where qT-V is the heat flux due to translational-vibrational relaxation, defined in Eq. (14) and in [51-52]. 
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being Rs the specific gas constant. The total pressure of the gaseous mixture is determined by Dalton law, which 

indicates that the total pressure of the gas is the sum of the partial pressure of each constituent gas, resulting in: 

TRcp sss  and 



ns

1s

spp .                                                    (65) 

The speed of sound to a reactive mixture considering the two-equation turbulence models can be determined by 

,                                                               (66) 

where 

T,V

univ

c

R 
 , with Runiv = 1.987 cal/(g-mol.K). Finally, the spatially variable time step is defined from 

the CFL (Courant, Friedrichs, and Lewis) definition: 

j,i

2

j,i

2

j,i

j,i

j,i

avu

sCFL
t




 ,                                                           (67) 

with j,is  is the characteristic length of each cell (defined between the minimum cell side length and the 

minimum centroid distance between each cell and its neighbors). 

 

8.  Dimensionless Scales, Initial and Boundary Conditions 

8.1. Dimensionless Scales 

The dimensionless scales employed to the reactive equations consisted in: Rs is dimensionless by achar, where 

charcharchar pa  ; cv is dimensionless by achar; hs and 
0

sh   are dimensionless by 
2

chara ; T and Tv, 

translational/rotational temperature and vibrational temperature, respectively, are dimensionless by achar; s and 

 are dimensionless by char; u and v are dimensionless by achar; m is dimensionless by m,char; D, diffusion 

coefficient, dimensionless by 
2

chara dtchar, where dtchar is the minimum time step calculated in the computational 

domain at the first iteration;   is dimensionless by   3

charchar 10xdt  ; ev is dimensionless by 
2

chara ; e and p 

are dimensionless by 
2

charchara ; s, relaxation time, is dimensionless by dtchar. To the Maxwell equations: the 

Bx and By Cartesian components of the magnetic field dimensionless by Binitial; the magnetic permeability of the 

mean is dimensionless by µM,char; and the electric conductivity is dimensionless by σchar. The characteristic 

parameters are defined in [64]. 

 

8.2. Initial Condition 

The initial conditions to the blunt body problem, for a seven species chemical model, are presented in Tab. 2. 

The Reynolds number is obtained from data of [64]. 

 

8.3. Boundary Conditions 

The boundary conditions are basically of three types: solid wall, entrance, and exit. These conditions are 

implemented with the help of ghost cells. 

 

Wall condition 

To the viscous case, the boundary condition imposes that the ghost cell velocity components be equal to the real 

cell velocity components, with the negative signal: 

rg uu  and rg vv  .                              (68) 

The normal pressure gradient of the fluid at the wall is assumed to be equal to zero according to a boundary-

layer like condition. The same hypothesis is applied for the normal temperature gradient at the wall, assuming 

an adiabatic wall. From the above considerations, density and translational/rotational temperature are 

  k
p

1a 



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extrapolated from the respective values of its real neighbor volume (zero order extrapolation). The total 

vibrational internal energy is also extrapolated. With the mixture species mass fractions and with the values of 

the respective specific heats at constant volume, it is possible to obtain the mixture specific heat at constant 

volume. The mixture formation enthalpy is extrapolated from the real cell. 

For the turbulent case, the turbulent kinetic energy and the turbulent vorticity at the ghost volumes are 

determined by the following expressions: 

0.0kghost  and     22

nM

2 d338
ghost

 ,                                              (69) 

where  assumes the value 3/40 and dn is the distance of the first cell to the wall. The Qh and Qs variables are 

fixed by their initial values. 

For the magnetic case, the Cartesian components of the induced magnetic field at the wall to the ghost cells are 

fixed with their initial values. The magnetic permeability is considered constant with its initial value. The 

mixture total energy to the ghost cell is calculated by: 

       
gg,M

2

g,y

2

g,xb

2

g

2

gg,nond,v

0

g,mixtREFg,trg,mixtvg 2BBRvu5.0ehTTcZ  . (70) 

 

Entrance condition 

It is divided in two flow regimes: 

