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Abstract Compressibility effects on Rayleigh–Taylor instability of two plasmas layers are investigated. The 

system is acted upon by an external transverse magnetic field. The solution of the relevant linearized perturbation 

equations have been developed by the normal mode technique. The dispersion relation is obtained and is 

analyzed when the transverse magnetic field is parallel or perpendicular to the wave number and is solved 

numerically. The results show that, in the absence of external transverse magnetic field the rate of growth is more 

sensitive to the change in compressibility of the lower layer, while in the presence of it and when it is parallel to 

the wave number, the rate of growth is more sensitive to the change in compressibility of the upper layer. In the 

case when external transverse magnetic field is perpendicular to the wave number, we specialize the case of 

1M ( M  is the static Mach number defined using the gravity wave speed and the isothermal speed of 

sound), the results show that the rate of growth is more sensitive to the change in compressibility of the upper 

layer in the absence of (or presence) external transverse magnetic field. 

 

Keywords Rayleigh–Taylor instability,  external transverse magnetic field 

1. Introduction  

The Rayleigh–Taylor instability occurs [1-3] when a heavy fluid is supported by a lighter one in a gravitational 

field. Perturbations at this interface are amplified exponentially in time and result in finger of heavy material 

falling in the light one with light bubbles growing up in the heavy one when the instability reaches the nonlinear 

regime. The Rayleigh- Taylor instability problem manifests in several natural physical phenomena, for example, 

mushroom clouds like those from volcanic eruptions and atmospheric nuclear explosions [4], supernova 

explosions in which expanding core gas is accelerated into denser shell gas [5] and instabilities in plasma fusion 

reactors [6]. 

Several attempts to determine the effects of compressibility on the linearized RTI development have been made 

by a number of researchers [7-25], but the results were in disagreement with each other. Scannapieco [12], 

Bernstein and Book [14] and Yang and Zhang [16] found a destabilizing effect of compressibility. Blake [10], 

Mathews and Blumenthal [11], Sharp [15] and Li [17] reported that the compressibility has a stabilizing effect on 

RTI. While Plesset and Heish [8], and Livescu [18] conclude both stabilizing and destabilizing effects are 

possible. He showed that compressibility can be characterized by two independent parameters, the isothermal 

speed of sound Tc (which is function of pressure at the interface 0p ) and the ratio of specific heats . He 
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concluded that, For isothermal initial conditions, as 0p  decreases (more compressible flow) the compressibility 

effects on the growth rates are destabilized, the growth rate increases when   decreases (more compressible 

fluid). Which implies that the compressibility has stabilizing and destabilizing effect on RTI? Also he cleared 

that the incompressible limits are independently obtained when either (  or 0M ) where M  is the 

static Mach number defined using the gravity wave speed and the isothermal speed of sound.  

In plasmas RTI has been studied for stratified incompressible layer in the presence of magnitude of the 

gravitational acceleration ( g ) by Goldston and Rutherford [26]. RTI has been considered in inhomogeneous 

plasma rotating uniformly in an external magnetic field (vertical or horizontal-direction) by Al-Khateeb and 

Laham [27, 28]. 

In actual physical situations plasmas is often compressible. Thus the study of Rayleigh- Taylor instability for 

compressible plasmas is more realistic. 

RTI in compressible magnetized fluids plays an important role in several astrophysical compressible plasmas, 

e.g., accretion onto compact objects [29], flux emerging from the solar photosphere [30], or shell of young 

supernova remnant. The last concerns two unstable contact discontinuities: at the interface between the upper 

boundary of ejecta and swept-up material [31, 32] such as Tycho’s supernova remnant with fingers pointing 

outward, or at the interface between the pulsar-driven synchrotron nebula and the inner boundary shell of ejecta 

[33] such as the Crab Nebula with fingers pointing inward. In laser-produced plasmas, nonlocal self-generated 

magnetic fields may affect the RTI growth rate for large wave numbers [34]. 

