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Abstract Many applications in Science and Engineering have found Laplace’s equation very useful. A 

numerical solution of the equation can be useful in finding the distribution of temperature in a solid body, the 

potential distribution in a region of interest and so on. In this work, Finite Difference Method (FDM) was used 

to discretize Laplace’s equation and then the equation was solved numerically using three different iterative 

methods with the application of different Dirichlet boundary conditions.  The iterative methods used include the 

Jacobi, the Gauss Seidel and the Successive Over Relaxation (SOR) methods. The results obtained indicates that 

no local minima or maxima were observed in the distribution of electric potential in the square grid region. The 

results were compared based on the nature of Dirichlet boundary conditions and it was observed that, the pattern 

of the potential distribution depended greatly on the nature of the boundary conditions. It was observed finally 

by the comparison of the three iterative methods that SOR method is the most effective in terms of accuracy and 

speed of convergence. 
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1. Introduction 

Laplace’s equation is an important equation that has been associated with so many applications in the field of 

Science and Engineering. These applications are not only limited to electrostatics, but fluid dynamics as well as 

steady state heat conduction too. It is a partial differential equation (PDE) of second order which is elliptic in 

nature [1]. A general theory of the solution of Laplace’s equation according to [2] is called potential theory. The 

solutions of Laplace’s equation are usually known as harmonic functions as can be seen in [3-5] and are very 

useful in science and engineering as earlier mentioned. Laplace’s equation has both analytic and numerical 

solutions. Numerical solution of Laplace’s equation is obtained by different methods as applied to many linear 

PDEs. These include finite difference method (FDM), finite element method (FEM) as well as the Method of 

Moments (MoM) as found in [6] and also, Markov Chain method (MCM) covered in [7]. Our approach to solve 

Laplace’s equation numerically focuses on FDM. 

Laplace’s equation itself does not determine the potential of a system, thus, suitable boundary conditions must 

be applied to obtain the potential of any system of interest [5]. A boundary condition can be Dirichlet if it is 

specified at the surface of the boundary of a system, it can be Neumann if the normal derivative of the function 

is specified at the boundary or it can be mixed if part of the boundary is Dirichlet and the rest Neumann [8].  

Laplace’s equation has received attention from many Researchers for different physical applications. A 

numerical solution of Laplace’s equation was obtained in [9] where he compared the result with analytic 

solution and found that, the results were similar. Patil and Prasad solved Laplace’s equation numerically using 

FDM, FEM and MCM [7]. They compared the results with analytic solution and observed that the solution of 

each method used was in close agreement with the exact solution. These two works indicate that, numerical 

solution of Laplace’s equation is in good agreement with its analytic solution. The effectiveness of Successive 
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over relaxation in numerical solution has been emphasized by many researchers as can be seen in [10], [11], 

[12] & [13]. However, the reviewed literatures so far were not able to bring out a clear comparison between 

these iterative methods. No knowledge of how the potential distribution depends clearly on the nature of 

Dirichlet boundary conditions has been unveiled. All the mentioned gaps motivated this research work. 

Thiswork focuses on the estimation of the distribution of electric potential through numerical solution of 2-

Dimensional Laplace’s equation in cartesian coordinate. Finite difference method (FDM) was explored to 

achieve this purpose by utilizing its different iterative schemes. These schemes include Jacobi iteration, Gauss – 

Seidel iteration and Succesive Over Relaxation (SOR) iteration schemes. This was done to check the 

effectiveness of each of the iteration scheme. Also, the dependence of the electric potential distribution in the 

square grid region on the nature of the Dirichlet boundary conditions applied was investigated. 

The remaining part of the paper is organized as follows; section 2 presents materials and methods used in this 

research. Details of Laplace’s equation and solution are presented here. Results are presented and discussed in 

section 3 and section 4 concludes the research. 

 

2. Materials and Methods 

According to [5], Gauss’ law may be written as: 

∇. 𝐄 =
ρ

𝜀0

                                  (1) 

The electric field intensity can be expressed in terms of scalar potential as: 

𝐄 = −∇𝑉                                      (2) 

Equation (2) substituted into equation (1) results to: 

∇2V = −
ρ

𝜀0

                                (3) 

Where V is electric potential, ρ is charge density and 𝜀0 is the permittivity of free space. Equation (3) above is 

called Poisson’s equation. 