(a) Subsonic flow: Seven properties are specified and three extrapolated in the boundary conditions of the 

dynamic part of the Maciel algorithm. This approach is based on information propagation analysis along 

characteristic directions in the calculation domain ([65]). In other words, for subsonic flow, seven characteristics 

propagate information pointing into the computational domain. Thus seven flow properties must be fixed at the 

inlet plane. Just three characteristic lines allow information to travel upstream. So, three flow variables must be 

extrapolated from the interior grid to the inlet boundary. The total energy and the components of the magnetic 

field were the extrapolated variables from the real neighbor volumes, for the studied problems. Density and 

velocity components adopted values of initial flow. The turbulence kinetic energy and the vorticity were fixed 

with the values of the initial condition. Qh and Qs variables are also fixed with the values 10
-6 2

initialh  and 10
-3




ns

1i

2

initial,ic , respectively. To the chemical part, six information propagate upstream because it is assumed that 

all six equations are conducted by the eigenvalue “(qn-a)”. In the subsonic flow, all eigenvalues are negative and 

the information should be extrapolated. In the same reasoning to the chemical boundary conditions, the 

vibrational-internal-energy equation is dictated by the “(qn-a)” eigenvalue and, in the subsonic region, its value 

is negative. Hence, the vibrational internal energy should be extrapolated. 

(b) Supersonic flow: In this case no information travels upstream; therefore all variables are fixed with their 

initial values. 

 

Exit condition 

It is also divided in two flow regimes: 

(a) Subsonic flow: Three characteristics propagate information outward the computational domain. Hence, the 

associated variables should be extrapolated from interior information. The characteristic direction associated to 

the “(qnormal-a)” velocity should be specified because it points inward to the computational domain [65]. In this 

case, the ghost volume total energy and the induced magnetic components are specified from their initial value. 

Density and velocity components are extrapolated. The turbulence kinetic energy and the vorticity are 

prescribed and receive the following values: 0.01kff and 10u/LREF, respectively, where kff = 0.5u
2
. For the [28] 

model, consider the squared root of 0.01kff. Qh and Qs variables are also fixed with the values 10
-6 2

initialh  and 10
-

3


ns

1i

2

initial,ic , respectively. To the chemical part, the eigenvalue “(qn-a)” is again negative and the characteristics 

are always flowing in to the computational domain. Hence, the six chemical species under study should have 
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their densities fixed by their initial values. In the same reasoning, the internal vibrational energy should have its 

value prescribed by its initial value due to the eigenvalue “(qn-a)” be negative. 

(b) Supersonic flow: All variables are extrapolated from interior grid cells, as no flow information can make its 

way upstream. In other words, nothing can be fixed. 

 

9. Physical Problem 

One physical problem was solved in this work, namely: the blunt body problem. For this problem, the geometry 

is a blunt body with 1.0 m of nose ratio and parallel rectilinear walls. The far field is located at 20.0 times the 

nose ratio in relation to the configuration nose. A mesh composed of 2,548 rectangular cells and 2,650 nodes, 

with an exponential stretching of 5.0%, was studied. This mesh is equivalent in finite differences to a one of 

53x50 points. Figure 2 show the detail of the geometry and Fig. 3 exhibit the viscous mesh. 

 

10. Results 

Tests were performed in a Core i7 processor of 2.1GHz and 6.0Gbytes of RAM microcomputer, in a Windows 

7.0 environment. Three (3) orders of reduction of the maximum residual in the field were considered to obtain a 

converged solution. The residual was defined as the value of the discretized conservation equation. In the 

dynamic part of the Maciel scheme, such definition results in: 

 j,ij,ij,ij,i DCVtsidualRe  .                                              (71) 

The attack angle was adopted equal to zero. Only the [61] artificial dissipation operator has yielded converged 

results. In this work, the blunt body turbulent results were obtained for a 16
th

 order of accuracy of the spectral 

method. For a matter of simplicity, the following abbreviations were used: Maciel scheme = MAC, [28] model = 

C83, [29] model = W88, [30] model = YGO96, [31] model = C97, [32] model = RGYB98, Chebyshev-Gauss-

Radau = CGR, Chebyshev-Gauss-Lobatto = CGL, Legendre-Gauss-Radau = LGR, and Legendre-Gauss-Lobatto 

= LGL. 

