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Abstract In this paper, a local energy-preserving scheme for solving the regularized long wave (RLW) equation 

are constructed. By using the implicit midpoint method and the AVF method for the spatial and temporal 

discretization respectively, we present an numerical algorithm for the RLW equation. The new method is proved 

to be local energy preserving. With suitable boundary conditions, such as periodic boundary conditions, the 

algorithms admit global energy conservation law. Numerical experiments are conducted to show the 

performance of the proposed conservative scheme. 
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1. Introduction 

The regularized long wave (RLW) equation 

 ,<<,0<<0,=)(
2

2 Ttbxauuuu xxxtxt


   (1.1) 

 subject to the initial and boundary condition  

 ,<<0),,(=),( Tttbutau  (1.2) 

 .<<),(=,0)( 0 bxaxuxu  

 was first put forward by Peregrine [1] to describe a model for long waves on the surface of water in a channel, 

and later by Benjamin et al. [2]. P. J. Olver [3] presented that the RLW equation posses only three independent 

conservation laws: 

Mass conservation law  

 .== 1Cudx
b

aS  (1.3) 

Global momentum conservation law (GMCL)  
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1
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b

a
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Global energy conservation law (GECL)  

 .=)3(
2

1
= 3

23 Cdxuu
b

a
 E  (1.5) 

This equation has drawn much attention for decades and has motivated a series of studies in physics and 

mathematics. Various numerical methods have been used to investigate the solutions for the RLW equation [6, 

4, 5, 7]. In particularly the finite difference method in [8], finite element methods such as the Galerkin method 

in [9], collocation methods in [10] and so on. 
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In this paper, we will focus on the local energy preserving algorithm for the RLW equation. First we apply the 

second order AVF method in time discritization and then apply the implicit midpoint method in space 

discretization to construct a local energy-preserving scheme. 

The rest of this paper is organized as follows: In Section 2, a local energy-preserving algorithm is developed for 

the RLW equation. We prove that the proposed scheme preserves the total energy and mass in the discrete 

forms. Numerical experiments are presented to verify the performance of the scheme in Section 3. 

 

2. Local energy-preserving algorithm   

2.1. Multisymplectic structure of the RLW equation  

First we introduce the conjugate variables txx uuvu =,=,=   and xxtxxtp 


  2
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TpvuZ ),,,,(=  , equation (1.1) can be reformulated into the following PDEs  

 0,=
2

1

2

1
xxt puu   

 ,
2

=
22

1

22

1 2upv xxtt








   

 ,
2

=
2




tu  (2.1) 

 ,
2

=
2

vux


 

 .= ux  

Thus it can be written as a multi-symplectic system 
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Proposition 2.1 The system (2.1) possesses a local energy conservation law (LECL)  
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Proof. Multiplying (2.1) by x , xu , xv , x  and xp  respectively gives  
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Adding the above equations (2.3) together, we have  
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According the commutative law and discrete Leibnitz rules, we can obtain local energy conservation law (2.2).  

With the initial and periodic boundary conditions (1.2), we obtain the global energy conservation law (GECL) 

(1.5). 

 

2.2. Local energy-preserving scheme 

In this subsection, we propose the new local energy-preserving schemes for the RLW equation. We first 

introduce some notations: the spatial domain ],[= baI  and abL = , hjax j = , 10,1,2,= Nj  , 

where Nabh )/(=   is the spatial length. ktk =  , 0,1,2,=k , where   is temporal step span. 

Some operators are also defined. Let 
k

ju  be the approximation of ),( txu  at the node ),( kj tx . We define the 

finite difference operators  
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 and averaging operators  
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Now we apply the implicit midpoint scheme in time and the AVF method in space to construct the local energy-

preserving algorithm for RLW equation. 

 LEP scheme: First we use the implicit midpoint scheme in time and obtain semi-discrete system  
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 Then we use the AVF method in space  
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 The full-discrete system can be written as  
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Eliminating the auxiliary variables  , v ,   and p  yields the system  
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 Omitting the average operator xA  and tA  we can get a two time level scheme  
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Theorem 2.2 The scheme (2.4) or (2.5) preserve the discrete local energy conservation law  
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Summing the above equations (2.8)  
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 By using the discrete Leibniz rule and commutative law we can deduce  
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So we can reduce the equation (2.8) to discrete local energy conservation law (2.6).  

