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Abstract A stable fixed point in a dynamical system is likely to persist in that state, even in the face of minor 

disturbances or perturbations. It is observed that varying the parameters in a dynamical system evolution 

function can result in a radical change in systems behavior called a bifurcation [1]. In the case of population 

dynamics bifurcation is a transition from a fixed population to an oscillation between high and low populations. 

In this article we will focus on the mathematics of bifurcation in the science of dynamical systems behavior. In 

particular we discuss the bifurcation behavior of population dynamical system in biology, weather prediction 

model and chemical reaction system. 
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1. Introduction 

To explain, analyze and understand dynamical systems behavior in both natural and artificial systems we use the 

mathematics of chaos theory [2] and bifurcation. Chaos theory is a scientific discipline which is focused on the 

study of nonlinear systems, which are generally complex and unpredictable. Chaos theory deals with dynamical 

systems that evolve in time and characterized by properties such as sensitivity to initial conditions and 

topological mixing. The cause of unpredictability in nonlinear systems is extreme sensitivity to initial 

conditions-what is referred to as the butterfly effect. The concept means that with a complex non-linear system, 

very small changes in the starting conditions of a system will result in dramatically different and large changes 

in the outputs for that system. Chaos theory describes complex motion and the dynamics of sensitive systems. 

Chaotic systems are mathematically deterministic but nearly impossible to predict. Chaos is more evident in 

long-term systems than in short-term systems. Behavior in chaotic systems is a periodic, meaning that no 

variable describing the state of the system undergoes a regular repetition of values. A chaotic system can 

actually evolve in a way that appears to be smooth and ordered, however Chaos refers to the issue of whether or 

not it is possible to make accurate long-term predictions of any system if the initial conditions are known to an 

accurate degree [3]. As a result of sensitivity to initial conditions like initial position and velocity the French 

mathematician Henri Poincare concluded that he could not predict the trajectories of planets in the solar system 

including the earth [4]. The uncertainty in the movement of the earth in Poincare‟s model contributes to 

unpredictability in climate change. In the same way the American meteorologist Edward Lorenz discovered that 

a simple model of heat convection possesses intrinsic unpredictability [5]. Chaotic models are generally 

extremely sensitive to initial conditions and characterized by disequilibrium, bifurcation [6-7]. 

 

2. Preliminaries and Definition of Terms  

(i) BIFURCATION: A bifurcation is sudden and unexpected changes in the behavior of a dynamical system for 

small changes in parameters. 
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(ii) MAP: A function whose domain (input space) and range (output space) are the same will be called a map. 

Let 𝑥 be a point and let 𝑓 be a map.  

(iii) ORBIT OF A MAP: The orbit of 𝑥 under 𝑓 is the set of points { 𝑥,𝑓(𝑥), 𝑓2(𝑥),.…………}.  

(iv) FIXED POINT: The starting point x for the orbit is called the initial value of the orbit. A point p is a fixed 

point of the map 𝑓 if 𝑓 𝑝 = 𝑝. 

(v) SINK: let 𝑓 be a map on ℝ and let 𝑝 be a real number such that 𝑓 𝑝 = 𝑝 if all points sufficiently close to 𝑝 

are attracted to 𝑝, then p is called a sink or an attracting fixed point. Most precisely, if there is an ∈> 0 such that 

for all 𝑥 in the epsilon neighbourhood 𝑁 ∈ (𝑝), lim𝐾→∞ 𝑓𝑘(𝑥) = 𝑝 then 𝑝 is a sink or attracting point.  

(vi) SOURCE: If all points sufficiently close to 𝑝 are repelled from 𝑝, then 𝑝 is called a source or a repelling 

fixed point. Most precisely, if there is an epsilon neighborhood 𝑁 ∈ (𝑝) such that each 𝑥 in 𝑁 ∈ (𝑝) except for 

p itself eventually maps outside of 𝑁 ∈ (𝑝), then p is a source. For more than one dimensional state space, there 

is a fixed point called a saddle. A saddle has at least one attracting direction and at least one repelling direction. 

A saddle exhibits sensitive dependence on initial conditions, because of the neighboring initial conditions that 

escape along the repelling direction. 