 

10.1. Coakley (1983) Results 

Figures 4 to 7 exhibit the pressure contours, the translational/rotational temperature contours, the Bx component 

of the magnetic field, and the NO mass fraction contours, respectively, obtained by the MAC scheme as using 

the C83 turbulence model and CGR collocation points. Figures 8 to 11 show the pressure contours, the 

translational/rotational temperature contours, the Bx component of the magnetic field, and the NO mass fraction 

contours, respectively, obtained by the MAC scheme as using the C83 turbulence model and the CGL 

collocation points. Figures 12 to 15 present the pressure contours, the translational/rotational temperature 

contours, the Bx component of the magnetic field, and the NO mass fraction contours, respectively, obtained by 

the MAC scheme as using the C83 turbulence model and the LGR collocation points. Finally, Figures 16 to 19 

exhibit the pressure contours, the translational/rotational temperature contours, the Bx component of the 

magnetic field, and the NO mass fraction contours, respectively, obtained by the MAC scheme as using the C83 

turbulence model and the LGL collocation points. Good symmetry properties are observed in all these contours. 

The shock wave is well captured by the MAC scheme. The maximum pressure in the field is obtained when 

using the CGR collocation points. The symmetric behavior of the Bx component of the magnetic field is verified 

in these figures. Good formation of NO is also captured by the numerical scheme solution. Good homogeneous 

properties are observed in all figures. The maximum temperature in the field is obtained by the LGL collocation 

points and has the value of 21,247.20K. 

 

10.2.  Wilcox (1988) Results 

Figures 20 to 23 exhibit the pressure contours, the translational/rotational temperature contours, the Bx 

component of the magnetic field, and the NO mass fraction contours, respectively, obtained by the MAC 

scheme as using the W88 turbulence model and CGR collocation points. Figures 24 to 27 show the pressure 

contours, the translational/rotational temperature contours, the Bx component of the magnetic field, and the NO 

mass fraction contours, respectively, obtained by the MAC scheme as using the W88 turbulence model and the 

CGL collocation points. Figures 28 to 31 present the pressure contours, the translational/rotational temperature 
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contours, the Bx component of the magnetic field, and the NO mass fraction contours, respectively, obtained by 

the MAC scheme as using the W88 turbulence model and the LGR collocation points. Finally, Figures 32 to 35 

exhibit the pressure contours, the translational/rotational temperature contours, the Bx component of the 

magnetic field, and the NO mass fraction contours, respectively, obtained by the MAC scheme as using the W88 

turbulence model and the LGL collocation points. Good symmetry properties are observed in all these contours. 

The maximum pressure in the field is obtained when using the CGR collocation points. The symmetric behavior 

of the Bx component of the magnetic field is verified in these figures. Good homogeneous properties are 

observed in all figures. The maximum temperature in the field is obtained by the CGR collocation points and 

has the value of 23,196.60K. 

 

10.3.  Yoder, Geoirgiadids and Orkwis (1996) Results 

Figures 36 to 39 exhibit the pressure contours, the translational/rotational temperature contours, the Bx 

component of the magnetic field, and the NO mass fraction contours, respectively, obtained by the MAC 

scheme as using the YGO96 turbulence model and CGR collocation points. Figures 40 to 43 show the pressure 

contours, the translational/rotational temperature contours, the Bx component of the magnetic field, and the NO 

mass fraction contours, respectively, obtained by the MAC scheme as using the YGO96 turbulence model and 

the CGL collocation points. Figures 44 to 47 present the pressure contours, the translational/rotational 

temperature contours, the Bx component of the magnetic field, and the NO mass fraction contours, respectively, 

obtained by the MAC scheme as using the YGO96 turbulence model and the LGR collocation points. Finally, 

Figures 48 to 51 exhibit the pressure contours, the translational/rotational temperature contours, the Bx 

component of the magnetic field, and the NO mass fraction contours, respectively, obtained by the MAC 

scheme as using the YGO96 turbulence model and the LGL collocation points. The shock wave is well captured 

by the MAC scheme. The symmetric behavior of the Bx component of the magnetic field is verified in these 

figures. Good formation of NO is also captured by the numerical scheme solution. Good homogenous properties 

are observed in all figures. The maximum temperature in the field is 20,754.60K and is obtained by the LGR 

collocation points. 