The interest of this work is to find the potential in a charge free region (i.e.ρ = 0). Therefore, poison equation 

reduces to Laplace’s equation written as: 

∇2V = 0                                    (4) 

Laplace’s equation in 3-D Cartesian coordinates is expressed as: 

𝜕2 𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
+

𝜕2𝑉

𝜕𝑧2
= 0          (5) 

However for 2-D, Laplace’s equation is given as: 

𝜕2 𝑉

𝜕𝑥2
+

𝜕2𝑉

𝜕𝑦2
= 0                   (6) 

 

Finite difference Method (FDM) and Discretization of Laplace’s Equation 

To compute the potential from Laplace’s equation, the equation is discretized with constant grid spacing in the x 

and y directions respectively. A rectangular body whose boundaries are conducting surfaces is divided into grid 

points of 𝑚 × 𝑛constant spacing and Dirichlet boundary conditions are applied. The grid spacing in the x 

direction is denoted by ℎ𝑥  while that in the y direction is denoted by ℎ𝑦 . Since the grid point spacing is constant, 

ℎ𝑥 = ℎ𝑦 = ℎ. 

The grid points are indexed by (k, l), where 𝑘, 𝑙 = 1, 2, 3, … , 𝑚, 𝑛. Thus, the finite difference formula is given by 

[8]: 

𝜕2𝑉

𝜕𝑥2
≈

𝑉𝑘+1,𝑙 − 2𝑉𝑘,𝑙 + 𝑉𝑘−1,𝑙

ℎ2
                                  (7) 

and 

𝜕2𝑉

𝜕𝑦2
≈

𝑉𝑘,𝑙+1 − 2𝑉𝑘,𝑙 + 𝑉𝑘,𝑙−1

ℎ2
                                    (8) 

where ℎ is the constant spacing on the grid points. 

Equations (7) and (8) are substituted in (6) which produce: 
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𝑉𝑘+1,𝑙 + 𝑉𝑘−1,𝑙 + 𝑉𝑘,𝑙+1 + 𝑉𝑘,𝑙−1 − 4𝑉𝑘,𝑙 = 0           (9) 

Equation (9) is the discretized Laplace’s equation. Rearranging it leads to: 

𝑉𝑘,𝑙 =
1

4
 𝑉𝑘+1,𝑙 + 𝑉𝑘−1,𝑙 + 𝑉𝑘,𝑙+1 + 𝑉𝑘,𝑙−1          (10) 

Equation (10) implies that, every potential grid point depends on the values of the four nearest neighboring 

potential grid points as can be illustrated in a five point stencil below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This can be presented in a generalization of grid point for computation of electric potential as shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen from the diagram above, the blue grid points at the boundaries correspond to the boundary 

values which are represented according to equation (10) by the potential values 𝑉1,1, 𝑉2,1 , … , 𝑉𝑚,1 from the 

bottom across the grid points, 𝑉1,𝑛𝑉2,𝑛 , … , 𝑉𝑚𝑛  from the top across the grid points, 𝑉1,1, 𝑉1,2 …𝑉1,𝑛  from the 

bottom left to the top of the grid points and 𝑉𝑚,1, 𝑉𝑚,2 , … , 𝑉𝑚𝑛  from the bottom right to the grid of the points. 

The potential values to be evaluated are those in the interior grid points which sweep across the grid points from 

𝑉2,2, 𝑉3,2, 𝑉4,2 …𝑉𝑚−1,2 up to 𝑉2,𝑛−1, 𝑉3,𝑛−1, … , 𝑉𝑚−1,𝑛−1 

A system of equation, one for each potential node as generated from equation (10) is shown below 

       1 2      3      4       5       6      7    ………               m 
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𝑥 
Figure 2: Generalize Grid Point for Potential Computation 
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Figure 1: Five Point Stencil for Potential Computation 
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𝑉2,2 =
1

4
 𝑉1,2 + 𝑉3,2 + 𝑉2,3 + 𝑉2.1 

𝑉3,2 =
1

4
 𝑉2,2 + 𝑉4,2 + 𝑉3,3 + 𝑉3,1 

⋮

𝑉𝑚−1,2 =
1

4
 𝑉𝑚−2,2 + 𝑉𝑚,2 + 𝑉𝑚−1,3 + 𝑉𝑚−1,1 

𝑉2,3 =
1

4
 𝑉1,3 + 𝑉3,3 + 𝑉2,4 + 𝑉2,2 

𝑉3,3 =
1

4
 𝑉2,3 + 𝑉4,3 + 𝑉3,4 + 𝑉3,2 

⋮

𝑉𝑚−1,3 =
1

4
 𝑉𝑚−2,3 + 𝑉𝑚,3 + 𝑉𝑚−1,2 + 𝑉𝑚−1,4 

𝑉2,𝑛−1 =
1

4
 𝑉1,𝑛−1 + 𝑉3,𝑛−1 + 𝑉2,𝑛−2 + 𝑉2,𝑛 

𝑉3,𝑛−1 =
1

4
 𝑉2,𝑛−1 + 𝑉4,𝑛−1 + 𝑉3,𝑛−2 + 𝑉3,𝑛 

⋮

𝑉𝑚−1,𝑛−1 =
1

4
 𝑉𝑚−2,𝑛−1 + 𝑉𝑚,𝑛−1 + 𝑉𝑚−1,𝑛 + 𝑉𝑚−1,𝑛−1  

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

                                   (11)     

A solution of the above system of equation may be obtained from direct Gaussian elimination method for a 

system of small (𝑚 × 𝑛) unknown. For a large system of unknown, iterative methods achieve a better result. 