The topic of interaction between plasma and a rotating magnetic field have been a subject of great interest for the 

last several decades, which have many applications, including astrophysical problems [35-38] and technological 

devices [39, 40]. For example, the possibility of providing gyroscopic stability to a mass accelerated by an 

electromagnetic launcher with plasma armature was considered by Becherini et al. [41]. In this study, the launch 

mass was supposed to have a ferromagnetic sleeve rotated by an additional rotating magnetic field.                                                                           

The interaction between plasma and a rotating magnetic field have been studied by several authors. For example, 

the theoretical works have been done by Moffat [42], Kono and Tanaka [43] and Grants and Gerebeth [44]. The 

interaction between plasma and a rotating magnetic field with constant angular velocity and amplitude is studied 

by Mauro Bologna et al. [45]. Experimental investigations of this problem have been done by Volz and Mazuruk 

[46] and Nagaoka et al. [47].  

Keeping in mind the importance of the Rayleigh-Taylor instability under the effect of compressibility and 

rotating magnetic field in astrophysics (supernova and supernova remnant), e.g. in the supernovae evolution 

some studies show that the compressibility is one of dominant parameters in the RTI growth rate [25, 48], the 

present paper attempts to study the effect of compressibility on Rayleigh-Taylor instability in inhomogeneous 

plasma rotating uniformly in an external magnetic field in the horizontal direction of two plasmas layers. 

 

2. The
 
mathematical

 
model 

The equations for ideal compressible plasma as a fluid of electrons and immobile ions in the presence of an 

external transverse magnetic field along the axisy   ( yeBB


0 ) are 

,UU.U 


























  

gp
t

                                                                  (1) 

,0. U








t
                                                                                                               (2) 

..UU. pp
t

p




















 

                                                                                                (3) 



Hoshoudy GA et al                                    Journal of Scientific and Engineering Research, 2018, 5(3):245-263 

 

Journal of Scientific and Engineering Research 

247 

 

where U


is the velocity,   is the density, p  pressure, ),0,0( gg 


 is the acceleration due to gravity 

directed anti-parallel to y axis,  y

e

e
m

eB 
0 is the plasma angular velocity  

( em  is the electron  mass and e  is magnitude of the electrons charge) and   is constant. 

Now, we give a small perturbation to the system, where the perturbations in the velocity ,U


pressure p , and 

density  , respectively, written as ),,,(10 )(,1UU tzyxPzPP 
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Now, we consider the perturbation in all physical quantities are taken in the form 

.exp)(),,,( 11
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where yx kk ,  (
222

yx kkk  ) are the horizontal wave numbers and   denotes the rate at which the system 

departs from equilibrium. Then, the system of Eqs. (4)-(6) becomes 
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From the system of Eqs. (8)-(12), and by deleting some of the variables, we get 
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where 

0

0




p
c  is the speed of  sound.                                                                                        

3. Transition Layer 

In this section we consider two compressible plasma layers of densities 21, . The two layers be confined 

between rigid horizontal planes: 1hz  (the lower boundary) and 2hz   (the upper one) (see Fig.1). On the 

other hand, on each side of the interface 
2c  and 

0
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2

0 c
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g 
 are constant, where R  is the gas 

constant and 0T  is constant. Then under these conditions Eq. (13) becomes 
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The solution of Eq. (14) in the above two mentioned layers may be written as 
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Here 211 ,, AAA  and 2A  are constants.   

Now, we need the boundary conditions to match the solutions at the two boundaries and interface, that are, 

respectively, 
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Where )0()0()(  sss zfzff .                                                                                                      

Using the above boundary conditions, the dispersion relation may be written as:  
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Note that, if we put 0y , the dispersion relation (21) is still as above (the same Eq. (21)) , but 433 ,,  and 

4  takes the forms 
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If we put ni  in Eqs. (21), (22) and (23) we will discover the formula (Eq. 27) that is derived by Livescu 

[18] for two immiscible fluids (in the absence of surface tension). 

Now, in Eq. (21) and from the relation 
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equivalent to an increase in M  at the ratio of specific heats ( ) is constant and vice versa. Thus, M represents 

a measure of the compressibility effects on the rate of growth (the first parameter). The other parameter is the 

ratio of specific heats (  ). 