(vii) PERIODIC POINT: let 𝑓 be a map on ℝ. We call p a periodic point of period 𝒌 or period- k point if 

𝑓𝑘 𝑝 = 𝑝, and if 𝑘 is the smallest such positive integer. The orbit with initial point 𝑝 (which consists of 𝑘 

points) is called a periodic orbit of period 𝒌 or period- 𝒌 orbit. 

(viii) SENSITIVE DEPENDENCE: Sensitive dependence on initial conditions in chaos theory means that 

small variations in the initial conditions of a dynamical system produce large variations in the long term 

behavior of the system. 

(ix) STEADY STATE BIFURCATION: This is where equilibrium becomes unstable and a new equilibrium 

appears around it. 

 (x) HOPF BIFURCATION: This is where equilibrium becomes unstable and gives rise to a periodic state.  

(xi) PITCHFORK BIFURCATION: This is characterized by the passage from one stable steady state to an 

unstable steady state and the simultaneous appearance of two stable steady states. 

 

2. Stability of Dynamical Systems 

2.1. Stability of Fixed and Periodic Points 

A stable fixed point has the property that points near it are moved even closer to the fixed point under the 

dynamical system. These fixed points are the attracting fixed points. For an unstable fixed point, nearby points 

move away as time progresses. The fixed point is a source or a saddle. The stability or otherwise of a fixed or 

periodic point is related to its derivative as stated in the following properties: 

Property 1: let 𝑓 be a continuously differentiable map on ℝ, and assume that 𝑝 is a fixed point of f : (i) if |𝑓  

(p)|<1, then p is a sink (ii) if |𝑓 (p)| > 1, then 𝑝 is a source. 

Property 2: The periodic orbit {p1, p2, ………, pk}is a sink if |𝑓  𝑝𝑘 ……𝑓 (𝑝1)| < 1 𝑎𝑛𝑑  source if 

|𝑓  𝑝𝑘 ……𝑓 (𝑝1)|> 1. 

 

3. Bifurcations in Dynamical Systems 

3.1 Bifurcation in Population fluctuation of the flour beetle Tribolium 

The following is a model of population fluctuation in the flour beetle Tribolium. The newly hatched larva 

spends two weeks feeding before entering a pupa stage of about the same length.  The beetle exits the pupa stage 

as an adult. Let the numbers of larvae, pupae, and adults at any given time t be denoted by 𝐿𝑡 , 𝑃𝑡 , and 𝐴𝑡  

respectively. After the unit time of two weeks the model for the three beetle populations is given by: 

𝐿𝑡+1 = 𝑏𝐴𝑡 ……………………………………………… . ……………… . (1) 

𝑃𝑡+1 =  𝐿𝑡 1 − 𝜇𝑙 ………………………………………………………… (2) 

𝐴𝑡+1 =  𝑃𝑡 1 − 𝜇𝑝 +  1 − 𝜇𝑎 ………………………………………… . (3) 

Where 𝑏 is the birth rate of the species (the number of new larvae per adult after each unit time),  𝜇𝑙 , 𝜇𝑝  𝑎𝑛𝑑 𝜇𝑎  

are the death rates of the larvae, pupa, and adult, respectively. The above is a three dimensional discrete map. 

Tribolium adds an interesting twist to the above model: cannibalism caused by overpopulation stress. Under 
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conditions of overcrowding, adults, adults will eat pupae and unhatched eggs (future larvae); larvae will also eat 

eggs. Incorporating these into above model yields: 

𝐿𝑡+1 = 𝑏𝐴𝑡exp(−𝑐𝑒𝑎𝐴𝑡 − 𝑐𝑒1𝐿𝑡) …………………………………………… . (4) 

𝑃𝑡+1 =  𝐿𝑡 1 − 𝜇𝑙 ……………………………………………………………… (5) 

𝐴𝑡+1 =  𝑃𝑡 1 − 𝜇𝑝 exp −𝑐𝑝𝑎𝐴𝑡 + 𝐴𝑡 1 − 𝜇𝑎 ………… . ……………… . (6) 

 

From population experiments we get the following parameter values: 

