
Available online www.jsaer.com

Journal of Scientific and Engineering Research

134

Journal of Scientific and Engineering Research, 2018, 5(4):134-139

Review Article

ISSN: 2394-2630

CODEN(USA): JSERBR

Noiseless Coding Techniques- A Review

Akram Abdul Maujood Dawood

Computer Engineering Department, Mosul University /Iraq

Abstract In this paper, the techniques of initial compression, which are free of noise, are reviewed, the source

code, and the effects of the length of the code, its efficiency and the methods of re-pressing are discussed. Also,

the so-called synchronous code and the effect of the property of the prefix are reviewed along with the length of

the word. The random compression and its methods are also studied with examples.

Keywords lossless compression, Huffman coding, information theory, Entropy, Shannon coding, image

compression

1. Introduction

In this paper, we are interested in presenting noiseless (lossless) coding. They are efficient codes that can be

used to send data over a communication line that does not introduce noise (cause loss). Such codes can also be

used to compress data for storage purposes. Here 'efficiency' refers only to the code itself, not to the amount of

time or space required to do the encoding and decoding processes.

Source symbols → (0|1) → → Source symbols

The average code-word length (message length), for events v from S, is

∑ x in S {P(x) . |code(x)|} (1)

This cannot be less than the entropy, H. This lower bound is achieved if

|code(x)| = - log2 (P(x)) (2)

Different source coding techniques are desired in this paper. Some examples are also given. Shannon’s source

coding is contained in section 2 of this paper. Section 3 presents the dependence of such codes on entropy. The

section 4 contains the different methods of entropy coding with some examples. Section 5 contains the run

_length coding with an example. Finally, section 6 concludes this paper.

2. Source Coding

In information theory, Shannon's source coding theorem (or noiseless coding theorem) establishes the limits to

possible data compression, and the operational meaning of the Shannon entropy. The source coding theorem

shows that (in the limit, as the length of a stream of independent and identically-distributed random variable

data tends to infinity) it is impossible to compress the data such that the code rate (average number of bits per

symbol) is less than the Shannon entropy of the source, without it being virtually certain that information will be

lost. However it is possible to get the code rate arbitrarily close to the Shannon entropy, with negligible

probability of loss [1].

The source coding theorem for symbol codes places an upper and a lower bound on the minimal possible

expected length of codeword as a function of the entropy of the input word (which is viewed as a random

variable) and of the size of the target alphabet. If s a mapping from (a sequence of) symbols from an information

Encoding Decoding

Dawood AAM Journal of Scientific and Engineering Research, 2018, 5(4):134-139

Journal of Scientific and Engineering Research

135

source to a sequence of alphabet symbols (usually bits) such that the source symbols can be exactly recovered

from the binary bits (lossless source coding) or recovered within some distortion (lossy source coding). This is

the concept behind data compression [1].

Source coding is a conversion of the o/p of a discrete memoryless source (DMS) into a sequence of binary

symbols (binary code word).

 Binary sequence

An objective of source coding is to minimize the average bit rate required for representing the source by

reducing the redundancy of the information source.

A. Code Length and Code efficiency

The length of code word is the number of binary digits in the code word. The average code word length L, per

source symbol is given by.

 L = 𝑝(𝑥𝑖)𝑛𝑖
𝑚
𝑖=1 (3)

The code efficiency ζ is defined as ζ =
𝐿𝑚𝑖𝑛

𝐿
 where 𝐿𝑚𝑖𝑛 is the min possible of L.

At ζ =1 , the code is said to be efficient and The code redundancy r is defined as: r = 1- ζ

Source Coding Theorem: (Shannon's theorem)

 𝜁 =
𝐻

𝐿
 , With 𝐿𝑚𝑖𝑛 = H , L ≥ H

B. Decoding

“A code is uniquely decodable if every finite string of bits represents at most one sequence of source text.

i.e. There is no possibility of two different source texts giving the same coded string”.

C. Synchronizable Codes

A code is comma-free if it is impossible to get one out-of-frame code-word in the middle of an encoded string.

