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Abstract In this research work, the development of two-step implicit second derivative block methods for the 

solution of initial value problems of general second order ordinary differential equations is studied. In the 

derivation of the method, power series is adopted as basis function to obtain the main continuous scheme through 

collocation and interpolations approach. Taylor series method was adopted alongside the new method to generate 

non-overlapping numerical results. The developed method was found to be consistent, convergent and zero-

stable. We further computed the order of the newly derived method and plotted the region within which the 

method is stable. The newly constructed method was applied to solve some systems of second-order stiff 

ordinary differential equations and from the results obtained, it was clear that the method developed performed 

better than the existing methods with which we compared our results. 
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1. Introduction  

Most real-life problems that arise in various fields of study be it engineering or sciences are modeled 

mathematically before they are solved, [1]. These models often lead to differential equations. A differential 

equation can simply be defined as an equation that contains derivative(s). In other words, it’s a relationship 

involving an independent variable x , a dependent variable y  and one or more differential co-efficient of y  

with respect to x .  

Numerous problems such as chemical kinetics, orbital dynamics, circuit and control theory are modeled into 

second-order differential equations, [2]. It is important to state that mathematical modeling is the art of 

translating problem from an application area into tractable mathematical formulations whose theoretical and 

numerical analysis provides insight, answers and guidance, useful for the originating application, [3]. This type 

of problem can be formulated either in terms of first-order or higher order ODEs. In this article, the system of 

second-order ODEs of the form; 
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shall be considered. The method of solving higher-order ODEs by reducing them to a system of first-order 

approach involves more functions to evaluate and this leads to computational burden as mentioned in [4-5]. The 

multistep methods for solving higher-order ODEs directly have been developed by many scholars such as [6-10]. 

The aim of this paper is to develop a new numerical method for solving systems of second-order stiff ODEs of 

the form (1).  

This paper is organized as follows: in the coming section, we carried out the derivation of the method, where we 

considered two off-step points through the approach of interpolation and collocation. The details of the analysis 

of the method were discussed in Section three. In fourth section, some numerical problems were solved and the 

performance of the developed method was compared with those of the existing methods [13]. Finally, the 

conclusion was drawn in section five. 

 

2. Derivation of the Method 

In this section, a two-step hybrid block method with two off-step points, 
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for solving problems of the form (1) is derived. Let the power series of the form, 
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be the approximate solution to equation (1) for  2, xxx n , where saNn ',1,2,1,0   are the real 

coefficients to be determined, v  is the number of collocation points, m  is the number of interpolation points 

and 1 nn xxh  is a constant step size of the partition of interval  ba, , which is given by 

bxxxa N  10 . 

 

Differentiating equation (2) once and twice yield, 
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Interpolating equation (2) at the selected intervals, i.e., 2

4

71

4

3 ,,, 





n
n

n
n

n xandxxxx  and collocating 

Equation (4) at all points in the selected interval, i.e., 2

4

71

4

3 ,,, 





n
n

n
n

n xandxxxx , gives the following 

equations which can be written in matrix form: 

 



Skwame Y et al                                          Journal of Scientific and Engineering Research, 2018, 5(3):283-290 

 

Journal of Scientific and Engineering Research 

285 

 

















































































































































































2

4

7

1

4

3

2

4

7

1

4

3

10

9

8

7

6

5

4

3

2

1

0

222222222

222222222

222222222

222222222

2

a

 

2304092163584134448016048122
00

32768

259416045

2048

7411887

512

823543

512

352947

128

36015

16

1715

4

147

2

212
00

9072564230201262
00

32768

295245

32

15309

512

5103

512

5103

128

1215

16

13527

2

92
00

00000000
2

00

51202304102444819280321241
0

131072

201768035

65536

51883209

2048

823543

4096

823543

512

5044

256

12005

16

343

4

147

2

71
0

10987654321
0

131072

98415

65536

59049

2048

2187

4096

5103

512

729

256

81

16

27

16

27

2

31
0

000000000
1

0

00000000001

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

n

j

f

f

f

f

f

y

y

y

y

y

a

a

a

a

a

a

a

a

a

a

hhhhhhhhh

hhhhhhhhh

hhhhhhhhh

hhhhhhhhh

h

hhhhhhhhhh

hhhhhhhhhh

hhhhhhhhhh

hhhhhhhhhh

h

 
(5) 

 

Applying the Gaussian elimination method on equation (5) gives the coefficients  1010,' iforsai . 