𝑐𝑒𝑙   = 0.012,  𝑐𝑒𝑎 = 0.009, 𝑐𝑝𝑎  = 0.004, 𝜇𝑙  = 0.267, 𝜇𝑝 = 0 and b = 7.48 with mortality rate of the adult as 

𝜇𝑎  = 0.0036. From a graph of adult mortality rate against larvae population we get that for relatively low 

mortality rates, the larvae population reaches a steady or equilibrium state (fixed point). For 𝜇𝑎  > .1 

(representing a death rate of 10% of the adults over each two week period), the model shows oscillation between 

two widely different states. This is a „boom‟ and „bust‟ cycle [8]. A low population (bust) leads to uncrowded 

living conditions and increased growth (boom) at the next generation which eventually lead to overcrowding, 

cannibalism, catastrophic decline and then a repeat of the cycle. A bifurcation is a change from a fixed 

population to an oscillation between high and low populations. For the above model the population changes 

from period-doubling bifurcation (near 𝜇𝑎 = 0.1) to period-halving bifurcation (when 𝜇𝑎  ≈ 0.6) and then to 

chaos (near 𝜇𝑎  = 1) or adult death rate of 100%. 

 

3.2. Hopf Bifurcations from Chemical Reactions 

A bifurcation is sudden and unexpected changes in the behavior of a system for small changes in parameters. In 

an Andronov-Hopf bifurcation a family of periodic orbits bifurcates from a path of equilbria that changes 

stability at the bifurcation point. Hopf bifurcation is where an equilibrium becomes unstable and give rise to a 

periodic state. As an example of Hopf bifurcation consider the experiment designed to explore oscillatory 

phenomena in the dissolving of iron in a sulphuric acid solution. A 99.99% iron rod with a diameter of 3mm is 

lowered into 200ml of the acid. When a potential difference is applied, the current of the electrochemical system 

is a measure of the overall reaction rate between the electrode surface and the electrolytic solution. The behavior 

of the current as a function of time shows considerable complication at certain parameter settings. The electrical 

potential applied to the electrode is used as a bifurcation parameter in this experiment. The behavior observed 

shows a short increase in current followed by a constant current which changes to small irregular oscillations 

which finally leads to clear periodic oscillations as potential is increased. The behavior is chaotic and in this 

case it is called a Hopf bifurcation [8]. 

 

3.3. Bifurcation in Edward Lorenz Weather Prediction System 

Edward Lorenz an American meteorologist in 1961 proposed the following model of convection, similar to the 

swirls of cream in a hot cup of coffee [5]. The models are as specified in equations and 7, 8, 9. 

𝑑𝑥

𝑑𝑡
= −10𝑥 + 10𝑦…………………………………………………… . ……………………… . (7) 

𝑑𝑦

𝑑𝑡
= 28𝑥 − 𝑦 + 𝑥𝑦…………………………………………………………………………… . (8) 

𝑑𝑧

𝑑𝑡
= −8 3𝑥 + 𝑥𝑦………………………………………………………… . ………………… . (9) 

The points x, y, z correspond to the position of a point in geometric space at time t. Lorenz system of differential 

equations is unsolvable except by numerical means. It was discovered that the solutions are sensitive to initial 

conditions. It has been observed that weather is a chaotic dynamical system and hence long term prediction is 

not possible [9].  

In general the Lorenz equation is given by:  

 𝑊(𝑥, 𝑦, 𝑧) =  
𝑥 
𝑦 
𝑧 

  =  
σ y − 𝑥 

𝜌𝑥 − 𝑦 − 𝑥𝑧
𝑥y − βz

 ……………………………………………………………………….(10) 
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where Lorenz fixed 𝜎 = 10, 𝛽 =
8

3
 , 𝑡ℎ𝑒 “Raleigh number” 𝜌 = 28,  𝑥  = 

𝑑𝑥

𝑑𝑡
 , 𝑦 =  

𝑑𝑦

𝑑𝑡
 ,  and 𝑧 =  

𝑑𝑧

𝑑𝑡
. For 0< 𝜌 <

1 𝑡ℎ𝑒 𝑒𝑞𝑢𝑖𝑙𝑏𝑟𝑖𝑢𝑚 EQ0 = (0,0,0) at the origin is attractive. At 𝜌 = 1 it undergoes a pitchfork bifurcation into 

a pair of equilbria given by: 

EQ1,2 =(± 𝑏(𝜌 − 1), ± 𝑏(𝜌 − 1), ρ − 1). For 𝜌 = 24.74, 𝐸𝑄1,2 undergoes Hopf bifurcation [8]. 

