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Abstract In this work, we propose a study of the silicon solar cell under magnetic field in the presence of 

temperature. The object of this study is the determination of the short-circuit photocurrent for different 

temperature values corresponding to a maximum diffusion of the minority charge carriers. These temperature 

values, called Topt (B), are a function of the magnetic field and are obtained from the evolution of the diffusion 

coefficient of the minority charge carriers as a function of the temperature for different values of the magnetic 

field. These optimal temperature values Topt (B) will allow the study of the minority charge carriers density and 

the photocurrent. 
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1. Introduction 

The quality of a solar cell is closely linked to its electronic parameters which depend on the diffusion coefficient 

and to its electrical parameters, the increase of which will influence the efficiency of the photovoltaic array [1-

2]. Among these electrical parameters, one can cite the photocurrent [3-5]. The latter characterizes the flow of 

electrons passing through the junction and therefore the performance of the solar cell [6-8]. Several parameters 

influence the photocurrent [9], which explains its record 25.6% efficiency for silicon solar cells [10]. Thus, 

several characterization techniques, including the effect of the magnetic field [3, 11, 12], the electric field [13], 

the doping rate [14], the temperature [15,16] recombination at the grain boundaries [17], the grain size [17], the 

recombination velocity at the junction [18,19], the illumination level [20-23] with a solution to realize an 

automation orientation system of solar sensors that can be used for photovoltaic panels [24], wavelength [25], 

frequency [26], irradiation [27-29], the thickness of the base [30], the recombination velocity at the back [31], 

the recombination rate at the surface [32] and the number of junctions [33] been presented. The study of these 

external parameters as internal on the photocurrent was made on arbitrary choices. In our study, we consider 

temperatures which give a maximum diffusion of the charge minority carriers photogenerated in the base. These 

temperature values, called Topt (B), are a function of the magnetic field B and are obtained from the evolution 

of the diffusion coefficient of the minority charge carriers as a function of the temperature for different values of 

the magnetic field. Thus, the study of the minority charge carriers density is proposed, which will allow to 

access to the photocurrent. 

 

2. Theory 

In this study we consider a type of solar cell n
+
-p-p

+ 
under polychromatic illumination. The structure of this 

solar cell is shown in Figure 1: 
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Figure 1: Silicon solar cell n+pp+ type 

When the solar cell is illuminated by multispectral light various phenomena such as the creation of electron-hole 

pairs, the diffusion of the minority charge carriers in the base as well as the recombination can occur. The whole 

of these phenomena is governed by an equation called: continuity equation which is relative to the density of 

excess minority carriers in the base. It is represented by Equation 1:   
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G(x) represents the rate of generation of the minority load carriers which depends on the depth in the base 

according to relation [34]: 
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The coefficients ai and bi are obtained from the tabulated values of the radiation under A.M1.5 [35]. These 

coefficients are given by: 
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D * (B, T) represents the diffusion coefficient of the minority carriers of charge in the base. It depends on the 

temperature and the magnetic field according to relation [4]: 
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D0 (T) is the diffusion coefficient that is a function of temperature T in the absence of a magnetic field, given by 

the Einstein-Smoluchowski relation [14,15]: 
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𝜇 𝑇  characterizes the electron mobility [36, 37] and is a function of temperature, its expression is given by: 

  9 2,42 1 11,43.10 ²T T cm V s           (5) 

kb is the Boltzmann constant, q the elementary charge of the electron and T the temperature. 

L
*
(B, T) represents the diffusion length of the minority carriers of charges in the base and is given by: 
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τ is the lifetime of the minority charge carriers in the base. 

δ (x, B, T) represents the density of minority carriers of charge in the base. It is obtained after the resolution of 

equation (1) and is given by: 
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The expressions of A and B are determined from the boundary conditions [38, 39]: 

 at the junction(x=0) 
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 at the back surface (x=H): 

Hx*
)T,B(D

)T,B,x(.Sb
Hxx

)T,B,x(







   

(9) 

Sf represents the recombination velocity of the minority charge carriers at the junction. It characterizes the 

operating point of the solar cell but also the minority carrier flux at the junction [38,39]. Sb is the recombination 

velocity of the minority charge carriers at the back surface [39]. 

 

3. Results and Discussions 

From equation 3, the profile of the diffusion coefficient as a function of temperature for different values of the 

magnetic field is shown in figure 2 [40]. 