In the early days of molecular biology it was briefly suspected that the genetic code (DNA, amino acids) was

comma-free, but this turned out not to be the case. A code has a stagger limit of 'k' if the synchronization of all

windows of length k+1 or greater is apparent without any more context B. Neveln [2] suggests

synchronizability and not comma freeness as the requirement of an early genetic code. The genetic code is very

nearly a Gray code, i.e. an error in the (en | de) coding (DNA) will probably either be silent (code for the same

amino acid), or code for a chemically similar amino acid. The code seems to have evolved to minimize the

effect of mutations and misreading [3].

D. Prefix Property

Another desirable property for a code to have is the prefix property; No code word is a prefix of any other code

word. A code having the prefix property is uniquely decodable, but not necessarily .The prefix property allows

us to identify the end of the first (and second etc.) code word in a data stream immediately, and is required to be

able to decode a stream of data unambiguously without look-ahead. While the prefix property seems to be quite

strict, some fundamental results show that such codes are all that we need to consider for the purposes of

inference [4],[5].

Example

Recalling the biased four sided dice, P(a)=1/2, P(c)=1/4, P(g)=P(t)=1/8, the following is an efficient code for

data generated by the dice:

a:'0'

1?

c:'10'
11?

g:'110' t:'111'

½ ¼ 1/8 1/8

This is a particularly simple example of a Huffman code. You will notice that the probabilities 1/2, 1/4, 1/8, 1/8,

were deliberately chosen so that their (- log2 s) correspond exactly to convenient code word lengths; things do

not always work out so easily. When they do, code words can be allocated by using a binary tree.

DMS Source coding
𝑥𝑖

X = (𝑥1 …..𝑥𝑚)

http://www.allisons.org/ll/Bioinformatics/

Dawood AAM Journal of Scientific and Engineering Research, 2018, 5(4):134-139

Journal of Scientific and Engineering Research

136

3. Codes and Entropy

Suppose we have events with probabilities p1, p2 ..., pN and there is a code for these events with code-word

length l1 ,l2 ,….lN where i = 1… . . N {2i
−1}.The average code-word length will be i = 1… . . N Pili.

We saw under entropy, that this expression is minimized when li = -log2(pi). Such values will not be integers in

general, but if we had a code with code-word lengths of ceiling (-log2(pi)), then it would have an average code-

word length less than the entropy plus one, < H+1.

3.1. Kraft Inequality

There is a prefix code with code-words of lengths l1, l2, ...,lN iff ∑i=l..N{2
-l

i} ≤ 1.There must be a maximum code-

word length, say max. Consider the full binary tree of depth max with edges labeled (0|1), e.g. below if max=3

(root at the left):

 1 2 3

root

1

11
111

110

10
101

100

0

01
011

010

00
001

000

Every code-word must appear somewhere in the tree and because of the prefix property no other code-word can

be a descendant or an ancestor of it in the tree. There are 2
k
 bit-strings of length k. A bit-string of length max,

has probability 2
-max

. The probability of a shorter bit-string is the sum of the probabilities of the max-bit strings

below it. The sum of the probabilities of the code-words cannot exceed 1.0

3.2. Theorem

There exists a prefix code with code-words of length l1, l2, ...,lN, iff there is a uniquely decodable code with

these lengths. So it is reasonable to insist on the use of prefix codes because if there is any uniquely decodable

code then there is a prefix code [6].

4. Run–Length Coding

Instead of encoding the consecutive symbols ,its more efficient to encode the run_ length and the value that

these consecutive symbols commonly share, where run mean the repetition of a symbol and run_length means

number of repeated symbols (L).Adopted in JPEG (Multi – level image coding), binary document coding, and

many other coding standards. in RLC the sequence of image elements along a scan line (row) 𝑥1 , 𝑥2 ,…… . , 𝑥𝑛 is

mapped into asequence of pairs (𝑔1 , 𝑙1),(𝑔2, 𝑙2),………… (𝑔𝑘 , 𝑙𝑘) where 𝑔𝑖 denoted the gray level and 𝑙𝑖 denotes

the length of the 𝑖𝑡ℎ run.the RLC works by counting the number of adjacent pixels with the same gray – level

values. This count is called the run-length L and the pair of gray level G. It is worth mentioning RLC technique

is effective with image containing a small number of gray levels.

