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1. Introduction 

Fractional differential equations is a generalization of ordinary differential equations and integration to arbitrary 

non integer orders. The origin of fractional calculus goes back to Newton and Leibniz in the seventieth century. 

It is widely and efficiently used to describe many phenomena arising in engineering, physics, economy, and 

science. Recent investigations have shown that many physical systems can be represented more accurately 

through fractional derivative formulation . Fractional differential equations, therefore find numerous 

applications in the field of viscoelasticity, feed- back amplifiers, electrical circuits, electro analytical chemistry, 

fractional multipoles, neuron modelling encompassing different branches of physics, chemistry and biological 

sciences. Many strategies for tackling fractional differential equations were proposed, such asAdomian 

decomposition method [1-2], complex transform method [3-4], exponential function method [5-6], the first 

integral method [7-8]. Many problems used the sub equation method [9-10], and we solve the nonlinear 

fractional partial differential equations by using this method. Most recently, according to homogeneous balance 

principle and Jumaries modified Riemann-Liouville derivative, Zhang and Zhang presented a novel technique, 

that is fractional sub-equation method. A fractional sub-equation method is proposed to solve fractional 

differential equations. 

2. Modified Riemann–Liouville Derivative 

Modified Riemann – Liouville derivative of order 𝛽 is defined by [11]  

 𝐷𝑧
𝛽
ℎ 𝑧 =

1

Γ(1−𝛽)
  
𝑧

0
(𝑧 − 𝜁)−𝛽−1(ℎ(𝜁) − ℎ(0))𝑑𝜁, 𝛽 < 0 (1) 

 =
1

Γ(1−𝛽)

𝑑

𝑑𝑧
  
𝑧

0
(𝑧 − 𝜁)−𝛽(ℎ(𝜁) − ℎ(0))𝑑𝜁, 0 < 𝛽 < 0 (2) 

 = [ℎ𝛽−𝑛(𝑧)]𝑛 , 0 ≤ 𝛽 < 𝑛 + 1, 𝑛 ≥ 1 (3) 

The properties of modified Riemann – Liouville derivative which are used in this paper [12-13]  

 𝐷𝑧
𝛽
𝑧𝛾 =

Γ(𝛾+1)

Γ(𝛾+1−𝛽)
𝑧𝛾−𝛽 , 𝛾 > 0 (4) 

 𝐷𝑧
𝛽  ℎ 𝑧   𝑔(𝑧) = 𝑔(𝑧)  𝐷𝑧

𝛽
ℎ 𝑧 + ℎ 𝑧   𝐷𝑧

𝛽
𝑔(𝑧) (5) 

 𝐷𝑧
𝛽
𝑓[𝑔(𝑧)] = 𝑓′[𝑔(𝑧)]  𝐷𝑧

𝛽
𝑔(𝑧) = 𝐷𝑧

𝛽
𝑓[𝑔(𝑧)]𝑔′(𝑧)𝛽  (6) 
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3. The sub–Equation method 

This method is based on four steps for solving the fractional partial differential equations 

Let  

 𝑢(𝑉, 𝑉𝑡 , 𝑉𝑥 , 𝐷𝑡
𝛽
𝑉, 𝐷𝑥

𝛼𝑉, 𝐷𝑡𝑡
2𝛽
𝑉, 𝐷𝑥𝑥

2𝛼𝑉, . . . ) = 0,0 < 𝛽 < 1,0 < 𝛼 < 1 (7) 

be a nonlinear fractional partial differential equations in 𝑥 and 𝑡. 

3.1. The first step 

Let  

 𝑉(𝑥, 𝑡) = 𝑉(𝜁), 𝜁 =
ℓ𝑥𝛼

Γ(1+𝛼)
+

𝜆𝑡𝛽

Γ(1+𝛽)
 (8) 

where  ℓ and 𝜆  are constants. Then (7) will transform to:  

 𝑢(𝑉, 𝑉  ′, 𝑉  ′′ , . . . ) = 0 (9) 

where the symbol “  ′ ” represents the derivative w. r. to .𝜁 

 

3.2. The second step 

Suppose that (9) has the solution 

 𝑉(𝜁) =   𝑛
𝑚=0 𝐶𝑚   𝜓𝑚  (10) 

Where  𝐶𝑚   (𝑚 = 0,1, . . . , 𝑛)   are constants, we will evaluate them, 𝑛 is determined by the balancing in eq. (9) 

between the highest order derivative and the nonlinear term. Let 𝜓 = 𝜓(𝜁)  be the solution of Riccati equation  