Remark 2.3 The discrete LECL (2.6) is independent of boundary conditions and is consist with the continuous 

LECL (2.2).  

 Summing the discrete energy conservation law (2.6) over index j reads  
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 With the initial and periodic boundary conditions (1.2), we can obtain the following discrete global energy 

conservation law. 

 

Corollary 2.4 For the initial and periodic boundary conditions (1.2), the LEP scheme preserves the discrete 

GECL  
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3. Numerical experiments 

In this section, we conduct some numerical experiments to verify the theoretical results of the LEP scheme. 

The RLW equation have the following soliton solution [1]  
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 is the discrete global energy. 

 

Example 3.1  (Single solitary wave) 

We consider the RLW equation with initial boundary conditions  

),,(=),()),((3=,0)( 0

2 tbutauxxkcsechxu   

 where 1== , 0.3=c , 0=0x .  

Computations are done with grid number 800=N , temporal step 0.1=  and spatial step 0.125=h , 

6040  x . The relative error of mass, energy and momentum are computed by using local structure 

preserving schemes LMP and LEP.  

 
(a)                                                                  (b) 

Figure  1: The numerical solution of the LEP scheme with 0.125=  and 0.1=h . (a) Propagation of 

solitary wave from 0=t  to 60=t . (b) The conservation properties of the LEP scheme.  

Fig. 1 displays the results of single soliton obtained by using the LEP scheme. As it can be seen from Fig. 1(a), 

the propogation of solitary wave over time interval [0,60] is travelling from left to right as required and the 
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shape of the solution is preserved accurately. Fig. 1(b) shows that the relative mass and energy are conserved to 

the machine accuracy. We can also see that the error of energy growth linearly. 

Example 3.2  (Two-solitary wave) 

In the following simulations, we will study interaction of two positive solitary waves.  

 )),((3))((3=,0)( 22

2

211

2

1 xxksechcxxksechcxu   (3.2) 

 where 1== , 0.1=0.2,= 21 cc , 147=177,= 21  xx .  

We apply the LEP scheme to the solitary waves with initial condition (3.2) over time interval [0,600].  

 
(a)                                                          (b) 

Figure  2: The numerical solution of the LEP scheme with 0.5=  and 0.5=h . (a) Propagation of solitary 

wave from 0=t  to 600=t . (b) The conservation properties of the LEP scheme. 

Computations are carried out with grid number 1200=N , temporal step 0.5=  and spatial step 0.5=h , 

200200  x . The interaction process of two solitary obtained by using the LEP scheme can be viewed in 

Fig. 2(a). The quantities mass, energy and momentum versus time are depicted in Fig. 2(b). 

 

Example 3.3  (Three-solitary wave) 
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 where 1== , 0.25=0.5,=1,= 321 ccc , 35=18,=0,= 321 xxx .  

Computations are done with grid number 400=N , space step 0.1=h  temporal step 0.05=  and spatial 

step 0.1=h , 11040  x .  

 
(a)                                                                                             (b) 
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Figure  3: The numerical solution of the LEP scheme with 0.05=  and 0.1=h . (a) Propagation of solitary 

wave from 0=t  to 100=t . (b) The conservation properties of the LEP scheme. 

   

Fig. 3 provides the results of three-solitary wave with the time step 0.05=  and the space step 0.1=h  by 

using the LEP scheme. As it can be seen from Fig. 3(a), the propogation of solitary wave over time interval 

[0,100] is travelling from left to right as required and the shape of the solution is preserved accurately. Fig. 3(b) 

shows that the relative mass and energy are conserved to the machine accuracy. The error of energy growth 

linearly. 

We can draw a clear conclusion from the numerical results that the LEP scheme provides highly accurate 

numerical solutions and preserves the local mass and energy to machine accuracy. 

 

4. Conclusions 

The local/global conservation laws, such as symplectic and multisymplectic conservation laws, local energy and 

momentum conservation laws, usually play an important role in physics and applications for PDEs. In this work, 

we have proposed a local energy-preserving algorithm to simulate the RLW equation. The new scheme is a 

conservative scheme, which not only preserve discrete local energy but also preserve the local mass precisely. 

The merit of the scheme is that with suitable boundary conditions, for example with periodic boundary 

conditions, this algorithm conserve the global mass and energy precisely. Numerical results indicate that the 

present scheme can well simulate different solitary wave behaviors of the RLW equation in long term 

computation and also show excellent performance in preserving geometry structure. 
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