The incompressible plasma case can be obtained from Eq. (21) by letting 21, or p .                                                                                                                                    
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This case equivalent to the incompressible plasmas with exponentially varying density. 
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(ii) At )0(  Mp (the case of constant density) the dispersion relation (21) becomes                                                                                         
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 LL  the dispersion relation (29) becomes ,02224  Ay where 
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 Ayy  and at ,0y  we have A2 (the classical case).  

     From Eqs. (26) and (29) as well as from Eq. (21) it clear that, the magnetic field have a critical strength to 

suppress the instability completely, just, at 0A . In this case we have no system to study. In other words, the 

magnetic field has no critical strength to suppress the instability completely at )||( yk 


.        

  In fact the previous formulas (21, 26 and 29) are too complicated such that, analytically, we are not able to 

determine the role of various parameters of problem. Thus, let us suppose that 0A , the system is stable and

 ii r   is purely imaginary. Here,   is the imaginary part of  . In this case, we will try to solve 

above equations (21, 26 and 29) numerically. The numerical calculations are plotted in Figs. (2) and (3). In this 

Figures the thicknesses of the two layers is 10 LL and 5.0
12

12 








A . 

In Fig. 2(a) the square of normalized growth rate of RTI of two incompressible plasma layers at 21, (Eq. 

26) have been plotted against
 21

1

 
 

g

pk
M )100( 1  M , while at )(0  pM (Eq. 29) the 

square of normalized growth rate is constant. This Figure shows that, the values of 
2  at 21,  

(equivalent to the incompressible plasma with exponentially varying density) are less than its counterpart at 

0M  (equivalent to the incompressible plasma with constant density). Which implies that, the  

exponentially varying density has a stabilizing effect on the RTI growth rate. Fig. 2(a) also shows that as the 

equilibrium pressure at the interface ( p ) increases (less compressible flow),
2  increases towards the uniform 

density result. Moreover, the stability role of magnetic field ( y ) clearly rises where the values of 
2 at 

5.0y  are less than their counterpart at 0y  and this role increases with the magnetic field increasing 

(see the values of 
2 at 1y ). The same phenomenon holds in Fig. 2(b), when the square of normalized 
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growth rate have been plotted against )( y at 0M and 21, . In Fig. 2(b) also one can see that, the 

values of 
2  at 21,  approach to zero before than their counterpart at 0M .  
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Figure 2: The square of normalized growth rate of RTI of two incompressible plasma layers (i. e. 21, ) 

at yk 


|| (a) has been plotted against
 21

1

 
 

g

pk
M )100( 1  M , (b) has been plotted against the 

magnetic field y . 

The role of compressibility's parameters (the ratio of specific heats ( ) and the static Mach number ( M ) which 

is defined by the gravity wave speed and the isothermal speed of sound) have been presented in Figs. 3 (a-d) in 

the absence (or presence) of external horizontal magnetic )( y . In Fig. 3(a) the square of normalized growth 
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rate )( 2  have been plotted against 
 21

1

 
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g

pk
M )20( 1  M at different values of the ratio of 

specific heats 21,   in the absence of external magnetic field )0( y . It can see that, the values of 
2

decrease as the values of 21,  increasing,  

where 1

2

21

2 ()10(    )1()10,1()1,10 21

2

21

2

2   . Also one can see 

that, the values of growth rate in the compressible case ),( 21

2  are less than their counterpart in the classical 

case ).0(2 M  Which implies that the compressibility (the ratio of specific heats (  )) has a stabilizing role 

on the selected model. This role increases with increasing of 1 or 2 or the increasing of both of them.  

Moreover the values of 
2 at 1,10 21    are less than their counterpart at 10,1 21   . This implies 

that the growth rate is more sensitive to the change in compressibility of the lower layer. These results agree with 

the conclusions given by Livescu [18] for two fluids of different density.  

The stability role of external magnetic field )||( ky


 of compressible plasmas comes in Figs. 3(b)- 3(d). In Fig. 