For all grid based numerical schemes according to [14], the accuracy of the numerical results depends greatly on 

the computational grid. Thus, a grid converged solution would be preferred for accuracy (i.e. when more grid 

point are used, solution does not change significantly as one approaches a tolerance point). Three iterative 

methods are proposed to use for this work which include; the Jacobi method, the Gauss – Seidel method and the 

Successive over Relaxation method (SOR). Details of each iterative method is provided below 

 

The Jacobi Iteration Method   

The Jacobi iterative formula is given by [15]: 

V𝑘,𝑙
𝑞+1

=
1

4
 𝑉𝑘−1,𝑙

𝑞
+ 𝑉𝑘+1,𝑙

𝑞
+ 𝑉(𝑘,𝑙−1)

𝑞
+ 𝑉𝑘,𝑙+1

𝑞
             (12) 

The superscript q is an iterative index. The initial iterative guess can be set at 𝑞 = 0, to produce 𝑉𝑘,𝑙
0  and then 

successively improve it according to the iteration. From equation (12) above, the next iteration (q+1) can be 

found for each grid point (𝑘, 𝑙) across all the grid points in the horizontal rows. On completion of the iteration 

for all interior grid points, the difference between the vectors of the next iteration 𝑉𝑞+1 and the previous 

iteration 𝑉𝑞  is computed. The iteration terminates once the predefined condition (tolerance) set for the iteration 

to converge is met and the solution to (12) is   𝑉𝑞+1, otherwise the iterations continue. i.e. 

 𝑉𝑞+1 − 𝑉𝑞  < 𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 

The Gauss–Seidel Iteration Method 

The Gauss-Seidel iteration formula is given in [16] by; 

V𝑘,𝑙
𝑞+1

=
1

4
 𝑉𝑘−1,𝑙

𝑞+1
+ 𝑉𝑘+1,𝑙

𝑞
+ 𝑉𝑘,𝑙−1

𝑞+1
+ 𝑉𝑘,𝑙+1

𝑞
              (13) 

As can be seen from equation (13), the values of 𝑉𝑘−1,𝑙and 𝑉𝑘,𝑙−1updated already as one moves through the grids 

to reach the grid point (𝑘, 𝑙).The implementation of this iteration scheme is the same as in Jacobi scheme.  

 

The Successive Over-Relaxation (SOR) Method 

This is the most used iteration method and is embedded in the Gauss-Seidel Method. A relaxation parameter𝜆 is 

included in the Gauss-Seidel iteration formula with the aim of quickening the convergence. This is given 

according to [17] by; 
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𝑉𝑘,𝑙
𝑞+1

=  1 − 𝜆 𝑉𝑘,𝑙
𝑞

+
𝜆

4
 𝑉𝑘−1,𝑙

𝑞+1
+ 𝑉𝑘+1,𝑙

𝑞
+ 𝑉𝑘,𝑙−1

𝑞+1
+ 𝑉𝑘,𝑙+1

𝑞
          (14) 

The relaxation parameter is of the range  1 < 𝜆 < 2 having a optimal value given by 𝜆 = 2 −

𝜋ℎ [16].Implementation of SOR proceeds the same way as the first two methods.  

MATLAB programs are developed for the three iteration methods and Dirichlet boundary conditions are applied 

for a 100 × 100 grid. The first boundary condition is applied in such a way that, the three boundaries are 

grounded, which is the left, right and the bottom boundaries while the top boundary is set at a potential of 

1.0 𝑣𝑜𝑙𝑡. In the second boundary condition, the left and right are grounded while the bottom and top boundaries 

are maintained at a potential of 1.0 𝑣𝑜𝑙𝑡. This can be written mathematically as: 

𝑉 0, 𝑦 = 0,    𝑉 𝑎, 𝑦 = 0, 𝑉 𝑥, 0 = 0 𝑎𝑛𝑑 𝑉 𝑥, 𝑏 = 1.0  

And 

𝑉 0, 𝑦 = 0,    𝑉 𝑎, 𝑦 = 0, 𝑉 𝑥, 0 = 1.0 𝑎𝑛𝑑 𝑉 𝑥, 𝑏 = 1.0  

The tolerance is set at 

𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒 = 10−12  

 

3. Results and Discussions 

This section presents the results of the computed electric potential based on the iteration schemes and the 

boundary conditions discussed above.  