 

10.4.  Coakley (1997) Results 

Figures 52 to 55 exhibit the pressure contours, the translational/rotational temperature contours, the Bx 

component of the magnetic field, and the NO mass fraction contours, respectively, obtained by the MAC 

scheme as using the C97 turbulence model and CGR collocation points. Figures 56 to 59 show the pressure 

contours, the translational/rotational temperature contours, the Bx component of the magnetic field, and the NO 

mass fraction contours, respectively, obtained by the MAC scheme as using the C97 turbulence model and the 

CGL collocation points. Figures 60 to 63 present the pressure contours, the translational/rotational temperature 

contours, the Bx component of the magnetic field, and the NO mass fraction contours, respectively, obtained by 

the MAC scheme as using the C97 turbulence model and the LGR collocation points. Finally, Figures 64 to 67 

exhibit the pressure contours, the translational/rotational temperature contours, the Bx component of the 

magnetic field, and the NO mass fraction contours, respectively, obtained by the MAC scheme as using the C97 

turbulence model and the LGL collocation points. Good symmetry properties are observed in all these contours. 

The shock wave is well captured by the MAC scheme. The maximum pressure in the field is obtained when 

using the CGR collocation points. Good formation of NO is also captured by the numerical scheme solution. 

The maximum temperature in the field is obtained by the LGL collocation points and has the value of 

21,055.50K. 

 

10.5.  Rumsey, Gatski, Ying and Bertelrud (1998) Results 

Figures 68 to 71 exhibit the pressure contours, the translational/rotational temperature contours, the Bx 

component of the magnetic field, and the NO mass fraction contours, respectively, obtained by the MAC 

scheme as using the RGYB98 turbulence model and CGR collocation points. Figures 72 to 75 show the pressure 

contours, the translational/rotational temperature contours, the Bx component of the magnetic field, and the NO 

mass fraction contours, respectively, obtained by the MAC scheme as using the RGYB98 turbulence model and 
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the CGL collocation points. Figures 76 to 79 present the pressure contours, the translational/rotational 

temperature contours, the Bx component of the magnetic field, and the NO mass fraction contours, respectively, 

obtained by the MAC scheme as using the RGYB98 turbulence model and the LGR collocation points. Finally, 

Figures 80 to 83 exhibit the pressure contours, the translational/rotational temperature contours, the Bx 

component of the magnetic field, and the NO mass fraction contours, respectively, obtained by the MAC 

scheme as using the RGYB98 turbulence model and the LGL collocation points. Good symmetry properties are 

observed in all these contours. The maximum pressure in the field is obtained when using the CGR collocation 

points. The symmetric behavior of the Bx component of the magnetic field is verified in these figures. Good 

homogenous properties are observed in all figures. The maximum temperature in the field is obtained by LGL 

collocation points and has the value of 21,821.80K. 

 

10.6.  Quantitative Analysis 

In order to perform a quantitative analysis, the present reactive results are compared to the perfect gas solutions. 

The stagnation pressure at the blunt body nose was evaluated assuming the perfect gas formulation. Such 

parameter calculated at this way is not the best comparison, but in the absence of practical reactive results, this 

constitutes the best available solution. 

To calculate the stagnation pressure at the nose of this configuration, [66] presents in its B Appendix values of 

the normal shock wave properties ahead of the configuration. The ratio pr0/pr∞ is estimated as function of the 

normal Mach number and the stagnation pressure pr0 can be determined from this parameter. Hence, Table 3 

gives the theoretical stagnation pressure value obtained for the blunt body configuration at the initial-normal-

Mach number. The value of pr∞ is determined by the following expression: 

2

charchar

initial

a

pr
pr




,                                                                 (72) 

where, for example, for the blunt body case, prinitial = 687N/m
2
, char = 0.004kg/m

3
 and achar = 317.024m/s. 

Considering these values, one concludes that pr∞ = 1.709 (non-dimensional). Using the ratio obtained from [66], 

the stagnation pressure ahead of the configuration nose is estimated as 170.87 unities. Table 4 compares values 

of the stagnation pressure obtained from the simulations with the theoretical value and show the percentage 

errors. As can be seen, the best result is due to the MAC scheme coupled with the C83 turbulence model and 

using the CGR collocation points, with an error of 1.93%. 

As the hypersonic flow along the present configuration was simulated with a zero value to the attack angle, a 

zero lift coefficient is the expected value for this aerodynamic coefficient. Table 5 exhibits an analysis of the lift 

aerodynamic coefficient, based only on pressure contribution, in this study. As can be observed, the best 

estimation of the lift coefficient is due to the MAC scheme coupled with the C83 turbulence model and using 

the LGR collocation points. 