 𝐷′𝜓 = 𝜎 + 𝜓2  (11) 

where  𝜎 is a constant, so eq. (11) has the solutions 141516  

 𝜓(𝜁)   =

 
 
 
 
 

 
 
 
 

= − −𝜎tanh  −𝜎𝜁 ,                    𝜎 < 0

= − −𝜎coth  −𝜎𝜁 ,                    𝜎 < 0

=  𝜎tan  𝜎𝜁 ,                        𝜎 > 0

= − 𝜎cot  𝜎𝜁 ,                          𝜎 > 0

= −
1

𝜁+𝑤
,      𝑤 = 𝑐𝑜𝑛𝑠𝑡,            𝜎 = 0

  (12) 

 

3.3. The third step 

Substitute eq. (10) into eq. (9) and using (11). We obtain a polynomial in 𝜓(𝜁). Equate the coefficients of the 

same power of 𝜓𝑚 , we have nonlinear equations of 𝐶𝑚   (𝑚 = 0,1, . . . , 𝑛) 

 

3.4. The fourth step 

Solve these equations by using Mathematica program, and substitute these solutions in eq. (10) 

 

4. Applications 

We evaluate the solutions of some nonlinear fractional partial differential equations by using the sub-equation 

method. 

Example 1 Burgers’ equation is a fundamental partial differential equation occurring in various areas of 

applied mathematics, such as fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow. It is named 

for Johannes Martinus Burgers  1895 − 1981 .For a given field 𝑦(𝑥, 𝑡) and diffusion coefficient (or viscosity, 

as in the original fluid mechanical context), the general form of Burgers’ equation (also known as viscous 

Burgers’ equation) in one space dimension is the dissipative system. This equation has the form 8  

   𝐷𝑡
𝛽
𝑉 + 𝑉  𝐷𝑥

𝛽
𝑉 = 𝜈  𝐷𝑥

2𝛽
𝑉, 0 < 𝛽 ≤ 1,      𝑡 > 0 (13) 

 𝑙𝑒𝑡𝑉(𝑥, 𝑡) = 𝑉(𝜁),                                            𝜁 =
ℓ𝑥𝛽

Γ(1+𝛽)
+

𝜆𝑡𝛽

Γ(1+𝛽)
 (14) 

  Where ℓ, 𝜆  and  𝜈  are constants then eq. (20)  tansforms to 

𝜆𝑉  ′ + ℓ𝑉  𝑉  ′ − 𝜈  ℓ2𝑉  ′′ = 0     
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Integrate this equation, we obtain  

 𝜆𝑉 +
1

2
ℓ𝑉2 − 𝜈  ℓ2𝑉  ′ = 0 (15) 

 By balancing the nonlinear term and the highest order derivative, we obtain 𝑛 = 1, so eq. (22)has the solution  

 𝑉(𝜁) = 𝐶0 + 𝐶1𝜓 (16) 

 And the derivatives of 𝑉  are 

𝑉  ′(𝜁) = 𝐶1𝜎 + 𝐶1𝜓
2 

Substitute these equations in eq. (15) 

𝜓2 :  − 𝜈𝐶1ℓ2 +
1

2
ℓ  𝐶1

2 = 0 

𝜓1:  𝜆𝐶1  + ℓ𝐶0  𝐶1 = 0 

𝜓0:  𝜆𝐶0  +
1

2
ℓ  𝐶0

2 − 𝜈𝐶1ℓ2𝜎 = 0 

We solve this system by using Mathematica Program, we obtain  

 𝐶0 = −
𝜆

ℓ
,          𝐶1 = 2  𝜈  ℓ,        𝜎 = −

𝜆2

4𝜈2   ℓ4 (17) 

 So the solutions of eq.  13  by using (12,14,16,17)are:  

 𝑉1(𝑥, 𝑡, 𝑦) = −
𝜆

ℓ
+

𝜆

ℓ
tanh  

𝜆

2𝜈  ℓ2  
ℓ𝑥𝛽

Γ(1+𝛽)
+

𝜆𝑡𝛽

Γ(1+𝛽)
   (18) 

  

 𝑉2(𝑥, 𝑡, 𝑦) = −
𝜆

ℓ
−

𝜆

ℓ
coth  

𝜆

2𝜈  ℓ2  
ℓ𝑥𝛽

Γ(1+𝛽)
+

𝜆𝑡𝛽

Γ(1+𝛽)
   (19) 