 

  
Figure 3: Diffusion coefficient as a function of temperature for different values of the magnetic field 

 

The exploitation of figure 2 by the graphical method as well as by the analytical method made it possible to 

obtain Table 1 [40]: 

Table 1: Variation of the amplitude of the diffusion coefficient as a function of the optimum temperature 

Magnetic Field B (T) 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001 

optimal temperature T 

(K) 

255 285 308 335 355 380 400 410 

Diffusion coefficient 

D (cm
2
/s) 

33.364 28.178 24.694 22.206 20.276 18.763 17.571 16.642 

 

3.1. Study of the minority charge carriers density in excess in the base 

From equation 7 and table 1, we represent in figure 3, the profile of the density of minority carriers as a function 

of the depth x for different optimum temperatures in a short-circuit situation. 
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Figure 3: Minority charge carriers density as a function of the depth for different optimum temperatures, 

Sf=6.10
6
cm/s 

Figure 3 shows two essential observation areas: 

 A first where the concentration gradient is positive. In this region the minority charge carriers cross the 

junction and participate in the photocurrent production.  

 A second one where the concentration gradient is negative: it is a zone of predominance of the 

recombinations in volume of the minority carriers of charge because they lack energy enabling them to 

reach the junction and cross the potential barrier. 

We also find that the maxima of the density of minority charge carriers increase with the optimal temperature. 

Indeed, the thermal agitation resulting from the rise in temperature reduces the mobility [41-43] and the 

maximum diffusion of the minority carriers from the base to the junction, which consequently leads to an 

increase in the density of minority carriers of load in the base [40]. In order to study the behavior of minority 

charge carriers when the solar cell is in the open circuit situation, we represent in Figure 4 the profile of the 

density of minority carriers as a function of the depth of the base for different optimum temperatures in open 

circuit 

 
Figure 4: Minority charge carriers density as a function of the depth for different optimum temperatures in open 

circuit Sf=10 cm/s 
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For a given optimum temperature, figure 4 shows a decrease in the density of minority carriers with the increase 

in depth in the base. Indeed, going deep into the base, the photogeneration of the minority charge carriers 

decreases according to the equation 2 and given the low value of the recombination rate of the minority charge 

carriers at the junction, we inevitably witness a reduction of the charge carrier minority density. 

Indeed, by going deep into the base, the photogeneration of the minority carriers of charge decreases according 

to equation 2 and given the low value of the recombination velocity of the minority carriers of charge at the 

junction, we inevitably to a reduction in the density of minority charge carriers. This effect of optimal 

temperature is more sensitive near the junction. Indeed, the more the charge carriers are accumulated at the 

junction, the more perceptible the effect of the thermal agitation. The effect of the thermal agitation increases 

the possibilities of recombination of the minority charge carriers in volume or on the surface when the solar cell 

is in the open circuit situation. Thus, Auger recombinations become important [44] and lead to a reduction in 

photocurrent [45]. To study the effects of the magnetic field and of the temperature we represent in figure 5, the 

profile of the density of minority carriers as a function of the temperature for different magnetic fields is shown. 

 
Figure 5: Minority charge carriers density as a function of the depth for different optimum temperatures 

Sf=3.10
3
 cm/s, x=0. 

Figure 5 shows that the density of minority carriers decreases until to a corresponding minimum value at a 

temperature called optimum temperature and then increases with temperature. Indeed, the decrease in the 

density of minority charge carriers for temperatures below the optimum temperature (T <Top (B)) is due to the 

increase of the low temperature thermal conductivity [46] in the semi- conductor according to the relationship of 

T
3 

[47-49] and reduction of the thermal resistance of the material [48-50]: this is the normal process or N 

process [51, 52]. The increase of the density of minority carriers in excess with the temperature corresponds to 

the inverse effect, that is to say the high temperature situation (T> Top (B)) where the thermal conductivity 

decreases in the semiconductor material according to the relationship of 1 / T [47, 48, 50], whereas the thermal 

resistance of the material increases with the increase in temperature: this is the Umklapp process or U-shaped 

mechanism [48, 50, 53]. In the Umklapp process, two incident phonons with a sufficient wave vector give rise 

to a phonon of wavevector that exits the first Brillouin zone. This wave vector is brought back into the first 