 
Figure 1: Lorenz strange attractor 

The Butterfly diagram in fig1 above is a diagrammatic representation of the Butterfly effect and is referred as 

the Lorenz attractor. The Butterfly Effect is a phrase that encapsulates the more technical notion of sensitive 

dependence on initial conditions in chaos theory. The idea is that small variations in the initial conditions of a 

dynamical system produce large variations in the long term behavior of the system. Edward Lorenz first 

analyzed the butterfly effect in a 1963 paper on weather simulation and prediction [9]. The practical 

consequence of the butterfly effect is that complex systems such as the weather are difficult to predict past a 

certain time range - approximately a week, in the case of weather. This is because any finite model that attempts 

to simulate a system must necessarily truncate some information about the initial conditions - for example, when 

simulating the weather, one would not be able to include the wind coming from every butterfly's wings. In all 

practical cases, defects in the knowledge of the initial conditions and deficiencies in the model are equally 

important sources of error. In a chaotic system, these errors are magnified as the simulation progresses. Thus the 

predictions of the simulation are useless after a certain finite amount of time. Lorenz and Poincare models are 

historically regarded as the foundation of chaos theory. The model revealed the unpredictability of the weather 

and hence climate change. It is a model of climate that is both stochastic and deterministic. To illustrate the 

extreme sensitivity of the Lorenz model to initial conditions consider the starting points (1,1,10) and (1,1,10.01). 

There is a difference of 0.01 between the 3
rd

 component of the two points at t= 0. If we plot the butterfly 

diagram of these two points from t=0 to t=7.5 we will observe that the two curves fly apart. 

The following figure illustrates sensitive dependence on initial conditions. 

 

Sensitive dependence on the initial condition 

Time t=1 (Enlarge) Time t=2 (Enlarge) Time t=3 (Enlarge) 

Fig 2 Fig 3 Fig 4
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These figures 2, 3 and 4 — made using ρ=28, σ = 10 and β = 8/3 — show three time 

segments of the 3-D evolution of 2 trajectories (one in blue or dark, the other in yellow or 

white) in the Lorenz attractor starting at two initial points that differ only by 10
−5

 in the x-

coordinate. Initially, the two trajectories seem coincident (only the yellow one can be seen, 

as it is drawn over the blue one) but, after some time, the divergence is obvious. 

In general the Lorenz equation is given by:  

 𝑊(𝑥, 𝑦, 𝑧) =  
𝑥 
𝑦 
𝑧 

  =  
σ(y − 𝑥)

𝜌𝑥 − 𝑦 − 𝑥𝑧
𝑥y − βz

 , where Lorenz fixed 𝜎 = 10, 𝛽 =
8

3
 , 𝑡ℎ𝑒 “Raleigh number” 𝜌 = 28,  𝑥  = 

𝑑𝑥

𝑑𝑡
 

, 𝑦 =  
𝑑𝑦

𝑑𝑡
 ,  and 𝑧 =  

𝑑𝑧

𝑑𝑡
. 

 Edward Lorenz in introducing chaos into science and mathematics asked the question: can the flap of a 

butterfly‟s wing in Brazil cause a tornado in Texas, U.S.A? The question can be rephrased into: can the flap of a 

locust‟s wing in Konduga Borno State Nigeria, cause the water in the lake Chad Basin which covers five 

countries in west and central Africa to diminish [10]. 

 

4. Conclusion 

In this paper we presented chaotic dynamical systems and their corresponding behaviors as exhibited by the 

nature of bifurcation points in their time evolution functions. In particular we discussed the models of chaotic 

dynamical systems in population biology, reactions in chemistry and Edward Lorenz weather system. It is 

apparent from the paper that dynamical systems can be seen almost everywhere in nature and society. Chaotic 

dynamical system behavior can be observed in many natural and artificial systems and shall always be a 

mystery, a paradox, a puzzle, an enigma and a riddle in nature. 
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