Example 2 The space time fractional potential Kadomstev – Petviashvili (PKP) equation 17  

 
1

4
𝐷𝑡

4𝛽
𝑉 +

3

2
  𝐷𝑥

𝛽
𝑉 ⋅ 𝐷𝑥

2𝛽
𝑉 +

3

4
𝐷𝑦

2𝛽
𝑉 + 𝐷𝑡

𝛽
 𝐷𝑥

𝛽
𝑉 = 0                                                    0 < 𝛽 ≤ 1,      𝑡 > 0 (20) 

  𝑙𝑒𝑡𝑉(𝑥, 𝑡, 𝑦) = 𝑉(𝜁),                                            𝜁 =
ℓ𝑥𝛽

Γ(1+𝛽)
+

𝜆𝑡𝛽

Γ(1+𝛽)
+

𝜇𝑦𝛽

Γ(1+𝛽)
                       (21) 

  Where ℓ, 𝜆  and 𝜇  are constants then eq. (13)  tansforms to 

1

4
𝜆4𝑉  ′′′′ +

3

2
ℓ3𝑉  ′  𝑉  ′′ +

3

4
𝜇2𝑉  ′′ + ℓ  𝜆𝑉  ′′ = 0     

Integrate this equation, we obtain  

 𝜆4𝑉  ′′′ + 3  ℓ3𝑉  ′2 +  3𝜇2 + 4ℓ  𝜆   𝑉  ′ = 0                                                                                         (22) 

 By balancing the nonlinear term and the highest order derivative, we obtain 𝑛 = 1, so eq.  15 has the solution  

 𝑉(𝜁) = 𝐶0 + 𝐶1𝜓                                                                                                                                                   (23) 

 And the derivatives of 𝑉  are 

𝑉  ′(𝜁) = 𝐶1𝜎 + 𝐶1𝜓
2 

𝑉  ′′(𝜁) = 2𝐶1𝜎𝜓 + 2𝐶1𝜓
3  

𝑉   
′′′

(𝜁) = 2𝐶1𝜎
2 + 8𝐶1𝜎𝜓

2 + 6𝐶1𝜓
4 

Substitute these derivatives in eq.  15 and equate the coefficients of 𝜓4  , 𝜓2 , 𝜓0  

𝜓4:  6𝐶1𝜆
4 + 3ℓ3𝐶1

2 = 0 

𝜓2:  8𝐶1  𝜎  𝜆4 + 6𝐶1
2  ℓ3𝜎 + 𝐶1 3𝜇

2 + 4ℓ  𝜆 = 0 

𝜓0:  2𝐶1  𝜎
2  𝜆4 + 3ℓ3𝐶1

2 + 𝐶1𝜎 3𝜇
2 + 4ℓ  𝜆 = 0 

We solve this system by using Mathematica Program, we obtain  

 𝐶1 = ±
 2

3
5
4𝜇

5
2   

,        ℓ = ∓
3

3
4𝜇

3
2

 2
,        𝜆 = ±

3
1
4  
 𝜇

 2
, 𝜎 = −1             (24) 

So the solutions of eq.  13  by using  12,14,16,17  are:  

 𝑉1(𝑥, 𝑡, 𝑦) = 𝐶0 ∓
 2

3
5
4𝜇

5
2   

tanh  ∓
3

3
4𝜇

3
2𝑥𝛽

 2Γ(1+𝛽)
+

3
1
4  
 𝜇𝑡

𝛽

 2Γ(1+𝛽)
+

𝜇𝑦𝛽

Γ(1+𝛽)
  (25) 

 𝑉2(𝑥, 𝑡, 𝑦) = 𝐶0 ±
 2

3
5
4𝜇

5
2   

coth  ∓
3

3
4𝜇

3
2𝑥𝛽

 2Γ(1+𝛽)
+

3
1
4  
 𝜇𝑡

𝛽

 2Γ(1+𝛽)
+

𝜇𝑦𝛽

Γ(1+𝛽)
  (26) 
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5. Conclusion 

We used the sub-equation method to solve two non linear fractional partial differential equations, 

namely,namely the space time fractional potential Kadomstev–Petviashvili (PKP) equation and Burgers’ 

equation. This method is based on the balancing principle, so it can be applied to others fractional partial 

differential equations which satisfy this principle. By using this method, we obtain more general exact solutions 

of many applications of non linear fractional partial differential equations. 
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