Brillouin zone by a wave vector of the reciprocal lattice whose velocity is less than that of the sum of the 

incident wave vectors which in turn reduces the thermal conductivity [53] or temperatures above the optimum 

temperature (T>Top(B)).  The minimum of minority carriers corresponds to a maximum diffusion of carriers 

from the base to the junction at a temperature equal to the optimal temperature (T=Top(B)). The latter delimits 

two physical processes, namely the Normal process which limits the thermal resistance [51,52] and the Umklapp 

process with limited thermal conductivity [51]. We also observe that the minimas of density of minority carriers 

increase with the magnetic field. Indeed, the increase in the magnetic field increases the optimum temperature 

and consequently reduces the possibilities of maximum diffusion of minority charge carriers in the base in order 

to generate a current to the external circuit [40]. 
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3.2. Study of Photocurrent density 

The expression of the photocurrent density is given by equation (10):
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From the relationship 10, we represent in figure 6 the profile of the photocurrent density as a function of the 

recombination velocity at the junction for different optimum temperatures. 

 
Figure 6: Photocurrent density as a function of the recombination velocity at the junction for different optimum 

temperatures 

Figure 6 shows that at low values of the recombination velocity of the minority charge carriers at the junction 

(Sf) the photocurrent density is low and when this velocity tends towards its large values (near the short circuit), 

the  photocurrent density increases to reach a maximum value: it is the photocurrent density of short circuit. 

Indeed, for the weak values of Sf, the minority charge carriers are blocked at the junction because they haven't 

enough energy to cross the junction. When Sf increases the minority charge carriers begins to cross the junction 

and the photocurrent increases. There is also an increase in the photocurrent density for an intermediate situation 

of the short circuit and open circuit. Indeed, temperature is a parameter whose variation leads to an abnormal 

change of the current [54]. Its elevation leads to the widening of the area of charge and space [55]. As a result, a 

significant number of minority charge carriers cross the junction to participate in the photocurrent. On the other 

hand, in the vicinity of the short-circuit, the increase of optimum temperature decreases the photocurrent. In 

order to better visualize the effects of temperature and magnetic field, we represent in figure 7 the profile of the 

photocurrent density as a function of the temperature for different magnetic fields. 

 
Figure 7: Photocurrent density as a function of the temperature for different magnetic fields. Sf=3.10

3
 cm/s. 
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La figure 7 shows a greater production of photocurrent at a temperature equal to the optimum temperature (T = 

Top (B)) for a given magnetic field. This is due to the beginning of the Umklapp process after an increase in the 

low-temperature thermal conductivity ie temperatures below the optimum temperature (T <Top (B)) [5] of the 

semiconductor material according to the relation T
3 

[47-49]. Whereas, at high temperature, above the maximum 

thermal conductivity, the phonon-phonon interaction [46,52] or the umklapp process [48,50,53,54] 

predominates, thus reducing the thermal conductivity with the temperature rise [49,52] according to the 1 / T 

relationship [47,48,50], which results in reduced photocurrent production for temperatures above the optimum 

temperature. We also note that the photocurrent density decreases with the high values of the magnetic field. 

Indeed, the increase of the magnetic field is synonymous with the increase of the optimal temperature and 

consequently the reduction of the maximum diffusion of minority carriers in excess in the base [40]. Thus, at the 

figure 8, we represent the profile of the short-circuit photocurrent density as a function of the logarithm of the 

magnetic field for different optimum temperatures. 

 
Figure 8: Short-circuit photocurrent density as a function of the logarithm of the magnetic field for different 

optimum temperatures 

Figure 8 shows that at low values of the magnetic field, the short-circuit photocurrent is maximum and constant 

for a given optimum temperature. Here, the magnetic field has no effect on the diffusion of excess minority 

carriers. But beyond a magnetic field greater than 10
-3

T, the short-circuit photocurrent decreases rapidly. Indeed, 

the magnetic field creates a magnetic force which deflects the photogenerated carriers from their initial 

trajectory towards the lateral surfaces, thus reducing their mobility, their diffusion and their conduction in the 

base [56]. 

 

4. Conclusion  

In this work, the optimal temperature Topt (B) effect on the minority charge carriers density of excess carriers in 

the base and the photocurrent density is proposed. Study shows that the minority charge carriers density 

increases with the optimum temperature as well as with the magnetic field. 

Moreover, the photocurrent density and the short-circuit current are maximum at an optimum temperature (T = 

Top (B)) and for a given magnetic field because of the maximum diffusion at this temperature, where neither the 

normal process nor the Umklapp process predominates. 
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