3(b) the square of normalized growth rate )( 2  have been plotted against )20( 11   MM at different 

values of the ratio of specific heats 21,   and )5.0( y . If we compare between the values of 
2  in Fig. 

3(a) and Fig. 3(b), we note that the values of 
2  in Fig. 3(b) at 5.0y  are less than their counterpart in Fig. 

3(a) at 0y . Moreover, in Fig. 3(b) we note that the values of 
2 at 10,1 21    are less than their 

counterpart at 1,10 21   , which implies that the growth rate is more sensitive to the change in 

compressibility of the upper layer. These results disagree with the above result. Absolutely, this exchange 

ascribes to the presence of magnetic field )||( ky


 . The same phenomenon holds in Fig. 3(c) when we plot the 

square of normalized growth rate )( 2 against the magnetic field )( y


at different values of the ratio of specific 

heats 21,  and 5.01 M , where the values of 
2 at 10,1 21    are less than their counterpart at 

1,10 21    for the most values of magnetic field except of the small values of  y


         

Fig. 3(d) shows the role of compressibility at 1,10 21    and 10,1 21   for different values of the 

magnetic field )1,5.0,07.0( y . One can see that the values of 
2  at 10,1 21    are less than their 

counterpart at 1,10 21   , except some values at small values of the magnetic field )07.0( y . This 

implies that the growth rate is more sensitive to the change in compressibility of the upper layer in the presence 

of magnetic field at )||( ky


 .  

In Figs. 3(a)–3(c), one can see that the stability that happens in the presence of ratio of specific heats (  ) 

(compressible plasmas) is confined between the instability of incompressible plasma (with constant density, that 

happens at 0M (Eq. (29))) from top and incompressible plasma (with exponentially varying density, that 

happens at both 21, ( Eq. (26))) from bottom.  
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 In Figs. 3(a), 3(b) and 3(d), one can see that the increase of 
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increase in )( p at the ratio of specific heats (  ) is constant) leads to a increase in the square of the growth rate, 

but the values of growth rate as a functions of )( p  are less than their counterpart in the classical case. Which 

implies that the compressibility (the static Mach number ( M ) or the pressure ( p ) at the interface) has a 

stabilizing role on the selected model. This role declines with increasing of )( p .  
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Figure 3: The role of compressibility's parameters (the ratio of specific heats ( ) and the static Mach number  

( M )) in the presence and absence of magnetic field (at yk 


|| ). 

(2) When the wave number perpendicular to the magnetic field (i. e. yk 


 )  

In this case we have   yey kk
z

  


while   0 yk 


, then Eq. (20) becomes  
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In the absence of magnetic field ( 0y ), then Eq. (30) tends to Eq. (21) and ),0(7 y  )0(7 y are 

equivalent to )0(),0( 33  yy   as in Eq. (24), respectively, while )0(),0( 88  yy  are 

equivalent to )0(),0( 44  yy   as in Eq. (25), respectively. Appearance of the term 


 y
in the system 

(30)-(32) makes physical interpretations harder without taking a special cases and numerical calculations. It is 

useful to consider the case of small-compressibility )1( M and  LL . In this case the dispersion 

relation (30) can be written in the formula    
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Substituting from Eqs. (34) and (35) into Eq. (33) under the condition )1( M , the dispersion relation may be 

written in the form  
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Under the above appreciation we study the incompressible case of Eq. (36) 

(i) If we put 21, (The density changes with the vertical coordinate), then Eq. (36) is 
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At 
  ir i (  

i ), the solution of this equation is 





























































































































 

2

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

112

2

2

2

1

2

2

2

1

1
2

1
2

2

1
2

1

2

1
2

1
2

2

y

y

y

y

y

r

AM

M

AM

M

i

AM

M

i















.                                         (39) 

Then the square of the normalized growth rate given by 
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(ii) If  we put 0M (constant density case) in Eq. (36) the dispersion relation becomes                                                                                                                                

01 2 








 AA y   and if we put 
  ir i , Then 
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From Eqs. (40) and (41), one can see that
2

0

2

, 21   M  . Which implies that, the exponentially varying 

density has a stabilizing effect on the RTI growth rate as that is found in the first case (as yk 


|| ). Also, the 

incensing of magnetic field (at yk 


 ) tends to more stability in the selected model. In Eq. (41), we note the 

magnetic field has no critical strength to suppress the instability completely. 