Fig. 3 presents the results of electric potential distribution as a numerical solution of Laplace’s equation with 

Dilichlet boundary condition applied such that the left, right and bottom boundaries are grounded while the top 

boundary is maintained at a potential of 1.0 𝑉𝑜𝑙𝑡. The results obtained through the different iteration schemes 

exhibit similar pattern in their surface plots of Fig. 3 (a), (b) and (c) respectively. As it is the case of the solution 

of Laplace’s equation, the electric potential increases from the left to the middle and decreases to the right. It 

also increases steadily from the bottom to the top. This clearly indicates that there are no local maxima or 

minima found in the solution. According to [5], it is a requirement of Laplace’s equation that, as the charge 

density vanishes at the second derivative, it is reasonable that the solutions show no maxima or minima.  

Despite the fact that the plots of the solution exhibit similarities with different iteration schemes, there exist 

differences in terms of accuracy and convergence between different iteration schemes. The Jacobi iteration 

method based on the tolerance set converged very slowly with an error limit of 9.9948 × 10−13and 24293 

number of iterations. The Gauss Seidel iteration method converged faster than the Jacobi iteration method with 

12811 number of iterations but an error limit of 9.9953 × 10−13 . This clearly indicates that, the improvement of 

Gauss Seidel method over Jacobi method is only in the reduction of the number of iterations as you do not need 

many iterations to arrive the result. There is no significant difference in their accuracy. Successive Over 

Relaxation method proved to be the most powerful and efficient iteration scheme than the previous iteration 

methods. SOR method converged at an error limit of 2.9060 × 10−13  and with 572 number of iterations. This is 

far better than the previous methods. The relaxation parameter indeed played an important role in speeding up 

the iterations.  

The plot of error against the number of iterations for the three iteration methods are shown in Fig. 4. The plots 

show how the various iteration methods converged as the number of iterations increased. It is obvious from the 

graphs that, the Jacobi iteration method converged slower than the other methods while SOR converged faster 

than all of them and is also more accurate. 

It is also important to know that, the number of iterations is proportional to number of grid points considered in 

the region irrespective of the iteration method used. 

In figure 5, the result of electric potential distribution in a square grid system is presented. Dirichlet boundary 

condition applied here is such that, the left and the right boundaries of the grid are grounded while the bottom 

and the top boundaries are maintained at 1.0 𝑉𝑜𝑙𝑡. Having established the efficiency of the SOR from the above 

comparison, the computation of the electric potential was done using SOR method. The result show increase in 

electric potential from the left to the middle and then decreases to the right, decreases from the bottom of the 

grid to the middle and again increases to the top.  
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The electric potential in the middle of the grid appears to be the maximum potential for electric potential 

distributed from the left to the right and appears to be the minimum potential for that distributed from the 

bottom to the top. However, this point is neither a local minimum nor a local maximum. This again agrees with 

Griffiths’ assertion that, local minima or maxima does not exist in the solution of Laplace’s equation [5]. It is 

clear from this result that, the distribution of electric potential in the region of a square grid system depends on 

the nature of the Dirichlet boundary conditions applied. 

(b) 

(c) 

(a)

Figure 3: Surface Plot of Potential Distribution through (a) Jacobi Iteration Method, (b) Gauss Seidel 

Iteration Method and (c) Over Relaxation Iteration Method. 



Atsue T et al                                            Journal of Scientific and Engineering Research, 2018, 5(12):268-276 

 

Journal of Scientific and Engineering Research 

274 

 

 

 

 

 

 

 

 

  

(a) (b) 

(c) 

Figure 4: Error Plot for (a) Jacobi Iteration Method (b) Seidel Iteration Method and (c) 

Successive Over Relaxation Iteration Method 
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(a) 

(b) 

Figure 5: (a) Surface Plot of Electric Potential Distribution (b) Contour Plot of Electric 

Potential Distribution 



Atsue T et al                                            Journal of Scientific and Engineering Research, 2018, 5(12):268-276 

 

Journal of Scientific and Engineering Research 

276 

 

4. Conclusion 

This research considered the distribution of electric potential in a square grid region through the numerical 

solution of Laplace’s equation. Three different iteration schemes under Finite Difference Method (FDM)were 

compared which are the Jacobi, the Gauss Seidel and the SOR iteration methods. The results obtained showed 

clearly that, the SOR iteration method is more efficient in terms of accuracy and speedy convergence.  Two 

different Dirichlet boundary conditions were also considered which showed different patterns in the distribution 

of the electric potential in a square grid region. This indicated that the distribution of electric potential in a 

square grid region depend on the nature of the Dirichlet boundary conditions applied. In each case, it was 

observed that the potential distribution exhibited no local minima or maxima. 
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