 

10.7. Computational Performance 

Table 6 presents the computational data of the MAC scheme for the blunt body problem. It shows the CFL 

number and the number of iterations to convergence for all studied cases in the current work. It can be verified 

that the best performance of the MAC scheme occurred when coupled with the C97 turbulence model and using 

the LGR collocation points, using a CFL of 0.10 and converging in 1,464 iterations. 

As final conclusion, it is possible to highlight that, for the studied problem, the MAC scheme coupled with the 

C83 turbulence model using CGR collocation points had the best performance in estimating the stagnation 

pressure, and the lift aerodynamic coefficient was better estimated by the MAC scheme as using the LGR 

collocation points also coupled with the C83 turbulence model. Moreover, the best performance of the 

numerical scheme, for the 16
th

 order of accuracy, was coupled with the C97 turbulence model, when using the 

LGR collocation points, employing a CFL of 0.10, and converging in 1,464 iterations. 

Finally, to close this work, the computational cost of the numerical scheme using the several types of collocation 

points is presented in Tab. 7. For the 16
th

 order of accuracy, the cheapest combination was the MAC scheme 

coupled with C83 turbulence model and using LGL collocation points with a cost of 0.0019667 sec/per-

volume/per-iteration. 
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Table 1: Values of Sx and Sy 

Surface Sx Sy 

i,j-1/2  
j,ij,1i

yy 


  
j,1ij,i

xx


  

i+1/2,j  
j,1i1j,1i

yy


   
1j,1ij,1i

xx


  

i,j+1/2  
1j,1i1j,i

yy


   
1j,i1j,1i

xx


  

i-1/2,j  
1j,ij,i

yy


   
j,i1j,i

xx 


 

 

Table 2: Initial conditions to the blunt body problem 

Property Value 

Minitial 8.78 

initial 0.00326 kg/m
3
 

prinitial 687 Pa 

Uinitial 4,776 m/s 

Tinitial 694 K 

Tv,initial 694 K 

Altitude 40,000 m 

cN 10
-9

 

cO 0.07955 

cO2 0.13400 

cNO 0.05090 

cNO+ 0.0 

ce- 0.0 

LREF 2.0 m 

Rechar 2.386x10
6
 

kinitial 10
-6

 

initial 10Uinitial/LREF 

Qh,initial 10
-4 2

initialh
 

 

Qs,initial 10
-2



ns

1i

2

initial,ic
 

By,initial 0.15 T 

µM,char 1.2566x10
-6

T.m/A 

σchar 1,000 ohm/m 

 

Table 3: Values of theoretical stagnation pressure. 

Problem: Minitial: pr0/pr∞: pr∞: pr0 (Theoretical): 

Blunt body 8.78 99.98 1.709 170.87 

 

Table 4.Values of stagnation pressure and respective errors (16
th

 Order) 

Turbulence Model: Spectral Method: pr0: (Numerical) Error: 

Coakley (1983) Chebyshev-Gauss-Radau 167.58 1.93 

Chebyshev-Gauss-Lobatto 164.85 3.52 

Legendre-Gauss-Radau 142.40 16.66 

Legendre-Gauss-Lobatto 142.60 16.54 

Wilcox (1988) Chebyshev-Gauss-Radau 167.32 2.08 

Chebyshev-Gauss-Lobatto 164.69 3.62 
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Legendre-Gauss-Radau 142.13 16.82 

Legendre-Gauss-Lobatto 142.45 16.63 

YGO (1996) Chebyshev-Gauss-Radau 167.15 2.18 

Chebyshev-Gauss-Lobatto 164.58 3.68 

Legendre-Gauss-Radau 141.83 17.00 

Legendre-Gauss-Lobatto 142.03 16.88 

Coakley (1997) Chebyshev-Gauss-Radau 167.22 2.14 

Chebyshev-Gauss-Lobatto 164.79 3.56 

Legendre-Gauss-Radau 141.94 16.91 

Legendre-Gauss-Lobatto 142.29 16.73 

RGYB (1998) Chebyshev-Gauss-Radau 167.29 2.10 

Chebyshev-Gauss-Lobatto 164.74 3.59 

Legendre-Gauss-Radau 142.10 16.84 

Legendre-Gauss-Lobatto 142.57 16.56 

 

Table 5: Values of the lift aerodynamic coefficient (16
th

 Order) 

