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1. Introduction 

In 1985, the Deutsch-Jozsa algorithm was discussed [1, 2, 3]. In 1993, the Bernstein-Vazirani algorithm was 

published [4, 5]. This work can be considered an extension of the Deutsch-Jozsa algorithm. In 1994, Simon’s 

algorithm [6] and Shor’s algorithm [7] were discussed. In 1996, Grover [8] provided the highest motivation for 

exploring the computational possibilities offered by quantum mechanics. 

In this short contribution, we discuss a new mathematical structure for standard quantum algorithms. They say a 

certain property in case of a special function f  that the relation )(=)( xfxf   holds. 

2.  Mathematical structure for standard quantum algorithms 

We discuss a new mathematical structure for standard quantum algorithms in case of a special function f . 

Let us suppose that we are given the following function  

  1}2,2,22),(21),(2{: NNNNf   

 1}.2,2,2{0,1,  NN  (1) 

We shall assume that 0)( yf . 

Let us introduce a function )(xg  that transforms binary strings into positive integers. We also define 

)(=)))(((1 xFxgfg
. We shall assume, for the time being, that the given function is even. Thus, we have  

 
.{0,1}

{0,1})(=)(
N

N

x

xFxF




 (2) 

 We see that the condition (2) holds in standard quantum algorithms. 

What the function )(xf  does in (1) is to map a set of discrete values onto another one. In (2), we assume that 

x  is the binary representation of one element. x  will be given by a binary string belonging to the Cartesian 
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product 

  


N

{0,1}{0,1}{0,1}  , for instance, ,1),1,(0,1,1,0,0= x . We then define x  as 

,1),1,(0,1,1,0,0  . 

Throughout the discussion, we omit any normalization factor. Let us suppose  xx |=| . The input state is  

.,11,1,|,0,10,0,=|| 1 
  


NN

  (3) 

The function F  is evaluated by using the following unitary N2  qubits gate  

  )(,|,:| xFzxzxUF  (4) 

 with  

  )(,|,:| xFzxzxUF  

  )(,|,| xFzxzx  

  )(,|,| xFzxzx  

  )(,|,| xFzxzx  (5) 

 and employing the fact that )(=)( xFxF  . Here, ))(,),(),((=)( 2211 xFzxFzxFzxFz NN    

(the symbol   indicates addition modulo 2). 

We have the following fact  

 
   NN

FU 1,1,...,1|10,0,...,0,|  

 .,1)(0,0,...,0|10,0,...,0,=|  F

N   

 (6) 

 Here, for example, if we have ,1),1,(0,1,1,0,0=,1)(0,0,...,0 F , then 

,0),0,(1,0,0,1,1=,1)(0,0,...,0 F . 

Surprisingly the relation )(=)( xFxF   is necessary for the fundamental relation (6) as shown below. 

From the definition in (??), we have  

.)(|=|1,1,...,1||  xFxxU

N

F



  (7) 

 This implies for xx  , with 0x   

.)(|=|1,1,...,1||  xFxxU

N

F



  (8) 

 We state that  xx |=| . Then it follows that the minus sign on left and right hand side of (8) drop off. This 

implies  

.)(|=|1,1,...,1||  xFxxU

N

F



  (9) 

 We furthermore assume such that  

.==|| QPQP    (10) 

 Comparing (7) with (9) we see  )(=|)(| xFxF . Hence, we cannot avoid the following property of the 

function in order to maintain consistency for the fundamental relation (6)  

.)(=)( xFxF   (11) 

 That is, the function under study is even  

).(=)( xFxF   (12) 
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3. Conclusions 

In conclusion, we have discussed a new mathematical structure for standard quantum algorithms. They have said 

a certain property in case of a special function f  that the relation )(=)( xfxf   holds. 
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