Example

Given the following 8*8, 4 – bit image, find the RLC of the image?

 5 5 5 5 10 10 10 10

 0 0 0 10 10 10 0 0

 5 5 5 4 4 4 0 0

 5 5 5 10 10 9 9 10

 10 10 5 5 12 12 0 0

 10 10 10 10 12 12 12 12

 0 0 0 10 10 10 10 10

 0 0 0 0 0 0 0 0

Dawood AAM Journal of Scientific and Engineering Research, 2018, 5(4):134-139

Journal of Scientific and Engineering Research

137

Solution:

First row: (5,4) , (10 ,4)

Second row: (0,3) , (10,3),(0,2)

Third row: (5,3) , (4,3),(0,2)

Fourth row: (5,3) , (10,2),(9,2),(10,1)

Fifth row: (10,2) , (5,2),(12,2),(0,2)

Sixth row: (10,4),(12,4)

Seventh row: (0,3),(10,5)

Eighth row (0,8)

These numbers are stored or transmitted in RLC compressed form as:

5,4,10,4,0,3,10,3,0,2,5,3,4,3,0,2,5,3,10,2,9,2,10,1,10,2,5,2,12,2,0,2,10,4,12,4,0,3,

10,5, 0,8

The RLC used for binary image is called basic RLC. there are many ways to implement the basic RLC. One

method used is the horizontal RLC which count along the rows. In this method a convention for the first number

in the row should be define as “0 ” or “1”.

5. Entropy Coding Methods and Examples

It is a design of variable length code such that its average code word length L approaches the entropy. There are

three main types of this coding. They are listed here.

A. Huffman coding

In computer science and information theory, a Huffman code is a particular type of optimal prefix code that is

commonly used for lossless data compression. The process of finding and/or using such a code proceeds by

means of Huffman coding, an algorithm developed by David A. Huffman while he was a Ph.D. student at MIT,

and published in the 1952 paper "A Method for the Construction of Minimum-Redundancy Codes”. The output

from Huffman's algorithm can be viewed as a variable-length code table for encoding a source symbol (such as

a character in a file). The algorithm derives this table from the estimated probability or frequency of occurrence

(weight) for each possible value of the source symbol. As in other entropy encoding methods, more common

symbols are generally represented using fewer bits than less common symbols. Huffman's method can be

efficiently implemented, finding a code in linear time to the number of input weights if these weights are sorted.

However, although optimal among methods encoding symbols separately, Huffman coding is not always

optimal among all compression methods [7].

Huffman Coding Algorithm

1. List the source symbols in order of decreasing prob.

2. Combine the probabilities of the two symbols having the lowest probabilities, and recorder the resultant

probabilities. The same procedure is repeated unit there are two ordered probabilities remaining.

3. Start encoding with the last reduction, which consist of exactly two ordered probabilities. Assign 0 as the first

digit in the codeword for all the source symbols associated with the first probability, Assign 1 to the second

probability.

4. Now go back and assign 0 and 1 to the second digit for the two probabilities that were combined in the

previous reduction step, retaining all assignments made in step 3.

5. Keep regressing this way until the first column is reached.

Huffman Coding Example

For X= {x1 , x2 , x3 , x4, x5} with p(xi)=0.3,0.25,0.2 ,0.12,0.08 ,0.05, respectively. Find H, L, ζ, and r.

H =2.36 bit/sample, L =2.38 bit/sample, ζ=0.991, r =0.009.

https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Information_theory
https://en.wikipedia.org/wiki/Prefix_code
https://en.wikipedia.org/wiki/Lossless_data_compression
https://en.wikipedia.org/wiki/David_A._Huffman
https://en.wikipedia.org/wiki/Doctor_of_Philosophy
https://en.wikipedia.org/wiki/Massachusetts_Institute_of_Technology

Dawood AAM Journal of Scientific and Engineering Research, 2018, 5(4):134-139

Journal of Scientific and Engineering Research

138

B. Shannon Coding

In the field of data compression, Shannon coding, named after its creator, Claude Shannon, is a lossless

(noiseless) data compression technique for constructing a prefix code based on a set of symbols and their

probabilities (estimated or measured). It is suboptimal in the sense that it does not achieve the lowest possible

expected code word length like Huffman coding.