(iii) For the general case (at yk 


 )                                                                                          

The condition of Rayleigh–Taylor instability of compressible plasmas can be obtained easily from the constant 

term of (36) that given as: 
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Thus the system remains unstable for all the values of Atwood number smaller than the value given by condition 

(42).  

Now, at 
  ir i , Eq. (36) can be put as: 
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Thus, both the real and imaginary parts are, respectively, in the form  
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In fact we cannot combined the above two equations to generate a single equation that gives the normalized 

growth rate )(  i as a function of the parameters of problem ( My ,  and 21, ) . But, we can put them in 

the form  
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Now, we will numerically solve these two equations (46) and (47) (or (44) and (45)) to determine the behavior of 
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normalized growth rate )(  against of ( My , and 21, ).  The numerically calculations for our current case 

have been presented in Fig. 4.              

Fig. 4(a) shows the role of compressibility (the role of ratio of specific heats (  )) in the absence of magnetic 

field. The square of normalized growth rate )( 2  has plotted against
1M .  One can see that the values of 

2  

decreases as the values of ratio of specific heats increasing (as the first case). Also, In contrast to the first case, 

one can see that the values of 
2  at 10,1 21   are less than their counterpart at 1,10 21   . Which 

implies that the growth rate is more sensitive to the change in compressibility of the upper layer in the absence of 

magnetic field at )( ky


 .  

Figs. 4(b), shows the role of ratio of specific heats in the presence of magnetic field )5.0( y . One can see 

that, the values of 
2  in Fig. 4(b) at )5.0( y  are less than their counterpart in Fig. 4(a) at )0( y . Also, 

the values of 
2  at 10,1 21   are less than their counterpart at 1,10 21    (as Fig. 3(a)).  
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Figure 4: The role of compressibility's parameters (the ratio of specific heats (  ) and the static Mach number  

( M )) in the presence and absence of magnetic field (at yk 


 ). 
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This phenomenon have been emphasized in Fig. 5, where the square of normalized growth rate )( 2 have plotted 

against the magnetic field )( y at 1.0M . This Figure shows that, the values of )( 2  decreases as the values 

of  )( y  increasing as )1,10()10,1( 21

2

21

2   .  
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Figure 5: The square of normalized growth rate )( 2 against the magnetic field )( y at 1.0M . 

4. Conclusion 

In summary, the compressibility effect on the Rayleigh–Taylor instability of two plasmas layers have been 

investigated in inhomogeneous plasma rotating uniformly in an external transverse magnetic field. The general 

dispersion relation is obtained. The dispersion relation is analyzed at the external transverse magnetic field 

parallels and is perpendicular to the wave number and is numerically solved. We can summarize the results as 

follows:                                                                                                                     

(i) In the absence of (or presence) external transverse magnetic field, the compressibility have been characterized 

by two parameters (  and p ).  For the parameter  ( the ratio of specific heats values), the compressibility has 

stability role on the growth rate. This role increases with increase of the ratio of specific heats values. While the 

influences of equilibrium pressure at the interface p on the RTI growth rates are destabilized. 

(ii) The incompressible exponentially varying density plasma (  ) has a lower growth rate than the 

incompressible constant density plasma. This implies that, the exponentially varying density has a stabilizing 

effect on the RTI growth rates. 

(iii) In the absence of magnetic field (at yk 


|| ) the growth rate is more sensitive to the change in 

compressibility of the lower layer (the change in   parameter), while in the presence of magnetic field the 

growth rate becomes more sensitive to the change in compressibility of the upper layer. 

(iv) In the case of magnetic field is perpendicular to the wave number ( yk 


 ) and for our appreciation 

selected )1( M , the growth rate is more sensitive to the change in compressibility of the upper layer (the 

change in   parameter). This sensitivity satisfies in the absence of (or presence) external transverse magnetic 

field 
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