Turbulence Model: Spectral Method: cL: 

 Chebyshev-Gauss-Radau 2.3058x10
-14

 

Coakley (1983) Chebyshev-Gauss-Lobatto 1.5757x10
-14

 

 Legendre-Gauss-Radau 4.1689x10
-15

 

 Legendre-Gauss-Lobatto 5.9560x10
-15

 

 Chebyshev-Gauss-Radau 1.7221x10
-09

 

Wilcox (1988) Chebyshev-Gauss-Lobatto 7.0407x10
-10

 

 Legendre-Gauss-Radau 3.8422x10
-10

 

 Legendre-Gauss-Lobatto 4.7319x10
-10

 

 Chebyshev-Gauss-Radau 4.7016x10
-10

 

YGO (1996) Chebyshev-Gauss-Lobatto 3.8543x10
-10

 

 Legendre-Gauss-Radau 1.1315x10
-10

 

 Legendre-Gauss-Lobatto 1.1424x10
-10

 

 Chebyshev-Gauss-Radau 1.8384x10
-11

 

Coakley (1997) Chebyshev-Gauss-Lobatto 1.7146x10
-11

 

 Legendre-Gauss-Radau 1.0156x10
-11

 

 Legendre-Gauss-Lobatto 1.0055x10
-11

 

 Chebyshev-Gauss-Radau 3.9110x10
-04

 

RGYB (1998) Chebyshev-Gauss-Lobatto 3.6021x10
-04

 

 Legendre-Gauss-Radau 1.5366x10
-04

 

 Legendre-Gauss-Lobatto 1.4428x10
-04

 

 

Table 6: Computational data (16
h
 Order) 

Turbulence Model: Spectral Method: CFL: Iterations: 

 Chebyshev-Gauss-Radau 0.06 4,755 

Coakley (1983) Chebyshev-Gauss-Lobatto 0.04 6,706 

 Legendre-Gauss-Radau 0.04 3,670 

 Legendre-Gauss-Lobatto 0.04 3,691 

 Chebyshev-Gauss-Radau 0.06 4,800 

Wilcox (1988) Chebyshev-Gauss-Lobatto 0.10 2,694 

 Legendre-Gauss-Radau 0.06 2,503 

 Legendre-Gauss-Lobatto 0.04 3,798 

 Chebyshev-Gauss-Radau 0.06 4,786 
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YGO (1996) Chebyshev-Gauss-Lobatto 0.08 3,357 

 Legendre-Gauss-Radau 0.10 1,482 

 Legendre-Gauss-Lobatto 0.10 1,489 

 Chebyshev-Gauss-Radau 0.06 4,073 

Coakley (1997) Chebyshev-Gauss-Lobatto 0.06 4,405 

 Legendre-Gauss-Radau 0.10 1,464 

 Legendre-Gauss-Lobatto 0.06 2,467 

 Chebyshev-Gauss-Radau 0.06 4,673 

RGYB (1998) Chebyshev-Gauss-Lobatto 0.08 3,295 

 Legendre-Gauss-Radau 0.06 2,455 

 Legendre-Gauss-Lobatto 0.02 7,507 

 

Table 7: Computational cost (16
th

 Order) 

Turbulence Model: Spectral Method: Cost 

(sec/per-volume/per-iteration) 

 Chebyshev-Gauss-Radau 0.0020330 

Coakley (1983) Chebyshev-Gauss-Lobatto 0.0019914 

 Legendre-Gauss-Radau 0.0019890 

 Legendre-Gauss-Lobatto 0.0019667 

 Chebyshev-Gauss-Radau 0.0019874 

Wilcox (1988) Chebyshev-Gauss-Lobatto 0.0019843 

 Legendre-Gauss-Radau 0.0019867 

 Legendre-Gauss-Lobatto 0.0020078 

 Chebyshev-Gauss-Radau 0.0019678 

YGO (1996) Chebyshev-Gauss-Lobatto 0.0019725 

 Legendre-Gauss-Radau 0.0019733 

 Legendre-Gauss-Lobatto 0.0019780 

 Chebyshev-Gauss-Radau 0.0019686 

Coakley (1997) Chebyshev-Gauss-Lobatto 0.0019686 

 Legendre-Gauss-Radau 0.0019678 

 Legendre-Gauss-Lobatto 0.0019757 

 Chebyshev-Gauss-Radau 0.0019741 

RGYB (1998) Chebyshev-Gauss-Lobatto 0.0019725 

 Legendre-Gauss-Radau 0.0019772 

 Legendre-Gauss-Lobatto 0.0019765 

 