These values are then substituted into equation (2) to give the implicit continuous hybrid method of the form: 

 

      mjfxfxxy in

j

i

i

j

in

j

i

i

jj ,,1,
2

0

4

7
,

4

3

 







  .     (6) 

Differentiating equation (6) once yields, 
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where the continuous schemes are given by; 
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3. Analysis of the Method

 

In this section, the basic properties of the method derived hall be analyzed. 

3.1. Order and error Constants of the Method 

According to [11], the order of the new method in equation (6) is obtained by using the Taylor series and it is 

found that the developed method is of uniform order ten, with an error constants vector given by, 

 TC 9989

10 100891.6100578.6104845.5104779.5    

3.2. Consistency 

Definition 3.1[2]: The hybrid block method (6) is said to be consistent if it has an order more than or equal to 

one, i.e., 1P . Therefore, the method is consistent since it is of order ten. 

 

3.3. Zero Stability 

Definition 3.2[2]: The hybrid block method (6)said to be zero stable if the first characteristic polynomial  r  

having roots such that 11  zz rifandr , then the multiplicity of zr must not be greater than two.  

In order to find the zero-stability of hybrid block method (6), we only consider the first characteristic polynomial 

of the method according to Definition 3.2 as follows, 
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which implies 1,0,0,0r . Hence, the method is zero-stable since 1zr . 

 

3.4. Convergence 

Theorem 3.1 [12]: Consistency and zero stability are sufficient condition for linear multistep method to be 

convergent. Since the method (6) is consistent and also zero stable, it implies the method is convergent for all 

points. 
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3.5. Regions of Absolute Stability  

The absolute stability region of the new method is shown in the figure below. 

 
Figure 3.1: Region of Absolute Stability 

4. Numerical Implementation 

In this section, the efficiency and the performance of the general two-step implicit hybrid block method with 

order 10p is investigated on two test problems. We present some numerical examples solved by [13]. The 

performance of the new method is examined using the following two systems of second-order initial value 

problems of ordinary differential equations. Tables 4.1and 4.2 show the comparison of the results obtained by the 

new methods with that of the existing method [13]in terms of absolute and relative errors. 
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Source: [13] 

Table 4.1: Comparison of results of the proposed method with that of [13] 

x  Errors in [13], 2K  Errors in New method, 2K  

Absolute errors Relative errors Absolute errors Relative errors 
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5.0  532.2 E
 

520.2 E
 

591.1 E
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Problem 4.2 

Consider the stiff system 
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Source: [13] 

Table 4.2: Comparison of results of the proposed method with that of [13] 

x  Errors in [13], 2K  Errors in New method, 2K  

Absolute errors Relative errors Absolute errors Relative errors 

 xy1
  xy2

  xy1
  xy2

  xy1
  xy2

  xy1
  xy2

 

1.0  761.3 E
 

760.3 E
 

799.3 E
 

798.3 E
 

863.8 E
 

707.1 E
 

854.9 E
 

718.1 E
 

2.0  721.3 E
 

730.3 E
 

755.3 E
 

791.3 E
 

846.3 E
 

818.7 E
 

823.4 E
 

877.8 E
 

3.0  728.6 E
 

727.3 E
 

747.8 E
 

747.8 E
 

832.7 E
 

802.9 E
 

888.9 E
 

722.1 E
 

4.0  765.5 E
 

765.5 E
 

763.7 E
 

743.8 E
 

845.2 E
 

851.5 E
 

865.3 E
 

822.8 E
 

5.0  769.6 E
 

768.6 E
 

610.1 E
 

610.1 E
 

835.6 E
 

874.7 E
 

705.1 E
 

728.1 E
 

6.0  703.6 E
 

702.6 E
 

610.1 E
 

610.1 E
 

870.1 E
 

820.4 E
 

810.3 E
 

865.7 E
 

7.0  792.5 E
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620.1 E
 

846.5 E
 

859.6 E
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733.1 E
 

8.0  736.5 E
 

737.5 E
 

610.1 E
 

619.1 E
 

817.1 E
 

822.3 E
 

861.2 E
 

817.1 E
 

9.0  738.7 E
 

738.7 E
 

682.1 E
 

681.1 E
 

871.4 E
 

864.5 E
 

716.1 E
 

739.1 E
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5.  Conclusion 

The development of two-step implicit second derivative for the solution general second order ordinary 

differential equations has been derived via the interpolation and collocation approach. The absolute and relative 

errors arising from Problems 4.1 and 4.2 using the new method were compared with the existing method [13]. It 

is evident from the results obtained that the newly derived method performs better than the existing method [13]. 

The method is also desirable by virtue of possessing high order of accuracy. The developed method is also 

consistent, zero-stable and convergent. 
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