Shannon-Fano Coding Algorithm

1. List the source symbols in order of decreasing prob.

2. Partition the set into 2 sets that are close to equal-probability as possible ; and assign 0 to the upper set

and 1 to the Lower set.

3. Continue this process, each time partitioning the sets with as nearly equal probability as possible until further

partitioning is not possible.

Shannon-Fano Coding Example

For X= {x1 , x2 , x3 , x4, x5, x6} with p(xi)=0.3,0.25,0.2 ,0.12,0.08 ,0.05. Find H,L ,r and ζ.

H =2.36 bit/sample, L =2.38 bit/sample, ζ =0.991, r =0.009.

C- Arithmetic Coding

Arithmetic coding works by dividing the interval [0, 1), i.e., {x | x≥0 & x <1}, into smaller and smaller intervals

which represent the successive symbols of an input sequence. It can be thought of as an extension of prefix

coding where the interval boundaries lie neatly between adjacent powers of 1/2. e.g., The (trivial) prefix code

for false and true {F,T} where P(F)=P(T)=½. See the following example:

1/2 F 1/2 T 1

1/4 F 1/4 T 2

1/8 F 1/8 T 3

1/16

F

1/16

T
4

0 1/2 1

Note that 1/2 = 0.510 = 0.12, 1/4 = 0.2510 = 0.012, 1/8 = 0.12510 = 0.0012, etc.

In arithmetic coding, probabilities of events need not be neat powers of 1/2. e.g., given a 2-symbol example

where P(F)=1/8, P(T)=7/8 in position one and P(F)=P(T)=1/2 thereafter. (The probabilities are allowed to vary

with position in the sequence, so long as encoder and decoder both know them or can calculate them.). See the

following example:

1/8 F 7/8 T P(F)=1/8

1/4 F 5/8 T P(F)=1/2

1/4 F 3/8 T P(F)=1/2

1/8

F

1/8

T
P(F)=1/2

0 1/2 1

Note that the second-level partition is 1/4:5/8 not the ideal 7/16:7/16.

As shown above, arithmetic coding is very efficient and extensions of it can get arbitrarily close to the entropy

of the data. In some sense it has "solved" the coding problem, making it clear that compression = data modeling

+ coding. The (predicted) probabilities of the events can come from anywhere provided that the encoder and

https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Claude_Shannon
https://en.wikipedia.org/wiki/Lossless_data_compression
https://en.wikipedia.org/wiki/Lossless_data_compression
https://en.wikipedia.org/wiki/Lossless_data_compression
https://en.wikipedia.org/wiki/Prefix_code
https://en.wikipedia.org/wiki/Huffman_coding

Dawood AAM Journal of Scientific and Engineering Research, 2018, 5(4):134-139

Journal of Scientific and Engineering Research

139

decoder agree on them; they can for example be fixed, or come from an order-k Markov model, or be estimated

from statistics gathered from the data previously coded.

6. Conclusion

Different source coding methods have been described in this review. The concentration has been focused on the

noiseless types of source coding. The effects of code length and its efficiency has been also reviewed. The

impact of prefix property on the code length has been demonstrated. Many of the entropy coding methods have

been presented also in this review and many examples have been illustrated.

References

[1]. D. Taubman, M. Marcellin, JPEG2000 Image Compression Fundamentals Standards and Practice,

Springer science + business media, LLC 2012.

[2]. B. Neveln, Comma-Free and Synchnronizable Codes, J. Theor. Biol., 144, pp. 209-212, 1990.

[3]. R. Swanson, A Unifying Concept for the Amino Acid Code, Bull. Math. Biol., 46(2), pp.187-203, 1984.

[4]. K. Krippendorff, Mathematical Theory of Communication, S. W. Littlejohn & K. A. Foss (Eds.), Los

Angeles, 2009.

[5]. A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding, Dover publications,

INC Mineola , New York, 2013.

[6]. Welsh Codes and Cryptography, OUP, 1988.

[7]. D.A. Huffman, A Method for the Construction of Minimum-Redundancy Codes, Proceedings of the

I.R.E., pp 1098–1102, September 1952.