 
Figure 1: Computational cell 
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Figure 2: Blunt body geometry 

Figure 3: Blunt body viscous mesh 

Coakley (1983) Solutions 

Figure 4: Pressure contours (CGR-C83) Figure 5: Translational/rotational temperature contours 

(CGR-C83): 

Figure 6: Bx component of the magnetic field (CGR-C83) Figure 7: NO mass fraction contours (CGR-C83) 
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Figure 8: Pressure contours (CGL-C83) Figure 9: Translational/rotational temperature contours 

(CGL-C83) 

Figure 10: Bx component of the magnetic field (CGL-C83) Figure 11: NO mass fraction contours (CGL-C83) 

Figure 12: Pressure contours (LGR-C83) Figure 13: Translational/rotational temperature contours 

(LGR-C83) 
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Figure 14: Bx component of the magnetic field (LGR-C83) Figure 15: NO mass fraction contours (LGR-C83) 

Figure 16: Pressure contours (LGL-C83) 

Figure 18: Bx component of the magnetic field (LGL-C83) 

Figure 17: Translational/rotational temperature contours 

(LGL-C83) 

Figure 19: NO mass fraction contours (LGL-C83) 
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Wilcox (1988) Solutions 

Figure 20: Pressure contours (CGR-W88) Figure 21: Translational/rotational temperature contours 

(CGR-W88) 

Figure 22: Bx component of the magnetic field (CGR-W88) Figure 23: NO mass fraction contours (CGR-W88) 

Figure 24: Pressure contours (CGL-W88) Figure 25: Translational/rotational temperature contours 

(CGL-W88) 
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Figure 26: Bx component of the magnetic field (CGL-W88) Figure 27: NO mass fraction contours (CGL-W88) 

Figure 28: Pressure contours (LGR-W88) Figure 29: Translational/rotational temperature contours 

(LGR-W88) 

Figure 30: Bx component of the magnetic field (LGR-W88) Figure 31: NO mass fraction contours (LGR-W88) 
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Figure 32: Pressure contours (LGL-W88) Figure 33: Translational/rotational temperature contours 

(LGL-W88) 

Figure 34: Bx component of the magnetic field (LGL-W88) Figure 35: NO mass fraction contours (LGL-W88) 

 

Yoder, Georgiadids and Orkwis (1996) Solutions 

Figure 36: Pressure contours (CGR-YGO96) Figure 37: Translational/rotational temperature contours 

(CGR-YGO96) 
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Figure 38: Bx component of the magnetic field (CGR-

YGO96) 
Figure 39: NO mass fraction contours (CGR-YGO96) 

Figure 40: Pressure contours (CGL-YGO96) Figure 41: Translational/rotational temperature contours 

(CGL-YGO96) 

Figure 42: Bx component of the magnetic field (CGL-

YGO96) 
Figure 43: NO mass fraction contours (CGL-YGO96) 
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Figure 44: Pressure contours (LGR-YGO96) Figure 45: Translational/rotational temperature contours 

(LGR-YGO96) 

Figure 46: Bx component of the magnetic field (LGR-

YGO96) 
Figure 47: NO mass fraction contours (LGR-YGO96) 

Figure 48: Pressure contours (LGL-YGO96) Figure 49: Translational/rotational temperature contours 

(LGL-YGO96) 
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Figure 50: Bx component of the magnetic field (LGL-

YGO96) 

Figure 51: NO mass fraction contours (LGL-YGO96) 

Coakley (1997) Solutions 

Figure 52: Pressure contours (CGR-C97) Figure 53: Translational/rotational temperature contours 

(CGR-C97) 

Figure 54: Bx component of the magnetic field (CGR-C97) Figure 55: NO mass fraction contours (CGR-C97) 
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Figure 56: Pressure contours (CGL-C97) Figure 57: Translational/rotational temperature contours 

(CGL-C97) 

Figure 58: Bx component of the magnetic field (CGL-C97) Figure 59: NO mass fraction contours (CGL-C97) 

Figure 60: Pressure contours (LGR-C97) Figure 61: Translational/rotational temperature contours 

(LGR-C97) 
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Figure 62: Bx component of the magnetic field (LGR-C97) Figure 63: NO mass fraction contours (LGR-C97) 

Figure 64: Pressure contours (LGL-C97) Figure 65: Translational/rotational temperature contours 

(LGL-C97) 

Figure 66: Bx component of the magnetic field (LGL-C97) Figure 67: NO mass fraction contours (LGL-C97) 

 

 

 

 



Maciel ESG                                               Journal of Scientific and Engineering Research, 2018, 5(5):431-470 

 

Journal of Scientific and Engineering Research 

464 

 

Rumsey, Gatski, Ying and Bertelrud (1998) Solutions 

Figure 68: Pressure contours (CGR-RGYB98) Figure 69: Translational/rotational temperature contours 

(CGR-RGYB98) 

Figure 70: Bx component of the magnetic field (CGR-

RGYB98) 

Figure 71: NO mass fraction contours (CGR-RGYB98) 

Figure 72: Pressure contours (CGL-RGYB98) Figure 73: Translational/rotational temperature contours 

(CGL-RGYB98) 
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Figure 74: Bx component of the magnetic field (CGL-

RGYB98) 

Figure 75: NO mass fraction contours (CGL-RGYB98) 

Figure 76: Pressure contours (LGR-RGYB98) Figure 77: Translational/rotational temperature contours 

(LGR-RGYB98) 

Figure 78: Bx component of the magnetic field (LGR-

RGYB98) 

Figure 79: NO mass fraction contours (LGR-RGYB98) 
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Figure 80: Pressure contours (LGL-RGYB98) Figure 81: Translational/rotational temperature contours 

(LGL-RGYB98) 

Figure 82: Bx component of the magnetic field (LGL-

RGYB98) 
Figure 83: NO mass fraction contours (LGL-RGYB98) 

 

11. Conclusions 

In this work, a study involving a spectral method to solve the reactive Favre averaged Navier-Stokes equations, 

coupled with a turbulence model and the Maxwell equations, was performed. The Favre averaged Navier-Stokes 

equations coupled with the Maxwell equations, in conservative and finite volume contexts, employing structured 

spatial discretization, were studied. Turbulence was taken into account considering the implementation of five 

k- two-equation turbulence models, based on the works of [28-32].The numerical algorithm of Maciel was 

used to perform the reentry flow numerical experiments, which gave us an original contribution to the CFD 

community. Two types of numerical dissipation models were applied, namely: [61-62]. The “hot gas” 

hypersonic flow around a blunt body, in two-dimensions, was simulated. The convergence process was 

accelerated to steady state condition through a spatially variable time step procedure, which had proved 

effective gains in terms of computational acceleration ([42-43]). The Euler backward method was applied to 

march the scheme in time. The reactive simulations involved Earth atmosphere chemical model of seven species 

and eighteen reactions, based on the [44] model. The work of [40-41] was the reference one to present the fluid 

dynamics and Maxwell equations of electromagnetism based on a conservative and finite volume 

formalisms.The results have indicated that the Chebyshev collocation point variants were more accurate in terms 

of stagnation pressure estimations. For the studied problem such errors were inferior to 3.68%, being 1.93% the 
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best result. The Legendre collocation point variants were more accurate in terms of the lift coefficient 

estimations. Moreover, the Legendre collocation point variants were more computationally efficient and 

cheaper. 

As final conclusion, it was possible to highlight that, for the studied problem, the Maciel scheme coupled with 

the [28] turbulence model using Chebyshev-Gauss-Radau collocation points had the best performance in 

estimating the stagnation pressure, and the lift aerodynamic coefficient was better estimated by the Maciel 

scheme as using the Legendre-Gauss-Radau collocation points also coupled with the [28] turbulence model. 

Moreover, the best performance of the numerical scheme, for the 16
th

 order of accuracy, was coupled with the 

[31] turbulence model, when using the Legendre-Gauss-Radau collocation points, employing a CFL of 0.10, and 

converging in 1,464 iterations. 

Finally, to close this work, the computational cost of the numerical scheme using the several types of collocation 

points was presented in Tabs. 7. For the 16
th

 order of accuracy, the cheapest combination was the Maciel scheme 

coupled with [28] turbulence model and using Legendre-Gauss-Lobatto collocation points with a cost of 

0.0019667 sec/per-volume/per-iteration. 
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